

Mitsubishi Programmable Controller

QCPU Programming Manual Common Instruction 1/2

(Always read these cautions before using the product)

Before using this product, please read this manual and the related manuals introduced in this manual, and pay full attention to safety to handle the product correctly.

Please store this manual in a safe place and make it accessible when required. Always forward a copy of the manual to the end user.

REVISIONS

*The manual number is given on the bottom left of the back cover.

Print Date	*Manual Number	Revision
Dec., 2008	SH (NA)-080809ENG-A	First edition
Mar., 2009	SH (NA)-080809ENG-B	Partial corrections Section 3.3, 3.8, 5.1.3, 6.1.7, 6.2.14, 7.3.3, 7.11.18, 7.11.19, 7.12.1.5,12.7, 7.12.11, 7.12.25, 7.12.26, 7.13.4, 7.13.5, 7.15.7, 7.15.8
Jul., 2009	SH (NA)-080809ENG-C	$ \begin{array}{l} \textbf{(12,26), (13,4, 1.13,5), (15,1, 7.15,6)} \\ \textbf{Revision because of function support by the Universal model QCPU having a serial number "11043" or later \\ \hline Partial corrections \\ \hline \textbf{Section 2.1, 2.5, 6, 2.5, 18, 2.5, 20, 7, 6, 9, 7, 12, 7, 7, 12, 11, 12, 1.3, 12, 1.4, APPENDIX 1.2, 1.3, 1.4, 2, 3, 5, 1 \\ \hline \textbf{Additions} \\ \hline \textbf{Section 2.5, 16, 7, 16, 7, 18, 10} \\ \hline \textbf{Modification} \\ \hline \textbf{Section 2.5, 21 } \rightarrow 2.5, 22, \text{ Section 2.5, 22 } \rightarrow 2.5, 21, \text{ Section 9, 13 } \rightarrow 7, 6, 10, \\ \hline \textbf{Section 9, 14 } \rightarrow 7, 6, 1, \text{ Section 9, 15 } \rightarrow 7, 16, \text{ Section 9, 15, 1 } \rightarrow 7, 16, 15, \\ \hline \textbf{Section 9, 15, 3 } \rightarrow 7, 16, 3, \text{ Section 9, 15 } \rightarrow 7, 18, 15, \\ \hline \textbf{Section 9, 15, 3 } \rightarrow 7, 18, 3, \text{ Section 9, 10 } \rightarrow 7, 18, 15, \\ \hline \textbf{Section 9, 15, 3 } \rightarrow 7, 18, 13, \\ \hline \textbf{Section 9, 10 } \rightarrow 7, 18, 18, \\ \hline \textbf{Section 9, 10 } \rightarrow 7, 18, 18, \\ \hline \textbf{Section 9, 11 } \rightarrow 9, 1, \\ \hline \textbf{Section 9, 11, 1 } \rightarrow 9, 1, 1, \\ \hline \textbf{Section 9, 11, 2 } \rightarrow 9, 1, 2, \\ \hline \textbf{Section 9, 11, 3 } \rightarrow 9, 1, 2 \\ \hline \textbf{Section 9, 11 } \rightarrow 9, 1, \\ \hline \textbf{Chapter 10 } \rightarrow 11, \\ \hline \textbf{Chapter 10 } \rightarrow 11, \\ \hline \textbf{Chapter 11 } \rightarrow 10 \\ \hline \textbf{Section 9, 11, 1 } \rightarrow 10 \\ \hline Section $

Japanese Manual Version SH-080804-B

This manual confers no industrial property rights or any rights of any other kind, nor does it confer any patent licenses. Mitsubishi Electric Corporation cannot be held responsible for any problems involving industrial property rights which may occur as a result of using the contents noted in this manual.

© 2008 MITSUBISHI ELECTRIC CORPORATION

INTRODUCTION

This manual explains the common instructions required for programming of the QCPU.

 The common instructions refer to all instructions except those dedicated to special function modules (such as AJ71QC24 and AJ71PT32-S3) and to AD57 models, as well as PID control instructions, SFC instructions and ST instructions.

Before using this product, please read this manual and the relevant manuals carefully and develop familiarity with the functions and performance of the Q series programmable controller to handle the product correctly.

■ Relevant CPU module

CPU module	Model
Basic model QCPU	Q00JCPU, Q00CPU, Q01CPU
High Perfomance model QCPU	Q02CPU, Q02HCPU, Q06HCPU, Q12HCPU, Q25HCPU
Process CPU	Q02PHCPU, Q06PHCPU, Q12PHCPU, Q25PHCPU
Redundant CPU	Q12PRHCPU, Q25PRHCPU
	Q00UJCPU, Q00UCPU, Q01UCPU, Q02UCPU, Q03UDCPU,
	Q04UDHCPU, Q06UDHCPU, Q10UDHCPU, Q13UDHCPU,
Universal model QCPU	Q20UDHCPU, Q26UDHCPU, Q03UDECPU, Q04UDEHCPU,
	Q06UDEHCPU, Q10UDEHCPU, Q13UDEHCPU,
	Q20UDEHCPU

CONTENTS

SAFETY PRECAUTIONS	۹ - 1
REVISIONS	۹-2
INTRODUCTION	۹ - 3
CONTENTS	۹ - 4
MANUALS	- 14

Common Instructions 1/2

1. GENE	RAL DESCRIPTION	1 - 1 to 1 - 8
1.1 Re	elated Programming Manuals	1 - 2
1.2 At	breviations and Generic Names	1 - 5
2. INSTI	RUCTION TABLES	2 - 1 to 2 - 62
2.1 Ty	pes of Instructions	2 - 2
2.2 Ho	w to Read Instruction Tables	2 - 4
2.3 Se	quence Instructions	2 - 6
2.3.1	Contact instructions	2 - 6
2.3.2	Association instructions	2 - 7
2.3.3	Output instructions	2 - 8
2.3.4	Shift instructions	2 - 8
2.3.5	Master control instructions	
2.3.6	Termination instructions	
2.3.7	Other instructions	2 - 9
2.4 Ba	sic instructions	2 - 10
2.4.1	Comparison operation instructions	2 - 10
2.4.2	Arithmetic operation instructions	2 - 16
2.4.3	Data conversion instructions	2 - 22
2.4.4	Data transfer instructions	2 - 24
2.4.5	Program branch instructions	2 - 27
2.4.6	Program execution control instructions	2 - 27
2.4.7	I/O refresh instructions	2 - 27
2.4.8	Other convenient instructions	2 - 28
2.5 Ap	plication Instructions	2 - 29
2.5.1	Logical operation instructions	2 - 29
2.5.2	Rotation instructions	2 - 32
2.5.3	Shift instructions	2 - 33
2.5.4	Bit processing instructions	2 - 34
2.5.5	Data processing instructions	2 - 35
2.5.6	Structure creation instructions	2 - 38
2.5.7	Data table operation instructions	2 - 40
2.5.8	Buffer memory access instructions	2 - 41
2.5.9	Display instructions	2 - 41
2.5.10	Debugging and failure diagnosis instructions	2 - 42

2.5.11	Character string processing instructions	2 - 43
2.5.12	Special function instructions	
2.5.13	Data control instructions	2 - 49
2.5.14	Switching instructions	2 - 51
2.5.15	Clock instructions	2 - 52
2.5.16	Expansion clock instruction	2 - 55
2.5.17	Program control instructions	
2.5.18	Other instructions	2 - 57
2.5.19	Instructions for Data Link	2 - 59
2.5.20	Multiple CPU dedicated instruction	2 - 60
2.5.21	Multiple CPU high-speed transmission dedicated instruction	2 - 60
2.5.22	Redundant system instructions (For Redundant CPU)	2 - 61

3. CONFIGURATION OF INSTRUCTIONS

3 - 1 to 3 - 48

3.1	Configuration of Instructions	3 - 2
3.2	Designating Data	3 - 3
3.2	1 Using bit data	3 - 3
3.2	2 Using word (16 bits) data	3 - 4
3.2	3 Using double word data (32 bits)	3 - 6
3.2	4 Using real number data	3 - 8
3.2	5 Using character string data	3 - 11
3.3	Indexing	3 - 12
3.4	Indirect Specification	3 - 23
3.5	Reducing Instruction Processing Time	3 - 25
3.5	1 Subset Processing	3 - 25
3.5	2 Operation processing with standard device registers (Z)	
	(only Universal model QCPU)	3 - 26
3.6	Cautions on Programming (Operation Errors)	3 - 27
3.7	Conditions for Execution of Instructions	3 - 33
3.8	Counting Step Number	3 - 34
3.9	Operation when the OUT, SET/RST, or PLS/PLF Instructions Use the Same Device	ə 3 - 39
3.10	Precautions for Use of File Registers	3 - 44

4. HOW TO READ INSTRUCTIONS

4 - 1 to 4 - 4

5 - 1 to 5 - 60

5.1 C	ontact Instructions	5 - 2
5.1.1	Operation start, series connection, parallel connection (LD,LDI,AND,ANI,	OR,ORI)5 - 2
5.1.2	Pulse operation start, pulse series connection, pulse parallel connection	
	(LDP,LDF,ANDP,ANDF,ORP,ORF)	5 - 5
5.1.3	Pulse NOT operation start, pulse NOT series connection, pulse NOT para	allel connection
	(LDPI,LDFI,ANDPI,ANDFI,ORPI,ORFI)	
5.2 A	ssociation Instructions	5 - 10
5.2.1	Ladder block series connection and parallel connection (ANB,ORB)	5 - 10
5.2.2	Operation results push,read,pop (MPS,MRD,MPP)	

5.2.3	Operation results inversion (INV)	5 - 15
5.2.4	Operation result conversions (MEP,MEF)	5 - 17
5.2.5	Pulse conversions of edge relay operation results (EGP,EGF)	
5.3 Ou	utput Instructions	5 - 20
5.3.1	Out instruction (excluding timers, counters, and annunciators) (OUT)	
5.3.2	Timers (OUT T,OUTH T)	
5.3.3	Counter (OUT C)	
5.3.4	Annunciator output (OUT F)	
5.3.5	Setting devices (except for annunciators) (SET)	
5.3.6	Resetting devices (except for annunciators) (RST)	
5.3.7	Setting and resetting the annunciators (SET F,RST F)	
5.3.8	Leading edge and trailing edge outputs (PLS,PLF)	
5.3.9	Bit device output reverse (FF)	
5.3.10	Pulse conversions of direct outputs (DELTA(P))	5 - 42
5.4 Sh	nift Instructions	5 - 44
5.4.1	Bit device shifts (SFT(P))	5 - 44
5.5 Ma	aster Control Instructions	5 - 47
5.5.1	Setting and resetting the master control (MC,MCR)	5 - 47
5.6 Te	ermination Instructions	5 - 51
5.6.1	End main routine program (FEND)	5 - 51
5.6.2	End sequence program (END)	
5.7 Ot	her instructions	5 - 55
5.7.1	Sequence program stop (STOP)	
5.7.2	No operations (NOP,NOPLF,PAGE n)	
5.7.2 6. BASI	No operations (NOP,NOPLF,PAGE n)	6 - 1 to 6 - 168
5.7.2 6. BASIC 6.1 Cc	No operations (NOP,NOPLF,PAGE n) C INSTRUCTIONS omparison Operation Instructions	6 - 1 to 6 - 168 6 - 2
5.7.2 6. BASIC <u>6.1 Cc</u> 6.1.1	No operations (NOP,NOPLF,PAGE n) C INSTRUCTIONS omparison Operation Instructions BIN 16-bit data comparisons (=.<>.>.<=.<.>=)	6 - 1 to 6 - 168 6 - 2 6 - 2
5.7.2 6. BASIC <u>6.1 Co</u> 6.1.1 6.1.2	No operations (NOP,NOPLF,PAGE n) C INSTRUCTIONS omparison Operation Instructions BIN 16-bit data comparisons (=,<>,>,<=,<,>=) BIN 32-bit data comparisons (D=,D<>,D>,D<=,D<,D>=)	6 - 1 to 6 - 168 6 - 2
5.7.2 6. BASIC 6.1 Co 6.1.1 6.1.2 6.1.3	No operations (NOP,NOPLF,PAGE n) C INSTRUCTIONS omparison Operation Instructions BIN 16-bit data comparisons (=,<>,>,<=,<,>=) BIN 32-bit data comparisons (D=,D<>,D>,D<=,D<,D>=) Floating decimal point data comparisons (Single precision)	6 - 1 to 6 - 168 6 - 2
5.7.2 6. BASIC <u>6.1 Cc</u> 6.1.1 6.1.2 6.1.3	No operations (NOP,NOPLF,PAGE n) C INSTRUCTIONS omparison Operation Instructions BIN 16-bit data comparisons (=,<>,>,<=,<,>=) BIN 32-bit data comparisons (D=,D<>,D>,D<=,D<,D>=) Floating decimal point data comparisons (Single precision) (E=,E<>,E>,E<=,E<,E>=)	6 - 1 to 6 - 168 6 - 2
5.7.2 6. BASIC <u>6.1 Co</u> 6.1.1 6.1.2 6.1.3 6.1.4	No operations (NOP,NOPLF,PAGE n) C INSTRUCTIONS omparison Operation Instructions BIN 16-bit data comparisons (=,<>,>,<=,<,>=) BIN 32-bit data comparisons (D=,D<>,D>,D<=,D<,D>=) Floating decimal point data comparisons (Single precision) (E=,E<>,E>,E<=,E<,E>=) Floating decimal point data comparisons (Double precision)	6 - 1 to 6 - 168 6 - 2
5.7.2 6. BASIC 6.1 Cc 6.1.1 6.1.2 6.1.3 6.1.4	No operations (NOP,NOPLF,PAGE n) C INSTRUCTIONS pmparison Operation Instructions BIN 16-bit data comparisons (=,<>,>,<=,<,>=) BIN 32-bit data comparisons (D=,D<>,D>,D<=,D<,D>=) Floating decimal point data comparisons (Single precision) (E=,E<>,E>,E<=,E<,E>=) Floating decimal point data comparisons (Double precision) (ED=,ED<>,ED>,ED<=,ED<=,ED>=)	6 - 1 to 6 - 168 6 - 2 6 - 2 6 - 2 6 - 4 6 - 4 6 - 6 6 - 6
5.7.2 6. BASIC <u>6.1 Cc</u> 6.1.1 6.1.2 6.1.3 6.1.4 6.1.5	No operations (NOP,NOPLF,PAGE n) C INSTRUCTIONS omparison Operation Instructions BIN 16-bit data comparisons (=,<>,>,<=,<,>=) BIN 32-bit data comparisons (D=,D<>,D>,D<=,D<,D>=) Floating decimal point data comparisons (Single precision) (E=,E<>,E>,E<=,E<,E>=) Floating decimal point data comparisons (Double precision) (ED=,ED<>,ED>,ED<=,ED<,ED>=) Character string data comparisons (\$=,\$<>,\$>,\$<=,\$<,\$>=)	6 - 1 to 6 - 168 6 - 2
5.7.2 6. BASIC 6.1 CC 6.1.1 6.1.2 6.1.3 6.1.4 6.1.5 6.1.6	No operations (NOP,NOPLF,PAGE n) C INSTRUCTIONS omparison Operation Instructions BIN 16-bit data comparisons (=,<>,>,<=,<,>=) BIN 32-bit data comparisons (D=,D<>,D>,D<=,D<,D>=) Floating decimal point data comparisons (Single precision) (E=,E<>,E>,E<=,E<,E>=) Floating decimal point data comparisons (Double precision) (ED=,ED<>,ED>,ED<=,ED<,ED>=) Character string data comparisons (\$=,\$<>,\$>,\$<=,\$<,\$>=) BIN block data comparisons (BKCMP □ ,BKCMP □ P)	6 - 1 to 6 - 168 6 - 2 6 - 2 6 - 2 6 - 2 6 - 4 6 - 4 6 - 6 6 - 6 6 - 8 6 - 11 6 - 15
5.7.2 6. BASIC <u>6.1 Cc</u> 6.1.1 6.1.2 6.1.3 6.1.4 6.1.5 6.1.6 6.1.7	No operations (NOP,NOPLF,PAGE n) C INSTRUCTIONS Demparison Operation Instructions BIN 16-bit data comparisons (=,<>,>,<=,<,>=) BIN 32-bit data comparisons (D=,D<>,D>,D<=,D<,D>=) Floating decimal point data comparisons (Single precision) (E=,E<>,E>,E<=,E<,E>=) Floating decimal point data comparisons (Double precision) (ED=,ED<>,ED>,ED<=,ED<,ED>=) Character string data comparisons (\$=,\$<>,\$>,\$<=,\$<,\$>=) BIN block data comparisons (BKCMP [],BKCMP [] P) BIN 32-bit block data comparisons (DBKCMP [],DBKCMP [] P)	6 - 1 to 6 - 168 6 - 2 6 - 2 6 - 2 6 - 2 6 - 4 6 - 4 6 - 6 6 - 6 6 - 8 6 - 11 6 - 15 6 - 18
5.7.2 6. BASIC <u>6.1 Cc</u> 6.1.1 6.1.2 6.1.3 6.1.4 6.1.5 6.1.6 6.1.7 6.2 Ar	No operations (NOP,NOPLF,PAGE n) C INSTRUCTIONS pmparison Operation Instructions BIN 16-bit data comparisons (=,<>,>,<=,<,>=)	6 - 1 to 6 - 168 $6 - 2$ $6 - 2$ $6 - 2$ $6 - 4$ $6 - 6$ $6 - 6$ $6 - 8$ $6 - 11$ $6 - 15$ $6 - 18$ $6 - 22$
5.7.2 6. BASIC <u>6.1 Cc</u> 6.1.1 6.1.2 6.1.3 6.1.4 6.1.5 6.1.6 6.1.7 <u>6.2 Ar</u> 6.2.1	No operations (NOP,NOPLF,PAGE n) C INSTRUCTIONS omparison Operation Instructions BIN 16-bit data comparisons (=,<>,>,<=,<,>=) BIN 32-bit data comparisons (D=,D<>,D>,D<=,D<,D>=) Floating decimal point data comparisons (Single precision) (E=,E<>,E>,E<=,E<,E>=) Floating decimal point data comparisons (Double precision) (ED=,ED<>,ED>,ED<=,ED<,ED>=) Character string data comparisons (\$=,\$<>,\$>,\$<=,\$<,\$>=) BIN block data comparisons (BKCMP [],BKCMP [] P) BIN 32-bit block data comparisons (DBKCMP [],DBKCMP [] P) BIN 16-bit addition and subtraction operations (+(P),-(P))	6 - 1 to 6 - 168 $6 - 2$ $6 - 2$ $6 - 2$ $6 - 4$ $6 - 6$ $6 - 8$ $6 - 11$ $6 - 15$ $6 - 18$ $6 - 22$ $6 - 22$
5.7.2 6. BASIC <u>6.1 Cc</u> 6.1.1 6.1.2 6.1.3 6.1.4 6.1.5 6.1.6 6.1.7 <u>6.2 Ar</u> 6.2.1 6.2.2	No operations (NOP,NOPLF,PAGE n) C INSTRUCTIONS pmparison Operation Instructions BIN 16-bit data comparisons (=,<>,>,<=,<,>=) BIN 32-bit data comparisons (D=,D<>,D>,D<=,D<,D>=) Floating decimal point data comparisons (Single precision) (E=,E<>,E>,E<=,E<,E>=) Floating decimal point data comparisons (Double precision) (ED=,ED<>,ED>,ED<=,ED<,ED>=) Character string data comparisons (\$=,\$<>,\$>,\$<=,\$<,\$>=) BIN block data comparisons (BKCMP [],BKCMP [] P) BIN 32-bit block data comparisons (DBKCMP [],DBKCMP [] P) BIN 16-bit addition and subtraction operations (+(P),-(P)) BIN 32-bit addition and subtraction operations (D+(P),D-(P))	6 - 1 to 6 - 168 $6 - 2$ $6 - 2$ $6 - 2$ $6 - 4$ $6 - 6$ $6 - 6$ $6 - 8$ $6 - 11$ $6 - 15$ $6 - 18$ $6 - 22$ $6 - 22$ $6 - 26$
5.7.2 6. BASIC <u>6.1 Cc</u> 6.1.1 6.1.2 6.1.3 6.1.4 6.1.5 6.1.6 6.1.7 <u>6.2 Ar</u> 6.2.1 6.2.2 6.2.3	No operations (NOP,NOPLF,PAGE n)	6 - 1 to 6 - 168 $6 - 2$ $6 - 2$ $6 - 2$ $6 - 4$ $6 - 6$ $6 - 8$ $6 - 11$ $6 - 15$ $6 - 18$ $6 - 22$ $6 - 22$ $6 - 26$ $6 - 30$
5.7.2 6. BASIC <u>6.1 Cc</u> 6.1.1 6.1.2 6.1.3 6.1.4 6.1.5 6.1.6 6.1.7 <u>6.2 Ar</u> 6.2.1 6.2.2 6.2.3 6.2.4	No operations (NOP,NOPLF,PAGE n)	6 - 1 to 6 - 168 $6 - 2$ $6 - 2$ $6 - 2$ $6 - 2$ $6 - 4$ $6 - 6$ $6 - 6$ $6 - 11$ $6 - 15$ $6 - 15$ $6 - 18$ $6 - 22$ $6 - 22$ $6 - 26$ $6 - 30$ $6 - 32$
5.7.2 6. BASIC <u>6.1 Cc</u> 6.1.1 6.1.2 6.1.3 6.1.4 6.1.5 6.1.6 6.1.7 <u>6.2 Ar</u> 6.2.1 6.2.3 6.2.4 6.2.5	No operations (NOP,NOPLF,PAGE n) C INSTRUCTIONS omparison Operation Instructions BIN 16-bit data comparisons (=,<>,>,<=,<,>=) BIN 32-bit data comparisons (D=,D<>,D>,D<=,D<,D>=) Floating decimal point data comparisons (Single precision) (E=,E<>,E>,E<=,E<,E>=) Floating decimal point data comparisons (Double precision) (E=,E<>,E>,E<=,E<,E>=) Floating decimal point data comparisons (Double precision) (ED=,ED<>,ED>,ED<=,ED<,ED>=) Character string data comparisons (\$=,\$<>,\$>,\$<,\$<,\$>=,\$<,\$>=) BIN block data comparisons (BKCMP □ ,BKCMP □ P) BIN 32-bit block data comparisons (DBKCMP □ ,DBKCMP □ P) BIN 16-bit addition and subtraction operations (+(P),-(P)) BIN 32-bit addition and subtraction operations (D*(P),D-(P)) BIN 16-bit multiplication and division operations (*(P),/(P)) BIN 32-bit multiplication and division operations (D*(P),D/(P)) BIN 32-bit multiplication and division operations (D*(P),D/(P))	6 - 1 to 6 - 168 $6 - 2$ $6 - 2$ $6 - 2$ $6 - 2$ $6 - 4$ $6 - 6$ $6 - 8$ $6 - 11$ $6 - 15$ $6 - 18$ $6 - 22$ $6 - 22$ $6 - 22$ $6 - 26$ $6 - 30$ $6 - 32$ $6 - 34$
5.7.2 6. BASIC 6.1 Co 6.1.1 6.1.2 6.1.3 6.1.4 6.1.5 6.1.6 6.1.7 6.2 Ar 6.2.1 6.2.2 6.2.3 6.2.4 6.2.5 6.2.6	No operations (NOP,NOPLF,PAGE n) C INSTRUCTIONS omparison Operation Instructions BIN 16-bit data comparisons (=,<>,>,<=,<>=) BIN 32-bit data comparisons (D=,D<>,D>,D<=,D<,D>=) Floating decimal point data comparisons (Single precision) (E=,E<>,E>,E<=,E<,E>=) Floating decimal point data comparisons (Double precision) (E=,E<>,E>,E<=,E<,E>=) Floating decimal point data comparisons (Double precision) (ED=,ED<>,ED>,ED<=,ED<,ED>=) Character string data comparisons (\$=,\$<>,\$>,\$<=,\$<,\$>=) BIN block data comparisons (BKCMP □, BKCMP □ P) BIN 32-bit block data comparisons (DBKCMP □, DBKCMP □ P) BIN 32-bit addition and subtraction operations (+(P),-(P)) BIN 16-bit addition and subtraction operations (D+(P),D-(P)) BIN 32-bit multiplication and division operations (*(P),/(P)) BIN 32-bit multiplication and division operations (D*(P),D/(P)) BIN 32-bit multiplication and division operations (D*(P),D/(P)) BIN 32-bit multiplication and subtraction operations (D*(P),D-(P)) BIN 32-bit multiplication and division operations (D*(P),D-(P)) BIN 32-bit multiplication and division operations (D*(P),D-(P)) BIN 32-bit multiplication and subtraction operations (D*(P),D-(P))	$\begin{array}{r} 5-57\\ \hline 6-1\ to\ 6-168\\ \hline 6-2\\ \hline6-2\\ \hline6-4\\ \hline6-4\\ \hline6-6\\ \hline6-6\\ \hline6-11\\ \hline6-15\\ \hline6-15\\ \hline6-18\\ \hline 6-22\\ \hline6-26\\ \hline6-26\\ \hline6-30\\ \hline6-32\\ \hline6-34\\ \hline6-38\\ \end{array}$
5.7.2 6. BASIC $6.1 CC 6.1.1 6.1.2 6.1.3 6.1.4 6.1.5 6.1.6 6.1.7 6.2 Ar 6.2.1 6.2.2 6.2.3 6.2.4 6.2.5 6.2.6 6.2.7$	No operations (NOP,NOPLF,PAGE n) C INSTRUCTIONS omparison Operation Instructions BIN 16-bit data comparisons (=,<>,>,<=,<,>=) BIN 32-bit data comparisons (D=,D<>,D>,D<=,D<,D>=) Floating decimal point data comparisons (Single precision) (E=,E<>,E>,E<,E>=) Floating decimal point data comparisons (Double precision) (ED=,ED<>,ED>,ED<=,ED<,ED>=) Character string data comparisons (\$=,\$<>,\$>,\$<,\$<=,\$<,\$>=) BIN block data comparisons (BKCMP □ ,BKCMP □ P) BIN 32-bit block data comparisons (DBKCMP □ ,DBKCMP □ P) BIN 32-bit addition and subtraction operations (+(P),-(P)) BIN 16-bit addition and subtraction operations (D+(P),D-(P)) BIN 32-bit multiplication and division operations (D*(P),D/(P)) BIN 32-bit multiplication and division operations (B+(P),B-(P)) BIN 32-bit multiplication and division operations (D*(P),D/(P)) BIN 32-bit multiplication and division operations (D*(P),D/(P)) BIN 32-bit multiplication and division operations (B+(P),B-(P)) BCD 4-digit addition and subtraction operations (D*(P),D-(P)) BCD 4-digit addition and subtraction operations (D*(P),D-(P))	6 - 1 to 6 - 168 $6 - 2$ $6 - 2$ $6 - 2$ $6 - 2$ $6 - 4$ $6 - 6$ $6 - 8$ $6 - 11$ $6 - 11$ $6 - 15$ $6 - 18$ $6 - 22$ $6 - 22$ $6 - 22$ $6 - 22$ $6 - 30$ $6 - 30$ $6 - 34$ $6 - 38$ $6 - 42$
5.7.2 6. BASIC <u>6.1 Cc</u> 6.1.1 6.1.2 6.1.3 6.1.4 6.1.5 6.1.6 6.1.7 <u>6.2 Ar</u> 6.2.1 6.2.3 6.2.4 6.2.5 6.2.6 6.2.7 6.2.8	No operations (NOP,NOPLF,PAGE n) C INSTRUCTIONS Demparison Operation Instructions BIN 16-bit data comparisons (=,<>,>,<=,<,>=). BIN 32-bit data comparisons (D=,D<>,D>,D<=,D<,D>=) Floating decimal point data comparisons (Single precision) (E=,E<>,E>,E<=,E<,E>=). Floating decimal point data comparisons (Double precision) (E=,E<>,E>,E<=,E<,E>=). Floating decimal point data comparisons (Double precision) (ED=,ED<>,ED>,ED<=,ED<,ED>=) Character string data comparisons (\$=,\$<>,\$>,\$<=,\$<,\$>=) BIN block data comparisons (BKCMP □ ,BKCMP □ P) BIN 32-bit block data comparisons (DBKCMP □ ,DBKCMP □ P) BIN 16-bit addition and subtraction operations (+(P),-(P)) BIN 16-bit addition and subtraction operations (P+(P),D-(P)) BIN 16-bit multiplication and division operations (D*(P),D/(P)) BIN 32-bit multiplication and division operations (B+(P),B-(P)) BCD 4-digit addition and subtraction operations (B+(P),B-(P)) BCD 4-digit addition and subtraction operations (B+(P),B-(P)) BCD 4-digit multiplication and division operations (B+(P),B-(P)) BCD 4-digit multiplication and division operations (B+(P),B-(P)) BCD 8-digit multiplication and division operations (B+(P),B-(P))	6 - 1 to 6 - 168 $6 - 2$ $6 - 2$ $6 - 2$ $6 - 2$ $6 - 4$ $6 - 6$ $6 - 8$ $6 - 11$ $6 - 15$ $6 - 18$ $6 - 22$ $6 - 22$ $6 - 22$ $6 - 26$ $6 - 30$ $6 - 32$ $6 - 34$ $6 - 38$ $6 - 42$ $6 - 44$
5.7.2 6. BASIC 6.1 Co 6.1.1 6.1.2 6.1.3 6.1.4 6.1.5 6.1.6 6.1.7 6.2 Ar 6.2.1 6.2.2 6.2.3 6.2.4 6.2.5 6.2.6 6.2.7 6.2.8 6.2.9	No operations (NOP,NOPLF,PAGE n) C INSTRUCTIONS Demparison Operation Instructions BIN 16-bit data comparisons (=,<>,>,<=,<,>=) BIN 32-bit data comparisons (D=,D<>,D>,D<=,D<,D>=) Floating decimal point data comparisons (Single precision) (E=,E<>,E>,E<=,E<,E>=) Floating decimal point data comparisons (Double precision) (ED=,ED<>,ED>,ED<=,ED<,ED>=) Character string data comparisons (\$=,\$<>,\$<,\$<=,\$<,\$>=) BIN block data comparisons (BKCMP □, BKCMP □ P) BIN 32-bit block data comparisons (DBKCMP □,DBKCMP □ P) BIN 16-bit addition and subtraction operations (+(P),-(P)) BIN 16-bit addition and subtraction operations (D+(P),D-(P)) BIN 32-bit multiplication and division operations (CP(P),D/(P)) BIN 32-bit multiplication and division operations (B+(P),B-(P)) BIN 32-bit multiplication and division operations (B+(P),B-(P)) BIN 32-bit multiplication and division operations (B+(P),B-(P)) BCD 4-digit addition and subtraction operations (B+(P),B-(P)) BCD 8-digit multiplication and division operations (B*(P),B/(P)) BCD 8-digit multiplication and division operations (B*(P),B-(P)) BCD 8-digit multiplication and division operations (B*(P),B-(P)) BCD 8-digit multiplication and division operations (DB+(P),DB-(P)) BCD 8-digit multiplication and divi	6 - 1 to 6 - 168 $6 - 2$ $6 - 2$ $6 - 2$ $6 - 2$ $6 - 4$ $6 - 6$ $6 - 8$ $6 - 11$ $6 - 15$ $6 - 15$ $6 - 18$ $6 - 22$ $6 - 22$ $6 - 22$ $6 - 22$ $6 - 30$ $6 - 32$ $6 - 34$ $6 - 34$ $6 - 38$ $6 - 42$ 1

6.2.10	Addition and subtraction of floating decimal point data (Double precision) (ED+(P),ED-(P))	6 - 50
6.2.11	Multiplication and division of floating decimal point data (Single precision) (E*(P),E/(P))	6 - 54
6.2.12	Multiplication and division of floating decimal point data (Double precision)	6 56
6213	(ED (F),ED/(F)) Block addition and subtraction (BK+(P) BK-(P))	0 - 50 6 - 50
6 2 14	BIN 32-bit data block addition and subtraction operations (DBK+(P) DBK-(P))	0 - 55 6 - 62
6 2 15	Linking character strings (\$+(P))	6 - 65
6.2.16	Incrementing and decrementing 16-bit BIN data (INC(P), DEC(P))	6 - 69
6.2.17	Incrementing and decrementing 32-bit BIN data (DINC(P),DDEC(P))	6 - 71
6.3 Da	ta conversion instructions	6 - 73
6.3.1	Conversion from BIN data to 4-digit and 8-digit BCD (BCD(P),DBCD(P))	6 - 73
6.3.2	Conversion from BCD 4-digit and 8-digit data to BIN data (BIN(P), DBIN(P))	6 - 75
6.3.3	Conversion from BIN 16 and 32-bit data to floating decimal point (Single precision (ELT(P) DELT(P))	on)
6.3.4	Conversion from BIN 16 and 32-bit data to floating decimal point (Double precis	0 - 70
	(FLTD(P),DFLTD(P))	6 - 81
6.3.5	Conversion from floating decimal point data to BIN16- and	
	32-bit data (Single precision) (INT(P),DINT(P))	6 - 83
6.3.6	Conversion from floating decimal point data to BIN16- and	
	32-bit data (Double precision) (INTD(P),DINTD(P))	6 - 86
6.3.7	Conversion from BIN 16-bit to BIN 32-bit data (DBL(P))	6 - 88
6.3.8	Conversion from BIN 32-bit to BIN 16-bit data (WORD(P))	6 - 89
6.3.9	Conversion from BIN 16 and 32-bit data to Gray code (GRY(P),DGRY(P))	6 - 90
6.3.10	Conversion of Gray code to BIN 16 and 32-bit data (GBIN(P),DGBIN(P))	6 - 92
6.3.11	Complement of 2 of BIN 16- and 32-bit data (sign reversal) (NEG(P),DNEG(P))	6 - 94
6.3.12	Floating-point sign invertion (Single precision) (ENEG(P))	6 - 96
6.3.13	Floating-point sign invertion (Double precision) (EDNEG(P))	6-97
0.3.14	Conversion from block BIN 16-bit data to block BIN 16 bit data (BKBCD(P))	0 - 98
6316	Single precision to Double precision conversion (ECON(D))	0 - 100 6 102
6317	Double precision to Single precision conversion (ECON(P))	6 - 104
6.4 Do	ta Transfor Instructions	6 106
6 / 1	16 bit and 22 bit data transform (MOV//D) DMOV/(D))	6 106
642	Floating-point data transfer (Single precision) (EMOV(P))	6 - 108
643	Floating-point data transfer (Double precision) (EMOV(P))	6 - 110
644	Character string transfers (\$MOV(P))	6 - 112
6.4.5	16-bit and 32-bit negation transfers (CML(P).DCML(P))	6 - 114
6.4.6	Block 16-bit data transfers (BMOV(P))	6 - 117
6.4.7	Identical 16-bit data block transfers (FMOV(P))	6 - 120
6.4.8	Identical 32-bit data block transfers (DFMOV(P))	6 - 122
6.4.9	16-bit and 32-bit data exchanges (XCH(P),DXCH(P))	6 - 124
6.4.10	Block 16-bit data exchanges (BXCH(P))	6 - 126
6.4.11	Upper and lower byte exchanges (SWAP(P))	6 - 128
6.5 Pro	ogram Branch Instructions	6 - 129
6.5.1	Pointer branch instructions (CJ,SCJ,JMP)	6 - 129
6.5.2	Jump to END (GOEND)	6 - 132

0.0			0 - 133
6	6.1	Interrupt disable/enable instructions, interrupt program mask (DI,EI,IM	IASK)6 - 133
6	6.2	Recovery from interrupt programs (IRET)	6 - 139
6.7	/ I/O	Refresh Instructions	6 - 141
6	6.7.1	I/O refresh (RFS(P))	6 - 141
6.8	B Oth	ner Convenient Instructions	6 - 143
6	6.8.1	Counter 1-phase input up or down (UDCNT1)	6 - 143
6	6.8.2	Counter 2-phase input up or down (UDCNT2)	6 - 146
6	6.8.3	Teaching timer (TTMR)	6 - 149
6	6.8.4	Special function timer (STMR)	6 - 151
6	6.8.5	Rotary table shortest direction control (ROTC)	6 - 154
6	6.8.6	Ramp signal (RAMP)	6 - 157
6	6.8.7	Pulse density measurement (SPD)	
6	8.8.8	Fixed cycle pulse output (PLSY)	6 - 162
6	6.8.9	Pulse width modulation (PWM)	6 - 164
6	6.8.10	Matrix input (MTR)	6 - 166
7. A	\PPLI	CATION INSTRUCTIONS	7 - 1 to 7 - 452
7.1	Log	gical operation instructions	7 - 2
7	7.1.1	Logical products with 16-bit and 32-bit data (WAND(P),DAND(P))	7-3
7	7.1.2	Block logical products (BKAND(P))	7 - 9
7	7.1.3	Logical sums of 16-bit and 32-bit data (WOR(P),DOR(P))	7 - 11
7	7.1.4	Block logical sum operations (BKOR(P))	7 - 17

16-bit and 32-bit exclusive OR operations (WXOR(P),DXOR(P))7 - 19

December Free outline Control Instantions

~ ~

7.1.5

7.1.6 16-bit and 32-bit data exclusive NOR operations (WXNR(P),DXNR(P))......7 - 27 7.1.7 7.1.8 Block exclusive NOR operations (BKXNR(P)).....7 - 33 7.2 Rotation instruction 7 - 35 Right rotation of 16-bit data (ROR(P),RCR(P))7 - 35 7.2.1 7.2.2 Left rotation of 16-bit data (ROL(P),RCL(P)).....7 - 38 Right rotation of 32-bit data (DROR(P), DRCR(P))7 - 41 7.2.3 Left rotation of 32-bit data (DROL(P),DRCL(P)).....7 - 44 7.2.4 7.3 Shift instruction 7 - 46 7.3.1 n-bit shift to right or left of 16-bit data (SFR(P),SFL(P))7 - 46 7.3.2 1-bit shift to right or left of n-bit data (BSFR(P),BSFL(P))7 - 49 7.3.3 n-bit shift to right or left of n-bit data (SFTBR(P),SFTBL(P)).....7 - 51 7.3.4 7.3.5 n-bit shift to right or left of n-word data (SFTWR(P),SFTWL(P))......7 - 56 7.4 Bit processing instructions 7 - 59 7.4.1 Bit set and reset for word devices (BSET(P), BRST(P))7 - 59 7.4.2 Bit tests (TEST(P),DTEST(P)).....7 - 61 7.4.3 7.5 Data processing instructions 7 - 66 16-bit and 32-bit data searches (SER(P),DSER(P)).....7 - 66 7.5.1 16-bit and 32-bit data checks (SUM(P),DSUM(P)).....7 - 69 7.5.2 7.5.3 7.5.4

7.5.5 7-segment decode (SEG(P))	7 - 75
7.5.6 4-bit dissociation of 16-bit data (DIS(P))	7 - 77
7.5.7 4-bit linking of 16-bit data (UNI(P))	7 - 79
7.5.8 Dissociation or linking of random data (NDIS(P),NUNI(P))	7 - 81
7.5.9 Data dissociation and linking in byte units (WTOB(P),BTOW(P))	7 - 85
7.5.10 Maximum value search for 16- and 32-bit data (MAX(P),DMAX(P))	7 - 89
7.5.11 Minimum value search for 16- and 32-bit data (MIN(P),DMIN(P))	7 - 92
7.5.12 BIN 16 and 32 bits data sort operations (SORT, DSORT)	7 - 95
7.5.13 Calculation of totals for 16-bit data (WSUM(P))	7 - 99
7.5.14 Calculation of totals for 32-bit data (DWSUM(P))	7 - 101
7.5.15 Calculation of averages for 16-bit or 32-bit data (MEAN(P),DMEAN	(P))7 - 103
7.6 Structure creation instructions	7 - 105
7.6.1 FOR to NEXT instruction loop (FOR,NEXT)	7 - 105
7.6.2 Forced end of FOR to NEXT instruction loop (BREAK(P))	7 - 108
7.6.3 Subroutine program calls (CALL(P))	7 - 110
7.6.4 Return from subroutine programs (RET)	7 - 115
7.6.5 Subroutine program output OFF calls (FCALL(P))	7 - 116
7.6.6 Subroutine calls between program files (ECALL(P))	
7.6.7 Subroutine output OFF calls between program files (EFCALL(P))	7 - 125
7.6.8 Subroutine program call (XCALL)	7 - 129
7.6.9 Refresh instruction (COM)	
7.6.10 Select Refresh Instruction (COM)	7 - 137
7.6.11 Select Refresh Instruction (CCOM)	7 - 141
7.6.12 Index modification of entire ladder (IX,IXEND)	7 - 144
7.6.13 Designation of modification values in index modification of entire la (IXDEV,IXSET)	dders 7 - 148
7.7 Data Table Operation Instructions	7 - 151
7.7.1 Writing data to the data table (FIFW(P))	
7.7.2 Reading oldest data from tables (FIFR(P))	
7.7.3 Reading newest data from data tables (FPOP(P))	
7.7.4 Deleting and inserting data from and in data tables (FDEL(P), FINS	(P))7 - 157
7.8 Buffer memory access instruction	7 - 160
7.8.1 Reading 1-/2-word data from the intelligent function module	
(FROM(P).DFRO(P)).	
7.8.2 Writing 1-/2-word data to intelligent function module (TO(P).DTO(P)	·))
7.9 Display instructions	7 - 166
7.9.1 Print ASCII code instruction (PR)	7 - 166
7.9.2 Print comment instruction (PRC)	7 - 169
7.9.3 Error display and annunciator reset instruction (LEDR)	7 - 172
7 10 Debugging and failure diagnosis instructions	7 - 175
7 10 1 Special format failure chacks (CHKST CHK)	7 175
7.10.2 Changing check format of CHK instruction (CHKCIP CHKEND)	
7.10.2 Changing check format of Chik instruction (CHKCIK,CHKEND)	
7.11 Character string processing instructions	/ - 183
7.11.1 Conversion from BIN 16-bit or 32-bit to decimal ASCII (BINDA(P),C)BINDA(P))7 - 183
7.11.2 Conversion from BIN 16-bit or 32-bit data to hexadecimal ASCII (BINHA(P),DBINHA(P))	7 - 186

7.11.3	Conversion from BCD 4-digit and 8-digit to decimal ASCII data	7.	_ 1	80
7 11 4	Conversion from decimal ASCII to BIN 16-bit and 32-bit data	. / -	- 1	03
7.11.4		7.	_ 1	92
7 11 5	Conversion from bexadecimal ASCII to BIN 16-bit and 32-bit data			52
7.11.0	(HABIN(P) DHABIN(P))	7.	- 1	95
7 11 6	Conversion from decimal ASCII to BCD 4-digit or 8-digit data		'	00
7.11.0	(DABCD(P) DDABCD(P))	7.	- 1	98
7 11 7	Reading device comment data (COMRD(P))	7.	- 2	201
7.11.8	Character string length detection (LEN(P))	.7.	- 2	04
7.11.9	Conversion from BIN 16-bit or 32-bit to character string (STR(P).DSTR(P))	.7	- 2	206
7.11.10	Conversion from character string to BIN 16-bit or 32-bit data (VAL(P),DVAL(P))	.7.	- 2	12
7.11.11	Conversion from floating decimal point to character string data (ESTR(P))	.7.	- 2	17
7.11.12	Conversion from character string to floating decimal point data (EVAL(P))	.7.	- 2	24
7.11.13	Conversion from hexadecimal BIN to ASCII (ASC(P))	.7.	- 2	28
7.11.14	Conversion from ASCII to hexadecimal BIN (HEX(P))	.7.	- 2	:30
7.11.15	Extracting character string data from the right or left (RIGHT(P),LEFT(P))	.7.	- 2	232
7.11.16	Random selection from and replacement in character strings (MIDR(P),MIDW(P))			
		.7.	- 2	235
7.11.17	Character string search (INSTR(P))	.7.	- 2	:39
7.11.18	Insertion of character string (STRINS(P))	.7-	- 2	41
7.11.19	Deletion of character string (STRDEL(P))	.7.	- 2	:43
7.11.20	Floating decimal point to BCD (EMOD(P))	.7 -	- 2	:45
7.11.21	From BCD format data to floating decimal point (EREXP(P))	. 7 -	- 2	:48
7.12 Spe	ecial function instructions	7 -	- 2	:50
7.12.1	SIN operation on floating-point data (Single precision) (SIN(P))	. 7 -	- 2	50
7.12.2	SIN operation on floating-point data (Double precision) (SIND(P))	. 7 -	- 2	52
7.12.3	COS operation on floating-point data (Single precision) (COS(P))	. 7 -	- 2	.54
7.12.4	COS operation on floating-point data (Double precision) (COSD(P))	. 7 -	- 2	56
7.12.5	TAN operation on floating-point data (Single precision) (TAN(P))	. 7 -	- 2	58
7.12.6	TAN operation on floating-point data (Double precision) (TAND(P))	. 7 -	- 2	60
7.12.7	SIN ⁻¹ operation on floating point data (Single precision) (ASIN(P))	. 7 -	- 2	62
7.12.8	SIN ⁻¹ operation on floating-point data (Double precision) (ASIND(P))	. 7 -	- 2	65
7.12.9	COS ⁻¹ operation on floating-point data (Single precision) (ACOS(P))	. 7 -	- 2	67
7.12.10	COS ⁻¹ operation on floating-point data (Double precision) (ACOSD(P))	. 7 -	- 2	69
7.12.11	TAN ⁻¹ operation on floating-point data (Single precision) (ATAN(P))	. 7 -	- 2	:71
7.12.12	TAN ⁻¹ operation on floating-point data (Double precision) (ATAND(P))	.7-	- 2	73
7.12.13	Conversion from floating-point angle to radian (Single precision) (RAD(P))	.7-	- 2	75
7.12.14	Conversion from floating-point angle to radian (Double precision) (RADD(P))	.7-	- 2	77
7.12.15	Conversion from floating-point radian to angle (Single precision) (DEG(P))	. 7 -	- 2	:79
7.12.16	Conversion from floating-point radian to angle (Double precision) (DEGD(P))	. 7 -	- 2	:81
7.12.17	Exponentiation operation on floating-point data (Single precision) (POW(P))	. 7 -	- 2	83
7.12.18	Exponentiation operation on floating-point data (Single precision) (POWD(P))	. 7 -	- 2	85
7.12.19	Square root operation for floating-point data (Single precision) (SQR(P))	.7 -	- 2	:87
7.12.20	Square root operation for floating-point data (Double precision) (SQRD(P))	. 7 -	- 2	.89
7.12.21	Exponent operation on floating-point data (Single precision) (EXP(P))	. 7 -	- 2	91
7.12.22	Exponent operation on floating-point data (Double precision) (EXPD(P))	.7.	- 2	.94
7.12.23	Natural logarithm operation on floating-point data (Single precision) (LOG(P))	.7.	- 2	.96
7.12.24	Natural logarithm operation on floating-point data (Double precision) (LOGD(P))	.7.	- 2	.98

7.12.25	6 Common logarithm operation on floating-point data (Single precision)	7 000
7 10 06	(LUG10(P))	
7.12.20	(LOG10D(P))	7 - 302
7.12.27	Random number generation and series updates (RND(P),SRND(P))	7 - 304
7.12.28	B BCD 4-digit and 8-digit square roots (BSQR(P),BDSQR(P))	7 - 306
7.12.29	BCD type SIN operation (BSIN(P))	7 - 309
7.12.30	BCD type COS operations (BCOS(P))	7 - 311
7.12.31	BCD type TAN operation (BTAN(P))	7 - 313
7.12.32	2 BCD type SIN ⁻¹ operations (BASIN(P))	7 - 315
7.12.33	BCD type COS ⁻¹ operation (BACOS(P))	7 - 317
7.12.34	BCD type TAN ⁻¹ operations (BATAN(P))	7 - 319
7.13 Da	ta Control Instructions	7 - 321
7.13.1	Upper and lower limit controls for BIN 16-bit and BIN 32-bit data	
	(LIMIT(P),DLIMIT(P))	7 - 321
7.13.2	BIN 16-bit and 32-bit dead band controls (BAND(P),DBAND(P))	7 - 324
7.13.3	Zone control for BIN 16-bit and BIN 32-bit data (ZONE(P),DZONE(P))	7 - 327
7.13.4	Scaling (Point-by-point coordinate data) (SCL(P),DSCL(P))	7 - 330
7.13.5	Scaling (Point-by-point coordinate data) (SCL2(P),DSCL2(P))	7 - 334
7.14 Fil	e register switching instructions	7 - 337
7.14.1	Switching file register numbers (RSET(P))	7 - 337
7.14.2	Setting files for file register use (QDRSET(P))	7 - 339
7.14.3	File setting for comments (QCDSET(P))	7 - 342
7.15 Clo	ock instructions	7 - 344
7.15.1	Reading clock data (DATERD(P))	7 - 344
7.15.2	Writing clock data (DATEWR(P))	7 - 346
7.15.3	Clock data addition operation (DATE+(P))	7 - 348
7.15.4	Clock data subtraction operation (DATE-(P))	7 - 350
7.15.5	Time data conversion (from Hour/Minute/Second to Second) (SECOND(P)).	7 - 352
7.15.6	Time data conversion (from Second to Hour/Minute/Second) (HOUR(P))	7 - 354
7.15.7	Date comparison (DT=,DT<>,DT>,DT<=,DT<,DT>=)	7 - 356
7.15.8	Clock comparison (TM=,TM<>,TM>,TM<=,TM<,TM>=)	7 - 361
7.16 Ex	pansion Clock Instructions	7 - 366
7.16.1	Reading expansion clock data (S(P).DATERD)	7 - 366
7.16.2	Expansion clock data addition operation (S(P).DATE+)	7 - 369
7.16.3	Expansion clock data subtraction operation (S(P).DATE-)	7 - 372
7.17 Pr	ogram control instructions	7 - 375
7.17.1	Program standby instruction (PSTOP(P))	7 - 377
7.17.2	Program output OFF standby instruction (POFF(P))	7 - 378
7.17.3	Program scan execution registration instruction (PSCAN(P))	7 - 380
7.17.4	Program low speed execution registration instruction (PLOW(P))	
7.17.5	Program execution status check instruction (PCHK)	7 - 384
7.18 Ot	her instructions	7 - 386
7.18.1	Resetting watchdog timer (WDT(P))	7 - 386
7.18.2	Timing pulse generation (DUTY)	7 - 388
7.18.3	Time check instruction (TIMCHK)	7 - 390
7.18.4	Direct 1-byte read from file register (ZRRDB(P))	7 - 391

7.18.5	File register direct 1-byte write (ZRWRB(P))	
7.18.6	Indirect address read operations (ADRSET(P))	
7.18.7	Numerical key input from keyboard (KEY)	
7.18.8	Batch save or recovery of index register (ZPUSH(P), ZPOP(P))	7 - 400
7.18.9	Reading Module Information (UNIRD(P))	
7.18.10	Reading module model name(TYPERD(P))	
7.18.11	Trace Set/Reset (TRACE, TRACER)	7 - 411
7.18.12	? Writing Data to Designated File (SP.FWRITE)	
7.18.13	Reading Data from Designated File (SP.FREAD)	
7.18.14	Writing Data to Standard ROM (SP.DEVST)	
7.18.15	Read Data from Standard ROM (S(P).DEVLD)	
7.18.16	Coad Program from Memory Card (PLOADP)	
7.18.17	Unload Program from Program Memory (PUNLOADP)	
7.18.18	Load + Unload (PSWAPP)	
7.18.19	High-speed Block Transfer of File Register (RBMOV(P))	

Common Instructions 2/2

8. INSTRUCTIONS FOR DATA LINK	8 - 1 to 8 - 10
8.1 Network refresh instructions	8 - 2
8.1.1 Refresh instruction for the designated module (S(P)/J(P)/G(P).ZCO	M)8 - 2
8.2 Reading/Writing Routing Information	8 - 6
8.2.1 Reading routing information (S(P)/Z(P).RTREAD)	8 - 6
8.2.2 Registering routing information (S(P)/Z(P).RTWRITE)	8 - 8
9. Multiple CPU dedicated instruction	9 - 1 to 9 - 18
9.1 Writing to the CPU Shared Memory of Host CPU	9 - 2
9.1.1 Write to Host CPU Shared Memory (S(P).TO)	
9.1.2 Writing to host station CPU shared memory (TO(P), DTO(P))	
9.2 Reading from the CPU Shared Memory of another CPU	9 - 11
9.2.1 Reading from Other CPU Shared Memory (FROM(P), DFRO(P))	9 - 12
10. QCPU INSTRUCTIONS	10 - 1 to 10 - 20
10. QCPU INSTRUCTIONS 10.1 Overview	10 - 1 to 10 - 20 10 - 2
10. QCPU INSTRUCTIONS 10.1 Overview 10.2 Writing Devices to Another CPU (D(P).DDWR)	10 - 1 to 10 - 20 10 - 2 10 - 13
10. QCPU INSTRUCTIONS 10.1 Overview 10.2 Writing Devices to Another CPU (D(P).DDWR) 10.3 Reading Devices from Another CPU (D(P).DDRD)	10 - 1 to 10 - 20 10 - 2 10 - 13 10 - 17
10. QCPU INSTRUCTIONS 10.1 Overview 10.2 Writing Devices to Another CPU (D(P).DDWR) 10.3 Reading Devices from Another CPU (D(P).DDRD) 11. QCPU INSTRUCTIONS	10 - 1 to 10 - 20 10 - 2 10 - 13 10 - 17 11 - 1 to 11 - 4
10. QCPU INSTRUCTIONS 10.1 Overview 10.2 Writing Devices to Another CPU (D(P).DDWR) 10.3 Reading Devices from Another CPU (D(P).DDRD) 11. QCPU INSTRUCTIONS 11.1 System Switching Instruction (SP.CONTSW)	10 - 1 to 10 - 20 10 - 2 10 - 13 10 - 17 11 - 1 to 11 - 4 11 - 2
10. QCPU INSTRUCTIONS 10.1 Overview 10.2 Writing Devices to Another CPU (D(P).DDWR) 10.3 Reading Devices from Another CPU (D(P).DDRD) 11. QCPU INSTRUCTIONS 11.1 System Switching Instruction (SP.CONTSW)	10 - 1 to 10 - 20 10 - 2 10 - 13 10 - 17 11 - 1 to 11 - 4 11 - 2
10. QCPU INSTRUCTIONS 10.1 Overview 10.2 Writing Devices to Another CPU (D(P).DDWR) 10.3 Reading Devices from Another CPU (D(P).DDRD) 11. QCPU INSTRUCTIONS 11.1 System Switching Instruction (SP.CONTSW) 12. ERROR CODES	10 - 1 to 10 - 20 10 - 2 10 - 13 10 - 17 11 - 1 to 11 - 4 11 - 2 12 - 1 to 12 - 84
10. QCPU INSTRUCTIONS 10.1 Overview 10.2 Writing Devices to Another CPU (D(P).DDWR) 10.3 Reading Devices from Another CPU (D(P).DDRD) 11. QCPU INSTRUCTIONS 11.1 System Switching Instruction (SP.CONTSW) 12. ERROR CODES 12.1 Error Code List	10 - 1 to 10 - 20 10 - 2 10 - 13 10 - 17 11 - 1 to 11 - 4 11 - 2 12 - 1 to 12 - 84 12 - 2
10. QCPU INSTRUCTIONS 10.1 Overview 10.2 Writing Devices to Another CPU (D(P).DDWR) 10.3 Reading Devices from Another CPU (D(P).DDRD) 11. QCPU INSTRUCTIONS 11.1 System Switching Instruction (SP.CONTSW) 12. ERROR CODES 12.1 Error Code List 12.1.1 Error codes	10 - 1 to 10 - 20 10 - 2 10 - 13 10 - 17 11 - 1 to 11 - 4 11 - 2 12 - 1 to 12 - 84 12 - 2
10. QCPU INSTRUCTIONS 10.1 Overview 10.2 Writing Devices to Another CPU (D(P).DDWR) 10.3 Reading Devices from Another CPU (D(P).DDRD) 11. QCPU INSTRUCTIONS 11.1 System Switching Instruction (SP.CONTSW) 12. ERROR CODES 12.1 Error Code List 12.1.1 Error codes 12.1.2 Reading an error code 12.1.2 Frame and a list (1000 to 1000)	10 - 1 to 10 - 20 10 - 2 10 - 13 10 - 17 11 - 1 to 11 - 4 11 - 2 12 - 1 to 12 - 84 12 - 2

12.1.4	Error code list (2000 to 2999)	
12.1.5	Error code list (3000 to 3999)	
12.1.6	Error code list (4000 to 4999)	
12.1.7	Error code list (5000 to 5999)	
12.1.8	Error code list (6000 to 6999)	
12.1.9	Error code list (7000 to 10000)	
12.2 C	anceling of Errors	12 - 83

APPENDICES

App - 1 to App - 198

Appendix 1 OPEF	RATION PROCESSING TIME	App - 2
Appendix 1.1	Definition	App - 2
Appendix 1.2	Operation Processing Time of Basic Model QCPU	App - 3
Appendix 1.3	Operation Processing Time of High Performance Model QCPU	Process CPU/
	Redundant CPU	App - 21
Appendix 1.4	Operation Processing Time of Universal Model QCPU	App - 50
Appendix 1.4.1	Subset instruction processing time	App - 50
Appendix 1.4.2	Processing time of instructions other than subset instruction	Арр - 66
Appendix 2 CPU I	PERFORMANCE COMPARISON	App - 114
Appendix 2.1	Comparison of Q with AnNCPU, AnACPU, and AnUCPU	App - 114
Appendix 2.1.1	Usable devices	App - 114
Appendix 2.1.2	I/O control mode	App - 115
Appendix 2.1.3	Data that can be used by instructions	App - 115
Appendix 2.1.4	Timer comparison	App - 116
Appendix 2.1.5	Comparison of counters	App - 117
Appendix 2.1.6	Comparison of display instructions	App - 117
Appendix 2.1.7	Instructions whose designation format has been changed	
	(Except dedicated instructions for AnACPU and AnUCPU)	App - 118
Appendix 2.1.8	AnACPU and AnUCPU dedicated instructions	Арр - 119
Appendix 3 SPEC	CIAL RELAY LIST	App - 120
Appendix 4 SPEC	CIAL REGISTER LIST	App - 146
Appendix 5 APPL	ICATION PROGRAM EXAMPLES	App - 198
Appendix 5.1	Concept of Programs which Perform Operations of X^n , $\sqrt[3]{X}$	App - 198

Index - 1 to Index - 12

MANUALS

To understand the main specifications, functions, and usage of the CPU module, refer to the basic manuals. Read other manuals as well when using a different type of CPU module and its functions. Order each manual as needed, referring to the following list.

The numbers in the "CPU module" and the respective modules are as follows.

Nunber	CPU module	
1)	Basic model QCPU	
2)	High Perfomance model QCPU	
3)	Process CPU	
4)	Redundant CPU	
5)	Universal model QCPU	

○:Basic manual, ●:Other CPU module manuals

Manual name	Description		CPU module			
< Manual number (model code) >			2)	3)	4)	5)
∎User's manual						
QCPU User's Manual (Hardware design, Maintenance and Inspection) < SH-080483ENG (13JR73) >	Specifications of the hardware (CPU modules, power supply modules, base units, extension cables, and memory cards), system maintenance and inspection, troubleshooting, and error codes	•	•	•	•	•
QnUCPU User's Manual						
(Function Explanation, Program Fundamentals) < SH-080807ENG (13JZ27) >	Functions, methods, and devices for programming					•
Qn(H)/QnPH/QnPRHCPU User's Manual		-	_	-	-	
(Function Explanation, Program Fundamentals) < SH-080808ENG (13JZ28) >	Functions, methods, and devices for programming	•		•	•	
QnUCPU User's Manual (Communication via Built-in Ethernet Port) < SH-080811ENG (13JZ29) >	Functions for the communication via built-in Ethernet port of the CPU module					0
■Programming Manual						
QCPU Programming Manual (Common Instructions) < SH-080809ENG (13JW10) >	How to use sequence instructions, basic instructions, and application instructions	•	•	•	•	•
QCPU (Q Mode)/QnACPU Programming Manual (SFC) < SH-080041 (13JF60) >	System configuration, performance specifications, functions, programming, debugging, and error codes for SFC (MELSAP3) programs	0	0	0	0	0
QCPU (Q Mode) Programming Manual (MELSAP-L) < SH-080072 (13JC03) >	Programming methods, specifications, and functions for SFC (MELSAP-L) programs	0	0	0	0	0
QCPU (Q Mode) Programming Manual (Structured Text) < SH-080366E (13JF68) >	Programming methods using structured languages	0	0	0	0	0
QCPU (Q Mode) / QnACPU Programming Manual (PID Control Instructions) < SH-080040 (13JF59) >	Dedicated instructions for PID control	0	0		0	0
QnPH/QnPRHCPU Programming Manual (Process Control Instructions) < SH-080316E (13JF59) >	Describes the dedicated instructions for performing pro- cess control.			0	0	

Manual name	Description		
< Manual number (model code) >	Description		
CC-Link IE Controller Network Reference Manual	Specifications, procedures and settings before system operation, parameter		
< SH-080668ENG (13JV16) >	setting, programming, and troubleshooting of the CC-Link IE controller network module		
Q Corresponding MELSECNET/H Network System Reference	Explains the specifications for a MELSECNET/H network system for PLC to PLC		
Manual (PLC to PLC network)	network. It explains the procedures and settings up to operation, setting the parame-		
< SH-080049 (13JF92) >	ters, programming and troubleshooting.		
Q Corresponding MELSECNET/H Network System Refer-	Explains the specifications for a MELSECNET/H network system for remote I/O		
ence Manual (Remote I/O network)	network. It explains the procedures and settings up to operation, setting the		
< SH-080124 (13JF96) >	parameters, programming and troubleshooting.		
Type MELSECNET, MELSECNET/B Data Link System Reference Manual < IB-66530 (13JF70) >	Describes the general concept, specifications, and part names and settings for MELSECNET (II) and MELSECNET/B.		
Q Corresponding Ethernet Interface Module User's Manual (Application) < SH-080010 (13JF70) >	Describes various functions of the Ethernet module: e-mail function, PLC CPU status monitoring, communication via MELSECNET/H or MELSECNET/10 net- work system, communication using data link instructions, file transfer (using FTP) and other functions.		

MEMO

GENERAL DESCRIPTION

This manual explains the common instructions required for programming of the QCPU.

The common instructions refer to all instructions except those dedicated to special function modules (such as AJ71QC24 and AJ71PT32-S3) and to AD57 models, as well as PID control instructions, SFC instructions and ST instructions.

1.1 Related Programming Manuals

Before reading this manual, check the functions, programming methods, devices and others that are necessary to create programs with the CPU in the manuals below:

- QnUCPU User's Manual (Function Explanation, Program Fundamentals)
- Qn(H)/QnPH/QnPRHCPU User's Manual (Function Explanation, Program Fundamentals)
- (1) High Performance model QCPU

(2) Basic model QCPU

(3) Process CPU and Redundant CPU

1.1 Related Programming Manuals

1

other than those described in the manuals on the right.

1-3

(4) Universal model QCPU

1-4

This manual uses the generic names and abbreviations shown below to refer to Q series CPU modules, unless otherwise specified.

* □ indicates a part of	the model or version.

Generic term/Abbreviation	Description of Generic Name/Abbreviation
■ Series	
Q series	Abbreviation for Mitsubishi MELSEC-Q series programmable controller
CPU module type	
CPU module	Generic term for Basic model QCPU, High Performance model QCPU, Process CPU, Redundant CPU and Universal model QCPU
Basic model QCPU	Generic term for Q00JCPU, Q00CPU and Q01CPU
High Performance model QCPU	Generic term for Q02CPU, Q02HCPU, Q06HCPU, Q12HCPU and Q25HCPU
Process CPU	Generic term for Q02PHCPU, Q06PHCPU, Q12PHCPU and Q25PHCPU
Redundant CPU	Generic term for Q12PRHCPU and Q25PRHCPU
Universal model QCPU	Generic term for Q00UJCPU, Q00UCPU, Q01UCPU, Q02UCPU, Q03UDCPU, Q04UDHCPU, Q06UDHCPU, Q10UDHCPU, Q13UDHCPU, Q20UDHCPU, Q26UDHCPU, Q03UDECPU, Q04UDEHCPU, Q06UDEHCPU, Q10UDEHCPU, Q13UDEHCPU, Q20UDEHCPU and Q26UDEHCPU
CPU module model	
QnCPU	Generic term for Q00JCPU, Q00CPU, Q01CPU and Q02CPU
QnHCPU	Generic term for Q02HCPU, Q06HCPU, Q12HCPU and Q25HCPU
QnPHCPU	Generic term for Q02PHCPU, Q06PHCPU, Q12PHCPU and Q25PHCPU
QnPRHCPU	Generic term for Q12PRHCPU and Q25PRHCPU
QnUCPU	Generic temr for Q00UJCPU, Q00UCPU, Q01UCPU, Q02UCPU, Q03UDCPU, Q04UDHCPU, Q06UDHCPU, Q10UDHCPU, Q13UDHCPU, Q20UDHCPU, Q26UDHCPU, Q03UDECPU, Q04UDEHCPU, Q06UDEHCPU, Q10UDEHCPU, Q13UDEHCPU, Q20UDEHCPU and Q26UDEHCPU
QnU(D)(H)CPU	Generic temr for Q02UCPU, Q03UDCPU, Q04UDHCPU, Q06UDHCPU, Q10UDHCPU, Q13UDHCPU, Q20UDHCPU and Q26UDHCPU
QnUD(H)CPU	Generic name for Q03UDCPU, Q04UDHCPU, Q06UDHCPU, Q10UDHCPU, Q13UDHCPU, Q20UDHCPU and Q26UDHCPU
QnUDE(H)CPU	Generic name for Q03UDECPU, Q04UDEHCPU, Q06UDEHCPU, Q10UDEHCPU, Q13UDEHCPU, Q13UDEHCPU, Q20UDEHCPU, and Q26UDEHCPU

(Continued)

Generic Name/Abbreviation	Description of Generic Name/Abbreviation
Base unit model	
Q3 🗆 B	Generic term for Q33B, Q35B, Q38B and Q312B main base units on which CPU module (except Q00JCPU), Q series power supply module, Q series I/O module, and intelligent function module can be mounted.
Q3 🗆 SB	Generic term for Q32SB, Q33SB and Q35SB slim type main base units on which Basic model QCPU (except Q00JCPU), High Performance model QCPU, slim type power supply module, Q series I/O module, and intelligent function module can be mounted.
Q3 🗌 RB	Other name for Q38RB redundant power supply main base unit on which CPU module (except Q00JCPU), redundant power supply module, Q series I/O module, and intelligent function module can be mounted.
Q3 🗌 DB	Generic term for the Q38DB and Q312DB type Multiple CPU high speed main base unit on which CPU module (except the Q00JCPU), Q series power supply module, Q series I/O module, and intelligent function module can be mounted.
Q5 🗌 B	Generic term for Q52B and Q55B extension base unit on which the Q Series I/O and intelligent function module can be mounted.
Q6 🗌 B	Generic term for Q63B, Q65B, Q68B and Q612B extension base unit on which Q Series power supply module, I/O module, intelligent function module can be mounted.
Q6 🗌 RB	Other name for Q68RB redundant power supply extension base unit on whichredundant power supply module, Q series I/O module, and intelligent function module can be mounted.
Q6 🗌 WRB	Other name for Q65WRB extension base unit for redundant system on which redundant power supply module, Q series I/O module, and intelligent function module can be mounted.
QA1S6 🗌 B	Generic term for QA1S65B and QA1S68B extension base units on which AnS Series power supply module, I/O module, special function module can be mounted.
QA6 🗌 B	Generic term for QA65B and QA68B extension base units on which the A series power supply module, A series I/O modules and special function modules can be mounted.
A5 🗌 B	Generic term for A52B, A55B, and A58B extension base units on which A series I/O module and special function module can be mounted without power supply.
A6 🗌 B	Generic term for A62B, A65B, and A68B extension base units on which A series I/O module and special function module can be mounted.
QA6ADP	Abbreviation for QA6ADP QA conversion adapter module.
QA6ADP+A5 🗌 B/A6 🗌 B	Abbreviation for A large type extension base unit on which QA6ADP is mounted.
■ Network	
MELSECNET/H	Abbreviation for MELSECNET/H network system
MELSECNET/10	Abbreviation for MELSECNET/10 network system
MELSECNET(II/,B)	Abbreviation for MELSECNET and MELSECNET/B data link system
Ethernet	Abbreviation for Ethernet network system
CC-Link	Abbreviation for Control & Communication Link

(Continued)

Generic Name/Abbreviation	Description of Generic Name/Abbreviation
■ Others	
GX Developer	Product name of Q series Corresponding SW D5C-GPPW-type GPP function software package : Version of the software Check the GX Developer versions that can be used for each CPU module in "System Configuration," QCPU User's Manual (Hardware Design, Maintenance and Inspection).
Intelligent function module	Generic name for intelligent function modules and special function modules
Intelligent function module device	Generic name for intelligent function module devices and special function module devices

MEMO

2.1 Types of Instructions

The major types of CPU module instructions consist of sequence instructions, basic instructions, application instructions, data link instructions, QCPU instructions and redundant system instructions. These types of instructions are listed in Table 2.1 below.

	Types of Instruction	Meaning	Chapter		
	Contact instruction	Operation start, series connection, parallel connection	onaptoi		
	Association instruction	Ladder block connection, store/read operation results, creation of pulses from operation results			
~	Output instruction	Bit device output, pulse output, output reversal			
Sequence	Shift instruction	Bit device shift	5		
Instruction	Master control instruction	Master control			
	Termination instruction	Program termination			
	Other instruction	Program stop, instructions such as no operation which do not fit in the above categories			
	Comparison operation instruction	Comparisons such as $=$, $>$, $<$			
	Arithmetic operation instruction	Addition, subtraction, multiplication or division of BIN or BCD			
	BCD ↔ BIN conversion instruction	Conversion from BCD to BIN and from BIN to BCD			
Basic	Data transfer instruction	Transmits designated data	6		
Instruction	Program branch instruction	Program jumps			
	Program run control instruction	Enables or inhibits interrupt programs			
	I/O refresh	Executes partial refresh			
	Other convenient instruction	Instructions for: Counter increment/decrement, teaching timer, special function timer, rotary table shortest direction control, etc.			
	Logical operation instruction	Logical operations such as logical sum, logical product, etc.			
	Rotation instruction	Rotation of designated data			
	Shift instruction	Shift of designated data			
	Bit processing instruction	Bit set and reset, bit test, batch reset of bit devices			
	Data processing instruction	16-bit data searches, data processing such as decoding and encoding			
	Structure creation instruction	Repeated operation, subroutine program calls, indexing in ladder units			
	Table operation instruction	Data table read/write			
	Buffer memory access instruction	Data read/write from/to an intelligent function module			
	Display instruction	Print ASCII code, LED character display, etc.			
	Debugging and failure diagnosis instruction	Check, status latch, sampling trace, program trace			
Application	Character string processing instruction	Conversion between BIN/BCD and ASCII;conversion between BIN and character string; conversion between floating decimal point data and character strings, character string processing, etc.			
instruction	Special function instruction	Trigonometric functions, conversion between angles and radians, exponential operations, automatic logarithms, square roots	7		
	Data control instruction	Upper and lower limit controls, dead band controls, zone controls			
	Switching instruction	File register block No. switches, designation of file registers and comment files			
	Clock instruction	Reading/writing of the values of year, month, day, hour, minute, second, and day of the week; addition/subtraction of the values of hour, minute, and second; conversion of the values of hour, minute, and second into second; comparison between the values of year, month, and day; and comparison between the values of hour, minute, and second			
	Expansion clock instruction	Reading of the values of year, month, day, hour, minute, second, millisecond, and day of the week; addition/subtraction of the values of hour, minute, second, and millisecond			
	Peripheral device instruction	I/O to peripheral devices			
	Program control instruction	Instructions to switch program execution conditions			
	Other instruction	Instructions that do not fit in the above categories, such as watchdog timer reset instructions and timing clock instructions			

Table 2.1 Types of Instructions

Table 2.1 Types of Instructions (Continued)

Types of Instruction		Meaning		
Instruction	Link refresh instruction	Designated network refresh	[
for Data Link	Routing information read/write	Peads writes and registers routing information	8	
	instruction			
Multiple				
CPU	Multiple CPU dedicated	Writing to host CDL shared memory Reading from other CDL shared memory	٥	
dedicated	instruction	Whiting to host of O shared memory, Reading from other or O shared memory	5	
instruction				
Multiple CPU				
high-speed	Multiple CPU device write/read			
transmission	instruction	Writes/reads devices to/from another CPU.	10	
dedicated				
instruction				
Redundant				
system	Instruction for Redundant CPU	System switching	11	
instruction				

2.2 How to Read Instruction Tables

The instruction tables found from Section 2.3 to 2.5 have been made according to the following format:

Table 2.2 How to Read Instruction Tables

Description

1)Classifies instructions according to their application.

2)Indicates the instruction symbol added to the instruction in a program.

Instruction code is built around the 16-bit instruction. The following notations are used to mark 32-bit instructions, instructions executed only at the leading edge of OFF to ON, real number instructions, and character string instructions:

• 32-bit instruction The letter "D" is added to the first line of the instruction.

Example	+ -	-	<u>D</u> +
	¥		¥
16-bit	instructio	n 32-l	bit instruction

· Instructions executed only at the leading edge of OFF to ON

..... The letter "P" is added to the end of the instruction.

Example +	→ + <u>P</u>
¥	¥
Instruction executed when ON	Instruction executed only at the leading edge of OFF to ON

Real number instructions The letter "E" is added to the first line of the instruction.

Example +

Real number instructions

<u>E</u>+

Character string instructions

...... A dollar sign \$ is added to the first line of the instruction.

Example	+	\rightarrow	<u>\$</u> +	
			¥	
		Character	string instructions	s

3)Shows symbol diagram on the ladder.

Fig. 2.1 Symbol Diagram on the Ladder

Destination.....Indicates where data will be sent after operation.

Source Stores data prior to operation.

4)Indicates the type of processing that is performed by individual instructions.

Fig. 2.2 Type of Processing Performed by Individual Instructions

5)The details of conditions for the execution of individual instructions are as follows:

Symbol	Execution Condition
No symbol recorded	Instruction executed under normal circumstances, with no regard to the ON/OFF status of conditions prior to the instruction. If the precondition is OFF, the instruction will conduct OFF processing.
	Executed during ON; instruction is executed only while the precondition is ON. If the preconditions is OFF, the instruction is not executed, and no processing is conducted.
	Executed once at ON; instruction executed only at leading edge when precondition goes from OFF to ON. Following execution, instruction will not be executed and no processing conducted even if condition remains ON.
	Executed during OFF; instruction is executed only while the precondition is OFF. If the precondition is ON, the instruction is not executed, and no processing is conducted.
	Executed once at OFF; instruction executed only at trailing edge when precondition goes from ON to OFF. Following execution, instruction will not be executed and no processing conducted even if condition remains OFF.

6)Indicates the basic number of steps for individual instructions.

See Section 3.8 for a description of the number of steps.

7)The ● mark indicates instructions for which subset processing is possible.
 See Section 3.5 for details on subset processing.

8)Indicates the page numbers where the individual instructions are explained.

2.3 Sequence Instructions

2.3.1 Contact instructions

Category	Instruction Symbol	Symbol	Processing Details	Execution Condition	Number of Basic Steps	Subset	See for Description
	LD		Starts logic operation (Starts a contact logic operation)				
	LDI		Starts logical NOT operation (Starts b contact logic operation)				
	AND	- $-$ -	Logical product (a contact series connection)		*1		5.0
	ANI		Logical product NOT (b contact series connection)		I	•	5-2
	OR		Logical sum (a contact parallel connection)				
	ORI	4	Logical sum NOT (b contact parallel connection)				
	LDP		Starts leading edge pulse operation				
Contact	LDF	↓	Starts trailing edge pulse operation				
	ANDP	↑	Leading edge pulse series connection		*2		5-5
	ANDF	↓	Trailing edge pulse series connection			•	00
	ORP		Leading edge pulse parallel connection				
	ORF		Trailing edge pulse parallel connection				
	LDPI		Starts leading edge pulse NOT operation		3		
	LDFI		Starts trailing edge pulse NOT operation		3		
	ANDPI		Leading edge pulse NOT series connection		4		5-7
	ANDFI		Trailing edge pulse NOT series connection		4		01
	ORPI		Leading edge pulse NOT parallel connection		4		
	ORFI		Trailing edge pulse NOT parallel connection		4		

Table 2.3 Contact Instructions

*1: The number of steps may vary depending on the device being used.

Device	Number of Steps
Internal device, file register (R0 to R32767)	1
Direct access input (DX)	2
Devices other than above	3

*2: The number of steps may vary depending on the device and type of CPU module being used.

Device	Number of Steps		
	QCPU		
Internal device, file register (R0 to R32767)	1		
Direct access input (DX)	2		
Devices other than above	3		

2.3.2 Association instructions

Table 2.4 Association Inst	ructions
----------------------------	----------

Category	Instruction Symbol	Symbol	Processing Details	Execution Condition	Number of Basic Steps	Subset	See for Description
Connec-	ANB	ANB	 AND between logical blocks (Series connection between logical blocks) 		1	-	5-10
	ORB	ORB	 OR between logical blocks (Series connection between logical blocks) 				
	MPS		Memory storage of operation results	-			
	MRD		Read of operation results stored with MPS instruction		1	-	5-12
	MPP		Read and reset of operation results stored with MPS instruction				
tion	INV	\rightarrow	Inversion of operation result		1	-	5-15
	MEP	↑	Conversion of operation result to leading edge pulse		1	_	5-17
	MEF	↓	Conversion of operation result to trailing edge pulse		I	-	5-17
	EGP	Vn 	Conversion of operation result to leading edge pulse (Stored at Vn)		1	_	5-18
	EGF	 ↓	Conversion of operation result to trailing edge pulse (Stored at Vn)		*1		0-10

*1: The number of steps may vary depending on the device and type of CPU module being used.

Component	Number of Basic Steps
High Performance model QCPU	
Process CPU	1
Redundant CPU	I
Universal model QCPU	
Basic model QCPU	2

2.3.3 Output instructions

Category	Instruction Symbol	Symbol	Processing Details	Execution Condition	Number of Basic Steps	Subset	See for Description
Output	OUT	ц н	Device output		*1	-	5-20 5-22 5-26 5-28
	SET	- SET D-	Sets device		*1	-	5-30 5-35
	RST	RST D	Resets device		*1	-	5-32 5-35
	PLS	– PLS D –	 Generates 1 cycle program pulse at leading edge of input signal. 		2	_	5-37
	PLF	PLF D	 Generates 1 cycle program pulse at trailing edge of input signal. 				
	FF	FF D	Reversal of device output		2	-	5-40
	DELTA	DELTA D	Pulse conversion of direct output		2	-	5-42
	DELTAP	- DELTAP D					

Table 2.5 Output Instructions

*1: The number of steps may vary depending on the device being used. See description pages of individual instructions for number of steps.

*2: The ______ execution condition applies only when an annunciator (F) is in use.

2.3.4 Shift instructions

Table 2.6 Shift Instructions

Category	Instruction Symbol	Symbol	Processing Details	Execution Condition	Number of Basic Steps	Subset	See for Description
Shift	SFT	SFT D	• 1 bit shift of device		2		5-44
	SFTP	SFTP D					

2.3.5 Master control instructions

|--|

Category	Instruction Symbol	Symbol	Processing Details	Execution Condition	Number of Basic Steps	Subset	See for Description
Master control	MC	MC n D	Starts master control		2	_	5-47
	MCR	MCR n	Resets master control		1		0 11

2.3.6 Termination instructions

Category	Instruction Symbol	Symbol	Processing Details	Execution Condition	Number of Basic Steps	Subset	See for Description
Termination	FEND	FEND	Termination of main program		1	_	5-51
	END	END	Termination of sequence program	1			5-53

Table 2.8 Termination Instructions

2.3.7 Other instructions

Category	Instruction Symbol	Symbol	Processing Details	Execution Condition	Number of Basic Steps	Subset	See for Description
Stop	STOP	- STOP -	 Terminates sequence operation after input condition has been met. Sequence program is executed by placing the RUN/STOP key switch back in the RUN position. 		1	-	5-55
Ignored	NOP		 Ignored (For program deletion or space) 				
	NOPLF	NOPLF	 Ignored (To change pages during printouts) 		1	-	5-57
	PAGE	PAGE n	 Ignored (Subsequent programs will be controlled from step 0 of page n) 				

Table 2.9 Other Instructions

2.4 Basic instructions

2.4.1 Comparison operation instructions

Category	Instruction Symbol	Symbol	Processing Details	Execution Condition	Number of Basic Steps	Subset	See for Description
	LD=	= S1 S2 ⊣ ⊢					
	AND=		 Conductive status when (S1) = (S2) Non-conductive status when 		3	•	
	OR=		(S1) ≠ (S2)				
	LD<>	<>> S1 S2 ⊣ ⊢	• Conductive status when $(S1) \neq (S2)$ • Non-conductive status when (S1) = (S2)				
	AND<>	HH<> S1 S2			3	•	
BIN 16-bit	OR<>	<pre> \$1\$2</pre>					
	LD>	> S1 S2 ⊣ ⊢	• Conductive status when (S1) $>$ (S2) • Non-conductive status when (S1) \leq (S2)				
	AND>	HH> S1 S2			3	•	
	OR>						6-2
comparisons	LD<=	<=S1 S2 ⊣ ⊢					0-2
	AND<=	HH<= S1 S2	 Conductive status when (S1) ≦ (S2) Non-conductive status when 		3	•	
	OR<=		(S1) > (S2)				
	LD<	< <s1_s2⊣⊢< td=""><td></td><td></td><td></td><td></td><td></td></s1_s2⊣⊢<>					
	AND<	HH< S1 S2-	 Conductive status when (S1) < (S2) Non-conductive status when 		3	•	
	OR<		$(S1) \ge (S2)$				
	LD>=						
	AND>=	HH>= S1 S2	 Conductive status when (S1) ≧ (S2) Non-conductive status when 		3		
-	OR>=	>= <u>S1 S2</u>	(S1) < (S2)				

Table 2.10 Comparison Operation Instructions
Fable 2.10 Co	omparison	Operation	Instructions	(Continued)
---------------	-----------	-----------	--------------	-------------

Category	Instruction Symbol	Symbol	Processing Details	Execution Condition	Number of Basic Steps	Subset	See for Description
	LDD=	D= S1 S2 + +	Conductive status when				
	ANDD=		(S1+1, S1) = (S2+1, S2)		*1	•	
	ORD=	D = S1 S2	$(S1+1, S1) \neq (S2+1, S2)$				
	LDD<>	D<> S1 S2 H ⊢	Conductive status when				
	ANDD<>	H H D <> S1 S2	$(S1+1, S1) \neq (S2+1, S2)$		*1		
	ORD<>		• Non-Conductive status when (S1+1, S1) = (S2+1, S2)			•	
	LDD>	D> S1 S2 ⊣ ⊢	• Conductive status when (S1+1, S1) > (S2+1, S2)				
	ANDD>	H H D > S1 S2			*1	•	
BIN 32-bit	ORD>	D> S1 S2	• Non-Conductive status when $(S1+1, S1) \leq (S2+1, S2)$				6-4
comparisons	LDD<=	D<= S1 S2 ⊣ ⊢	Conductive status when				0-4
	ANDD<=	H H D <= S1 S2	(S1+1, S1) ≦ (S2+1, S2)		*1	•	
	ORD<=	D<= S1 S2	• Non-Conductive status when $(S1+1, S1) > (S2+1, S2)$				
	LDD<	D< S1 S2 H ⊢	Conductive status when				
	ANDD<	H H D < S1 S2	(S1+1, S1) < (S2+1, S2)		*1	•	
	ORD<	D< S1 S2	• Non-Conductive status when $(S1+1, S1) \ge (S2+1, S2)$				
	LDD>=	D>= S1 S2 H ⊢	Conductive status when				
	ANDD>=	⊣⊢D>= S1 S2	$(S1+1, S1) \ge (S2+1, S2)$		*1		
C	ORD>=	D>= S1 S2	(S1+1, S1) < (S2+1, S2)				

*1: The number of steps may vary depending on the device and type of CPU module being used.

Component		Device	Number of Steps
High Performance model QCPU Process CPU Redundant CPU	Word device:Bit device:Constant:	Internal device (except for file register ZR) Devices whose device Nos. are multiples of 16, whose digit designation is K8, and which use no Indexing. No limitations	5 Note 1)
	Devices other the	an above	3 Note 2)
Basic model QCPU Universal model QCPU	All devices that o	can be used	3 Note 2)

Note 1) When using a High Performance model QCPU, Process CPU or Redundant CPU, the number of steps increases but the processing speed becomes faster.

Note 2) The number of steps may increase due to the conditions described in Section 3.8.

Category	Instruction Symbol	Symbol	Processing Details	Execution Condition	Number of Basic Steps	Subset	See for Description
	LDE=		Conductive status when				
	ANDE=		(S1+1, S1) = (S2+1, S2) • Non-Conductive status when		3	-	
	ORE=	H	(S1+1, S1) ≠ (S2+1, S2)				
	LDE<>	E<> S1 S2 ⊢	Conductive status when				
	ANDE<>	HHE<> S1 S2	(S1+1, S1) ≠ (S2+1, S2) • Non-Conductive status when		3	-	
	ORE<>	E < > S1 S2	(S1+1, S1) = (S2+1, S2)				
	LDE>	E> S1 S2 ⊣ ⊢	Conductive status when				
	ANDE>	H H E> S1 S2	(S1+1, S1) > (S2+1, S2)		3	-	
decimal point data	ORE>	E>S1 S2	(S1+1, S1) ≦ (S2+1, S2)				6-6
comparisons (Single	LDE<=	E<= S1 S2	Conductive status when				0-0
precision)	ANDE<=	HE<= S1 S2	$(S1+1, S1) \leq (S2+1, S2)$		3	-	
	ORE<=		(S1+1, S1) > (S2+1, S2)				
	LDE<	E< S1 S2	Conductive status when				
	ANDE<	H H E < S1 S2	(S1+1, S1) < (S2+1, S2)		3	-	
	ORE<		(S1+1, S1) ≧ (S2+1, S2)				
	LDE>=	E>= S1 S2	Conductive status when				
	ANDE>=	H H E>= S1 S2	$(S1+1, S1) \ge (S2+1, S2)$		3	-	
(ORE>=		(S1+1, S1) < (S2+1, S2)				

Table 2.10 Comparison Operation Instructions (Continued)

Category	Instruction Symbol	Symbol	Processing Details	Execution Condition	Number of Basic Steps	Subset	See for Description
	LDED=	ED = S1 S2 + +	• Conductive status when (S1+3, S1+2, S1+1, S1) =				
	ANDED=		(S2+3, S2+2, S2+1, S2) • Non-Conductive status when		3	-	
	ORED=		(S1+3, S1+2, S1+1, S1) ≠ (S2+3, S2+2, S2+1, S2)				
	LDED<>	ED<>S1_S2⊣⊢	• Conductive status when $(S1+3, S1+2, S1+1, S1) \pm$				
	ANDED<>	H H ED<> S1 S2	(S2+3, S2+2, S2+1, S2)		3	-	
	ORED<>	ED<> \$1 \$2	(S1+3, S1+2, S1+1, S1) = (S2+3, S2+2, S2+1, S2)				
	LDED>	ED> S1 S2 ⊣ ⊢	Conductive status when (S1+3, S1+2, S1+1, S1) >				
The efficiency	ANDED>	HED> S1 S2	(S2+3, S2+2, S2+1, S2)		3	-	
decimal point data	ORED>	+	(S1+3, S1+2, S1+1, S1) ≦ (S2+3, S2+2, S2+1, S2)				6-8
comparisons (Double	LDED<=	ED<= S1 S2 ⊣ ⊢	• Conductive status when				0-0
precision)	ANDED<=	H ED<= S1 S2	$(S1+3, S1+2, S1+1, S1) \equiv$ (S2+3, S2+2, S2+1, S2)		3	-	
	ORED<=	ED<= \$1\$2	(S1+3, S1+2, S1+1, S1) > (S2+3, S2+2, S2+1, S2)				
	LDED<	ED < S1 S2 ⊣ ⊢	Conductive status when (S1+3, S1+2, S1+1, S1) <				
	ANDED<	HHED< S1 S2	(S1+3, S1+2, S1+1, S1) < (S2+3, S2+2, S2+1, S2)		3	-	
	ORED<	ED< \$1 \$2	$(S1+3, S1+2, S1+1, S1) \ge$ (S2+3, S2+2, S2+1, S2)				
	LDED>=	ED>= S1 S2 + +	• Conductive status when $(S1+3, S1+2, S1+1, S1) \ge$				
	ANDED>=	H ED>= S1 S2	(S2+3, S2+2, S2+1, S2)		3	-	
c	ORED>=	ED>= S1 S2	(S1+3, S1+2, S1+1, S1) < (S2+3, S2+2, S2+1, S2)				

Table 2.10 Comparison Operation Instructions (Continued)

2.4 Basic instructions 2.4.1 Comparison operation instructions

Table 2.10 Comparison	Operation	Instructions	(Continued)
-----------------------	-----------	--------------	-------------

Category	Instruction Symbol	Symbol	Processing Details	Execution Condition	Number of Basic Steps	Subset	See for Description
	LD\$=	\$= \$1 \$2 ↓ ↓	Compares character string S1 and character string S2 one character at a				
	AND\$=	H H \$= S1 S2	time. *2 Conductive status when (character) 				
	OR\$=	\$= S1 S2	 Conductive status when (character string S1) = (character string S2) Non-Conductive status when (character string S1) ≠ (character string S2) 		3	-	
	LD\$<>	\$<> S1 S2 ⊢	 Compares character string S1 and character string S2 one character at a 				
	AND\$<>	⊢	time. *2				
	OR\$<>	\$<> \$1 \$2	 Conductive status when (character string S1) ≠ (character string S2) Non-Conductive status when (character string S1) = (character string S2) 		3	-	
	LD\$>	\$> S1 S2⊣⊢	 Compares character string S1 and character string S2 one character at a time. *2 Conductive status when (character string S1) > (character string S2) Non-Conductive status when (character string S1) ≦ (character string S2) Compares character string S1 and character string S2 are pharacter at a 				
	AND\$>	HH\$> S1 S2			3		
Character	OR\$>	\$> \$1\$2			5		6 9
comparisons	LD\$<=	\$<= S1 S2 ⊢					0-0
	AND\$<=	HH\$<= \$1\$2	• Conductive status when (character		2		
	OR\$<=	\$<= \$1\$2	 string S1) ≤ (character string S2) Non-Conductive status when (character string S1) > (character string S2) 		3	-	
	LD\$<	\$< S1 S2⊣⊢	 Compares character string S1 and character string S2 one character at a 				
	AND\$<	HH\$< S1S2	time. *2				
	OR\$<	\$< \$1\$2	 Conductive status when (character string S1) < (character string S2) Non-Conductive status when (character string S1) ≥ (character string S2) 		3	-	
	LD\$>=	\$>= \$1\$2++	Compares character string S1 and character string S2 one character at a				
	AND\$>=	\$>= S1 S2	time. *2 • Conductive status when (character				
4	OR\$>=	\$>= \$1\$2	 string S1) ≥ (character string S2) Non-Conductive status when (character string S1) < (character string S2) 		3	-	

*2: The conditions under which character string comparisons can be made are as shown below:

 Match: All characters in the strings must match

• Larger string:

If character strings are different, determines the string with the largest number of character codes. If the lengths of the character strings are different, determines the longest character string.

• Smaller string: If the character strings are different, determines the string with the smallest number of character codes.

If the lengths of the character strings are different, determines the shortest character string.

Category	Instruction Symbol	Symbol	Processing Details	Execution Condition	Number of Basic Steps	Subset	See for Description	
	BKCMP=	BKCMP= S1 S2 D n						
	BKCMP<>							
	BKCMP>	- BKCMP> S1 S2 D n -						
	BKCMP<=	-BKCMP<=S1S2Dn-						
	BKCMP<	BKCMP< S1 S2 D n	 This instruction compares BIN 16-bit data stored in n-point devices starting 					
BIN 16-bit Block data comparisons	BKCMP>=	-BKCMP>=S1 S2 D n	from the device specified by S1 with BIN 16-bit data stored in n-point		F		6 15	
	BKCMP=P	BKCMP=PS1S2Dn	devices starting from the device specified by S2, and then stores the		5	-	0-15	
	BKCMP<>P	BKCMP<>PS1S2Dn	result into the nth device specified by (D) and up.	↑				
	BKCMP>P	BKCMP>PS1S2Dn						
	BKCMP<=P	-BKCMP<=PS1S2Dn						
	BKCMP <p< td=""><td>BKCMP<ps1s2dn< td=""><td></td><td></td><td></td><td></td></ps1s2dn<></td></p<>	BKCMP <ps1s2dn< td=""><td></td><td></td><td></td><td></td></ps1s2dn<>						
	BKCMP>=P	-BKCMP>=PS1S2Dn-						
	DBKCMP=	-DBKCMP= S1 S2 D n						
	DBKCMP<>	-DBKCMP<>S1S2Dn						
	DBKCMP>	-DBKCMP> S1 S2 D n						
	DBKCMP<=	-DBKCMP<=S1S2Dn						
	DBKCMP<	-DBKCMP< S1 S2 D n	Inis instruction compares BIN 32-bit data stored in n-point devices starting					
BIN 32-bit block	DBKCMP>=	-DBKCMP>=S1 S2 D n	from the device specified by S1 with BIN 32-bit data stored in n-point		5		0.40	
data comparisons	DBKCMP=P	-DBKCMP=P S1 S2 D n	devices starting from the device specified by a constant and S2, and		5	-	6-18	
	DBKCMP<>P	-DBKCMP<>P S1 S2 D n	then stores the result into the nth					
	DBKCMP>P	-DBKCMP>P S1 S2 D n		↓				
	DBKCMP<=P	-DBKCMP<=P S1 S2 D n						
	DBKCMP <p< td=""><td>-DBKCMP<p d="" n<="" s1="" s2="" td=""><td></td><td></td><td></td><td></td><td></td><td></td></p></td></p<>	-DBKCMP <p d="" n<="" s1="" s2="" td=""><td></td><td></td><td></td><td></td><td></td><td></td></p>						
1	DBKCMP>=P	-DBKCMP>=P S1 S2 D n						

Table 2.10 Comparison Operation Instructions (Continued)

2.4 Basic instructions 2.4.1 Comparison operation instructions

2.4.2 Arithmetic operation instructions

Category	Instruction Symbol	Symbol	Processing Details	Execution Condition	Number of Basic Steps	Subset	See for Description
	+ +P	- + S D- - +P S D-	• (D)+(S)→(D)		3	•	6-22
BIN 16-bit addition and	+ +P	- + S1 S2 D +P S1 S2 D	• (S1)+(S2)→(D)		4		6-24
subtraction operations	- -P		• (D)−(S)→(D)		3	•	6-22
	- -P	S1 S2 D −	• (S1)−(S2)→(D)		4	•	6-24
	D+ D+P		• (D+1, D)+(S+1, S)→(D+1, D)		*1	•	6-26
BIN 32-bit addition and	D+ D+P	- D+ S1 S2 D - D+P S1 S2 D	• (S1+1, S1)+(S2+1, S2)→(D+1, D)		*2	•	6-28
subtraction operations	D- D-P	- D S D - D-P S D	• (D+1, D)−(S+1, S)→(D+1, D)		*1	•	6-26
	D- D-P	- D S1 S2 D- - D-P S1 S2 D-	• (S1+1, S1)−(S2+1, S2)→(D+1, D)		*2	•	6-28
BIN 16-bit multiplication	* *P	- * S1 S2 D- - *P S1 S2 D-	• (S1) × (S2)→(D+1,D)		*3	•	6 20
and division operations	/ /P	- / S1 S2 D - - /P S1 S2 D -	 (S1) / (S2) →Quotient(D), Remainder (D+1) 		*4	•	0-30
BIN 32-bit multiplication	D* D*P	D* S1 S2 D → − D*P S1 S2 D →	• (S1+1,S1) × (S2+1,S2)→(D+3,D+2,D+1,D)		*4	•	6.22
multiplication and division operations	D/ D/P		• (S1+1, S1) / (S2+1, S2) →Quotient (D+1, D), Remainder (D+3, D+2)		*4	•	0-32

Table 2.11 Arithmetic Operation Instructions

*1: The number of steps may vary depending on the device and type of CPU module being used.

Component		Device	Number of Steps
High Performance model QCPU Process CPU Redundant CPU	Word device:Bit device:Constant:	Internal device (except for file register ZR) Devices whose device Nos. are multiples of 16, whose digit designation is K8, and which use no indexing. No limitations	5 ^{Note 1)}
	Devices other the	an above	3 Note 2)
Basic model QCPU Universal model QCPU	All devices that c	can be used	3 Note 2)

Note 1) When using a High Performance model QCPU, Process CPU or Redundant CPU, the number of steps increases but the processing speed becomes faster.

Note 2) The number of steps may increase due to the conditions described in Section 3.8.

*2: The number of steps may vary depending on the device and type of CPU module being used.

Component		Device	Number of Steps
High Performance model QCPU Process CPU Redundant CPU	Word device:Bit device:Constant:	Internal device (except for file register ZR) Devices whose device Nos. are multiples of 16, whose digit designation is K8, and which use no indexing. No limitations	6 ^{Note 1)}
	Devices other th	an above	4 Note 2)
Basic model QCPU	All devises that can be used		4 Note 2)
Universal model QCPU			3 Note 2)

Note 1) When using a High Performance model QCPU, Process CPU or Redundant CPU, the number of steps increases but the processing speed becomes faster.

Note 2) The number of steps may increase due to the conditions described in Section 3.8.

*3: The number of steps may vary depending on the device and type of CPU module being used.

Component		Device	Number of Steps
QCPU	Word device:Bit device:Constant:	Internal device (except for file register ZR) Devices whose device Nos. are multiples of 16, whose digit designation is K8, and which use no indexing. No limitations	3
	Devices other the	an above	4 Note 1)

Note 1) The number of steps may increase due to the conditions described in Section 3.8. *4: The number of basic steps is three for the Universal model QCPU only.

2

Category	Instruction Symbol	Symbol	Processing Details	Execution Condition	Number of Basic Steps	Subset	See for Description
	В+	— B+ S D —	• (D)+(S)→(D)		3		6-34
	B+P	B+P S D					
BCD 4-digit	B+	- B+ S1 S2 D-	• (S1)+(S2)→(D)		4	_	6-36
addition and	B+P	- B+P S1 S2 D-					
subtraction	В-	— <u>B</u> — <u>S</u> D	• (D)−(S)→(D)		3		6-34
operations	B-P	- B-P S D-	· · · · · · · ·				
	B-	- B- S1 S2 D-	• (S1) (S2) -> (D)		4		6-36
	B-P	- B-P S1 S2 D					
BCD 8-digit	DB+	DB+S_D	• (D+1 D)+(S+1 S)→(D+1 D)		3	_	6-38
	DB+P	DB+P SD	· (U+1, U)*(3+1, 3) · (U+1, U)				0.00
	DB+	— DB+ S1 S2 D —	• (S1+1, S1)+(S2+1, S2)→(D+1 D)		4		6-40
addition and	DB+P	- DB+P S1 S2 D					
subtraction	DB-		• (D+1 D) – (S+1 S)→(D+1 D)		3		6-38
operations	DB-P	- DB-P S D-	(U, I, U) ⊂ (U, U) ⊂ (U, U)				
	DB-		• (S1+1 S1)_(S2+1 S2) /D+1 D)		4		6-40
	DB-P	— DB—P S1 S2 D —	- (SITI, SI)-(SZTI, SZ)→(D+I, D)	+	_	0-40	
BCD 4-digit	B*	- B* S1 S2 D-	• (S1) × (S2) > (D+1 D)		4		
multiplication	B*P	- B*P S1 S2 D-	- (UT) ^ (UZ) ~ (UT,U)				6-42
division	В/	— B/ S1 S2 D —	• (S1) / (S2)		Δ		0-42
operations	B/P	- B/P S1 S2 D -	\rightarrow Quotient(D), Remainder (D+1)		-		
BCD 8-digit	DB*	— DB* S1 S2 D —	• (S1+1,S1) × (S2+1,S2)		Δ		
multiplication	DB*P	- DB*P S1 S2 D	\rightarrow (D+3,D+2,D+1,D)				6.44
division	DB/	— DB/ S1 S2 D —	• (S1+1, S1) / (S2+1, S2)				6-44
operations	DB/P	— DB/P S1 S2 D —	\rightarrow Quotient (D+1, D), Remainder (D+3, D+2)		4		l

Table 2.11 Arithmetic Operation Instructions (Continued)

Table 2.11 Arithmetic Operation Instructions (Continued)
--

Category	Instruction Symbol	Symbol	Processing Details	Execution Condition	Number of Basic Steps	Subset	See for Description
	E+	- E+ S D-	• (D+1, D)+(S+1, S)→(D+1, D)		3	● *6	6-46
Floating decimal	E.1						
point data addition	E+P	- E+ S1 S2 D - - E+P S1 S2 D -	• (S1+1, S1)+(S2+1, S2)→(D+1, D)		4 *5	• *6	6-48
and subtraction	E-	- E SD-					
operations (Single	E-P	E-P S D	• (D+1, D)−(S+1, S)→(D+1, D)		3	*6	6-46
precision)	E-	- E- S1 S2 D-	• (S1+1 S1) (S2+1 S2) (D+1 D)		4		6-48
	E-P	- E-P S1 S2 D	\neg • (S1+1, S1) $-$ (S2+1, S2) \rightarrow (D+1, D)		*5	*6	
Floating	ED+	ED+ SD	• (D+3, D+2, D+1, D)+(S+3, S+2, S+1, S)		3	•	6-50
	ED+P	ED+P S D	→(D+3, D+2, D+1, D)			•	
decimal point data	ED+	ED+ S1 S2 D	• (S1+3, S1+2, S1+1, S1)+ (S2+3, S2+2, S2+1, S2)→ (D+3, D+2, D+1, D)		4		6-52
addition	ED+P	ED+P S1 S2 D			-		0-52
subtraction	ED-	ED- SD-	• (D+3, D+2, D+1, D)-(S+3, S+2, S+1, S)		3		6-50
operations (Double	ED-P	ED-P S D	\rightarrow (D+3, D+2, D+1, D)		Ũ	•	0.00
precision)	ED-	- ED S1 S2 D-	• (S1+3, S1+2, S1+1, S1)—		4		6 50
	ED-P	ED-P S1 S2 D	(S2+3, S2+2, S2+1, S2)→ (D+3, D+2, D+1, D)		4		0-32
Floating decimal	E*	— E* S1 S2 D			3	•	
point data	E*P	- E*P S1 S2 D -	• (S1+1,S1) × (S2+1,S2)→(D+1,D)		5	*6	
and division	E/	- E/ S1 S2 D -	• (S1+1 S1)/(S2+1 S2)				6-54
operations (Single precision)	E/P	E/P S1 S2 D	\rightarrow Quotient (D+1, D)		4	*6	
Floating	ED*	- ED* S1 S2 D -	• (S1+3,S1+2,S1+1,S1) ×			•	
point data	ED*P	ED*P S1 S2 D	(S2+3,S2+2,S2+1,S2)→ (D+3,D+2,D+1,D)		4	*6	
and division	ED/	- ED/ S1 S2 D	• (S1+3, S1+2, S1+1, S1) /				6-56
operations (Double precision)	ED/P	ED/P S1 S2 D	(S2+3, S2+2, S2+1, S2)→ Quotient (D+3, D+2, D+1, D)		4	*6	

*5: The number of basic steps is three for the Universal model QCPU only.*6: The subset is effective only with Universal model QCPU.

2.4 Basic instructions 2.4.2 Arithmetic operation instructions

Table 2.11 Arithmetic	Operation	Instructions	(Continued)
-----------------------	-----------	--------------	-------------

Category	Instruction Symbol	Symbol	Processing Details	Execution Condition	Number of Basic Steps	Subset	See for Description
	BK+	BK+ S1 S2 D n	 This instruction adds BIN 16-bit data stored in n-point devices starting from the 				
BIN 16-bit data block addition	BK+P	- BK+P S1 S2 D n -	device specified by (S1) to the n-point data stored in the devices starting from the device specified by (S2) in batch.		5	-	6-59
and subtraction	BK-	- BK- S1 S2 D n -	This instruction substracts BIN 16-bit data stored in the n-point devices starting from				0-09
operations	BK-P	BK-P S1 S2 D n	the devices specified by (S2) from BIN 16- bit data stored in n-point devices starting from the device specified by (S1) in batch.		5	-	
	DBK+	DBK+ S1 S2 D n	 Adds BIN 32-bit data stored in the n- point devices starting from the device specified by (S1) and a constant to BIN 				
BIN 32-bit data block addition	DBK+P	- DBK+P S1 S2 D n -	32-bit data stored in the n-point devices starting from the device specified by (S2) and stores the result into the nth device specified by (D) and up.		5	-	6.62
and subtraction operations	DBK-	- DBK- S1 S2 D n	• Subtracts BIN 32-bit data stored in the n-point devices starting from the device specified by (S2) or a constant from BIN				0-02
	DBK-P	- DBK-P S1 S2 D n	32-bit data stored in n-point devices starting from the device specified by (S1) and stores the operation result into the nth device specified by (D) and up.		5	-	
	\$+	\$+ SD	 Links character string designated with (S) to character string designated with (D), 		3	-	6-65
Character string data	\$+P	- \$+P S D-	and stores the result from (D) onward.				
Connection	\$+	\$+\$1_\$2_D	 Links character string designated with (S2) to character string designated with (S1), 		4	-	6-67
	\$+P	- \$+P S1 S2 D	and stores the result from (D) onward.				
	INC		• (D)+1→(D)		2	•	6-69
			• (D+1, D)+1→(D+1, D)		*7	•	6-71
BIN data increment							
	DECP		• (D)−1→(D)		2	ullet	6-69
	DDEC						
	DDECP	DDECP D	• (D+1, D)−1→(D+1, D)		*7		6-71

*7: The number of steps may vary depending on the device and type of CPU module being used.

Component		Device	Number of Steps
High Performance model QCPU Process CPU Redundant CPU	Word device: Bit device: Constant:	Internal device (except for file register ZR) Devices whose device Nos. are multiples of 16, whose digit designation is K8, and which use no indexing. No limitations	3 Note 1)
	Devices other than above		2 Note 2)
Basic model QCPU Universal model QCPU	All devices that can be used		2 Note 2)

Note 1) When using a High Performance model QCPU, Process CPU or Redundant CPU, the number of steps increases but the processing speed becomes faster.

Note 2) The number of steps may increase due to the conditions described in Section 3.8.

2

2.4.3 Data conversion instructions

Category	Instruction Symbol	Symbol	Processing Details	Execution Condition	Number of Basic Steps	Subset	See for Description
	BCD	BCD S D	BCD conversions · (<u>S)</u> ───►(D)		3		
BCD	BCDP	BCDP S D	●BIN (0 to 9999)		*1		6-73
conversions	DBCD	- DBCD S D	BCD conversions · (S+1, S) ────(D+1, D)		3		
	DBCDP	- DBCDP S D	BIN (0 to 99999999)		*1		
	BIN	BIN S D	BIN conversions		3		
BIN	BINP	BINP S D	BCD (0 to 9999)		*1		6 75
conversions	DBIN	- DBIN S D	BIN conversions		3		0-75
	DBINP	- DBINP S D	BCD (0 to 99999999)		- *1		
BIN	FLT	FLT SD	Conversion to real number		3	•	
↓ Floating	FLTP	- FLTP S D	$(5) \longrightarrow (D+1, D)$ BIN(-32768 to 32767)		*1	*2	
point conversions	DFLT	- DFLT SD-	Conversion to real number		3		6-78
(Single precision)	DFLTP	DFLTP S D	BIN(-2147483648 to 2147483647)		*1	*2	
BIN	FLTD	- FLTD SD-	Conversion to real number (S) \rightarrow (D+3 D+2 D+1 D)		1		
↓ Floating	FLTDP	- FLTDP S D	BIN(-32768 to 32767)		4	*2	
point conversions	DFLTD	- DFLTD S D-	Conversion to real number $(S+1, S) \longrightarrow (D+3, D+2, D+1, D)$				6-81
(Double precision)	DFLTDP	- DFLTDP S D-	BIN(-2147483648 to 2147483647)		4	*2	
Floating	INT	- INT SD-	Conversion to BIN		3	•	
↓ ↓	INTP	- INTP SD-	Real number (-32768 to 32767)		*1	*2	
BIN	DINT	DINT S D	Conversion to BIN		2		6-83
(Single precision)	DINTP	- DINTP S D	Real number (-2147483648 to 2147483647)		*1	*2	
Floating	INTD	- INTD SD-	Conversion to BIN				
point ↓	INTDP	- INTDP SD-	Real number (-32768 to 32767)		3	*2	6.96
BIN conversions	DINTD	DINTD SD	Conversion to BIN $(S+3, S+2, S+1, S) \longrightarrow (D+1, D)$				0-00
(Double precision)	DINTDP	DINTDP S D	Real number (-2147483648 to 2147483647)		3	*2	

*1: The number of basic steps is two for the Universal model QCPU only.

*2: The subset is effective only with Universal model QCPU.

Table 2.12 Data Conversion Instructions (Continued)

Category	Instruction Symbol	Symbol	Processing Details	Execution Condition	Number of Basic Steps	Subset	See for Description
BIN	DBL	- DBL S D-	· (<u>S</u>) Conversion ►(D+1, D)		3	_	6-88
16-bit ‡	DBLP	- DBLP S D -	●BIN (-32768 to 32767)				
32-bit	WORD	- WORD S D -	· (S+1, S) ← (D)		3	-	6-89
Conversion	WORDP	WORDP S D	●BIN (-32768 to 32767)				
BIN	GRY	- GRY S D -	Conversion to gray code $(\underline{S}) \longrightarrow (D)$		3	-	
ţ	GRYP	- GRYP S D -	BIN (-32768 to 32767)				6-90
Gray code	DGRY	- DGRY S D -	Conversion to gray code · (<u>S+1, S)</u> →(D+1, D)		3	_	0.00
	DGRYP	DGRYP S D	[■] —BIN (-2147483648 to 2147483647)		0		
	GBIN	- GBIN S D	Conversion to BIN data		3		
Gray code ↓	GBINP	- GBINP S D -	Gray code (-32768 to 32767)		5	-	
BIN conversions	DGBIN	- DGBIN S D -	Conversion to BIN data · (<u>S+1, S)</u> →(D+1, D) Gray code (-2147483648 to 2147483647)				6-92
	DGBINP	DGBINP S D			3	-	
	NEG	NEG D	· (D) →(D)		2	_	
	NEGP	NEGP D	[₽] ——BIN data		۷	-	6-94
	DNEG	DNEG D	· (<u>D+1, D)</u> →(D+1, D)		2	_	0-94
Complement	DNEGP	DNEGP D	^T BIN data		L		
to 2	ENEG	ENEG D	· (<u>D+1, D)</u> →(D+1, D)		2	_	6-96
	ENEGP	ENEGP D	^T Real number data		2		0.00
	EDNEG	EDNEG D	· (<u>D+3, D+2, D+1, D</u>)→(D+3, D+2, D+1, D)		3	_	6-97
	EDNEGP	EDNEGP D	[₱] ─── Real number data		Ū		
	BKBCD	BKBCD S D n	Batch converts BIN data n points from (S) to BCD data and stores the result from (D)		4	_	6-98
Block	BKBCDP	BKBCDP S D n	onward.				
conversion	BKBIN	BKBIN S D n	 Batch converts BCD data n points from (S) to BIN data and stores the result from (D) 		4	_	6-100
	BKBINP	BKBINP S D n	onward.				
Floating-point Single precision	ECON	ECON S D	Conversion to double precision				
↓ Double precision	ECONP	ECONP S D	$(\underline{S+1}, \underline{S}) \rightarrow (D+3, D+2, D+1, D)$ 32-bit floating-point real number		3	-	6-102
Floating-point Double precision	EDCON	EDCON S D	Conversion to single precision				
↓ Single precision	EDCONP	- EDCONP S D-	· (<u>S+3, S+2, S+1, S</u>) → (D+1, D) 64-bit floating-point real number		3	-	6-104

2-23

2.4.4 Data transfer instructions

Category	Instruction Symbol	Symbol	Processing Details	Execution Condition	Number of Basic Steps	Subset	See for Description
16-bit data	MOV	MOV S D	(D)		*4		
transfer	MOVP	MOVP S D	· (3) · (b)		*1		6-106
32-bit data	DMOV	DMOV S D	(C+1 C)		*2		0 100
transfer	DMOVP	DMOVP S D	· (3+1,3) • (0+1,0)		-		
Floating decimal	EMOV	EMOV SD					
point data transfer (Single precision)	EMOVP	- EMOVP SD-	· (S+1, S) → (D+1, D) Real number data		*2	۰ *۵	6-108
Floating decimal point data	EDMOV	EDMOV S D	· (S+3, S+2, S+1, S)→(D+3, D+2, D+1, D)		C	•	6 110
transfer (Double precision)	EDMOVP	EDMOVP S D	Real number data				0-110
Character	\$MOV	\$MOV S D	Transfers character string designated by		2		6 110
transfer	\$MOVP	- \$MOVP S D	(S) to device designated by (D) onward.		3	-	0-112
16-bit data	CML	CML SD			*1		
transfer	CMLP	CMLP S D	· (3)		·		6-114
32-bit data	DCML	DCML SD	(<u>9+1 9</u>)		*2		0-114
transfer	DCMLP	DCMLP S D			-		
Block	BMOV	BMOV SD n	(S) (D)		4		6-117
transfer	BMOVP	BMOVP S D n			•		• • • •
Identical 16-	FMOV	- FMOV SD n	(D)		4		
transfers	FMOVP	- FMOVP S D n				•	6-120
Identical 32-	DFMOV	DFMOV S D n	(D+1,D)		1		0 120
transfers	DFMOVP	- DFMOVP S D n			т		
16-bit data	ХСН	XCH D1 D2			3		
exchange	XCHP	XCHP D1 D2			5		6-122
32-bit data	DXCH	DXCH D1 D2	· (D1+1 D1)		3		0-122
exchange	DXCHP	DXCHP D1 D2			5		

Table 2.13 Data Transfer Instructions

Table 2.13 Data Transfer Instructions (Continued)

Category	Instruction Symbol	Symbol	Processing Details	Execution Condition	Number of Basic Steps	Subset	See for Description
Block data	ВХСН	BXCH SDn	(S) (D)		4	_	6-126
exchange	BXCHP	BXCHP S D n			-		0 120
Exchange of upper	SWAP	- SWAP D-	(S) 8 bits 8 bits		3	_	6-128
and lower bytes	SWAPP	- SWAPP D-	b15 to b8 b7 to b0 (D) 8 bits 8 bits		5		0-120

*1: The number of steps may vary depending on the device and type of CPU module being used.

Component		Device	Number of Steps	
QCPU	Word device:Bit device:Constant:	d device: Internal device (except for file register ZR) device: Devices whose device Nos. are multiples of 16, whose digit designation is K4, and which use no indexing. Instant: No limitations		
	Devices other than above		3 Note 1)	

Note 1) The number of steps may increase due to the conditions described in Section 3.8.

*2: The number of steps may vary depending on the device and type of CPU module being used.

Component		Device	Number of Steps
High Performance model QCPU Process CPU Redundant CPU	Word device: Bit device: Constant:	Internal device (except for file register ZR) Devices whose device Nos. are multiples of 16, whose digit designation is K8, and which use no indexing. No limitations	3
	Devices other than above		3 Note 1)
Basic model QCPU	Word device: Bit device: Constant: (The number of state)	Internal device (except for file register ZR) Devices whose device Nos. are multiples of 16, whose digit designation is K8, and which use no indexing. No limitations teps is 3 when the above device + constant are used.)	2
	Devices other that	n above	3 Note 1)
Universal model QCPU	All devices that ca	an be used	2 Note 1)

Note 1) The number of steps may increase due to the conditions described in Section 3.8.

*3: The subset is effective only with QCPU.

*4: The number of steps may vary depending on the device and type of CPU module being used.

Component		Device	Number of Steps
QCPU	Word device:Bit device:Constant:	Internal device (except for file register ZR) Devices whose device Nos. are multiples of 16, whose digit designation is K4, and which use no indexing. No limitations	2
	Devices other the	an above	3 Note 1)

Note 1) The number of steps may increase due to the conditions described in Section 3.8.

2.4.5 Program branch instructions

Category	Instruction Symbol	Symbol	Processing Details	Execution Condition	Number of Basic Steps	Subset	See for Description
	CJ	CJ Pn	 Jumps to Pn when input conditions are met. 		2	•	
Jump	SCJ	- SCJ Pn-	Jumps to Pn from the scan after the meeting of input condition.		2	•	6-129
	JMP	JMP Pn	Jumps unconditionally to Pn.		2	•	
	GOEND	- GOEND -	 Jumps to END instruction when input condition is met. 		1	-	6-132

Table 2.14 Program Branch Instructions

2.4.6 Program execution control instructions

Table 2.15 Program Execution Control Instructions

Category	Instruction Symbol	Symbol	Processing Details	Execution Condition	Number of Basic Steps	Subset	See for Description
Disable interrupts	DI		 Prohibits the running of an interrupt program. 		1	-	
Enable interrupts	EI	- El -	Resets interrupt program execution prohibition.		1	-	6-133
Interrupt disable/ enable setting	IMASK	- IMASK S-	 Inhibits or permits interrupts for each interrupt program. 		2	-	
Return	IRET	- IRET -	 Returns to sequence program from an interrupt program. 		1	-	6-139

2.4.7 I/O refresh instructions

Table 2.16 I/O Refresh Instructions

Category	Instruction Symbol	Symbol	Processing Details	Execution Condition	Number of Basic Steps	Subset	See for Description
I/O Refresh	RFS	RFS S n	Refreshes the relevant I/O area during		3	_	6-141
	RFSP	- RFSP S n -	scan.				

2

2.4.8 Other convenient instructions

Category	Instruction Symbol	Symbol	Processing Details	Execution Condition	Number of Basic Steps	Subset	See for Description
Un/Down	UDCNT1	UDCNT1 S D n	(S)+0 Down Up (S)+1Up Down Up Present Cn value 0 1 2 3 4 5 6 7 6 5 4 3 2 1 0 -1 -2 -3 -2 -1 0 Cn contact		4	-	6-143
counter	UDCNT2	UDCNT2 S D n	(S)+0 (S)+1		4	-	6-146
Teaching timer	TTMR	- TTMR D n -	• (Time that TTMR is ON)×n → (D) n=0:1, n=1:10n, n=2:100		3	-	6-149
Special timer	STMR	- STMR S n D	 The 4 points from the bit device designated by (D) operate as shown below, depending on the ON/OFF status of the input conditions for the STMR instruction: (D)+0: Off delay timer output (D)+1: One shot after off timer output (D)+2: One shot after on timer output (D)+3: On delay and off delay timer output 		3	-	6-151
Shortest direction control	ROTC	- ROTC S n1 n2 D	 Rotates a rotary table with n1 divisions from the stop position to the position designated by (S+1) in the shortest direction. 		5	-	6-154
Ramp signal	RAMP	RAMP n1 n2 D1 n3 D2	 Changes device data designated by D1 from n1 to n2 in n3 scans. 		6	-	6-157
Pulse density	SPD	- SPD S n D-	• Counts the pulse input from the device designated by (S) for the duration of time designated by n, and stores the count in the device designated by (D).		4	-	6-160
Pulse output	PLSY	PLSY n1 n2 D	• (n1)Hz →(D) Output n2 times		4	-	6-162
Pulse width modulation	PWM	- PWM n1 n2 D	(D)		4	-	6-164
Matrix input	MTR	– MTR SD1D2 n –	 Reads data of 16 points × n rows from the devices starting from the one specified by (S), and stores them to the devices starting from the one specified by (D2). 		5	-	6-166

Table 2.17 Other convenient instructions

2.5 Application Instructions

2.5.1 Logical operation instructions

Category	Instruction Symbol	Symbol	Processing Details	Execution Condition	Number of Basic Steps	Subset	See for Description
	WAND	WAND S D	\cdot (D) \wedge (S) \rightarrow (D)		3	ullet	7-3
	WANDP	- WANDP S D -					
	WAND	WAND S1 S2 D	· (S1) ∧ (S2)→(D)		4		7-6
	WANDP	WANDP S1 S2 D			*1	•	
Logical	DAND	DAND S D	. (D+1 D) ∧ (S+1 S) → (D+1 D)		*2		7-3
product	DANDP	- DANDP SD-					1.0
	DAND	DAND S1 S2 D	(C1+1 C1) (C2+1 C2) (D+1 D)		*3		7-6
	DANDP	DANDP S1 S2 D	·(51+1,51)/\(32+1,52)→(0+1,0)		0		10
-	BKAND	BKAND S1 S2 D n	(S1) (S2) (D)		5	_	7_9
	BKANDP	BKANDP S1 S2 D n			5		1-5
-	WOR	WOR S D	$-\cdot$ (D) \bigvee (S) \rightarrow (D)		a		7_11
	WORP	WORP S D			0		,
	WOR	- WOR S1 S2 D -	(S1)) ((S2))(D)		4		7-14
	WORP	WORP S1 S2 D	(31) ◊ (32)→(5)		*1		
Logical	DOR	DOR SD	(D+1 D) \ /(S+1 S) \ (D+1 D)		*2		7-11
sum	DORP	DORP S D					
	DOR	DOR S1 S2 D	. (S1+1 S1) \ /(S2+1 S2) →(D+1 D)		*3		7-14
	DORP	DORP S1 S2 D	(0111,01) (0211,02) (011,0)				
	BKOR	BKOR S1 S2 D n	(S1) (S2) (D)		5	_	7-17
	BKORP	BKORP S1 S2 D n			0		, ,,
	WXOR	WXOR SD	$(D) \setminus \langle (S) \rangle \setminus \langle D \rangle$		3		7-19
	WXORP	WXORP S D	· (D)→(S)→(D)		•		1 10
Exclusive	WXOR	WXOR S1 S2 D	. (S1) \ / (S2) → (D)		4		7-22
OR	WXORP	WXORP S1 S2 D	$\neg \cdot (S1) \forall (S2) \rightarrow (D) $	*1			
	DXOR	DXOR S D	$(D+1 D) \rightarrow (S+1 S) \rightarrow (D+1 D)$		*2		7-19
	DXORP	DXORP S D	(ע,ויש) → (ט,ויט) → (ע,ויש)		-	•	, 15

Table 2.18 Logical	Operation	Instructions
--------------------	-----------	--------------

Category	Instruction Symbol	Symbol	Processing Details	Execution Condition	Number of Basic Steps	Subset	See for Description
	DXOR	DXOR SI S2 D	· (S1+1,S1) → (S2+1,S2) → (D+1,D)		*3		7-22
Exclusive OR	DXORP	DXORP S1 S2 D					
	BKXOR	BKXOR S1 S2 D n	(S1) (S2) (D)		5		7-25
	BKXORP	BKXORP S1 S2 D n			5	-	7-25
	WXNR	WXNR SD	$\overline{(D)} \xrightarrow{(D)} \rightarrow (D)$		3		7-27
	WXNRP	WXNRP S D			Ū		1 21
	WXNR	WXNR S1 S2 D	$\overline{(\mathbf{c}_1)}$ $\overline{(\mathbf{c}_2)}$ (\mathbf{D})		4		7-30
	WXNRP	WXNRP S1 S2 D			*1		7-50
NON exclusive	DXNR	DXNR SD	$(D+1 D) \rightarrow (D+1 D)$		*2		7-27
logical sum	DXNRP	DXNRP S D			-		1-21
	DXNR	DXNR S1 S2 D	$\sqrt{(S1+1 S1)} \rightarrow (S2+1 S2) \rightarrow (D+1 D)$		*3		7-30
	DXNRP	DXNRP S1 S2 D			5		7-50
	BKXNR	BKXNR S1 S2 D n	(S1) (S2) (D)		5		7-33
	BKXNRP	BKXNRP S1 S2 D n			5	_	1-00

Table 2.18 Logical Operation Instructions (Continued)

- *1: The number of basic steps is three for the Universal model QCPU only.
- *2: The number of steps may vary depending on the device and type of CPU module being used.

Component	Device	
High Performance model QCPU Process CPU Redundant CPU	 Word device: Internal device (except for file register ZR) Bit device: Devices whose device Nos. are multiples of 16, whose digit designation is K8, and which use no indexing. Constant: No limitations 	5 ^{Note 1)}
	Devices other than above	3 Note 2)
Basic model QCPU Universal model QCPU	All devices that can be used	3 Note 2)

Note 1) When using a High Performance model QCPU, Process CPU or Redundant CPU, the number of steps increases but the processing speed becomes faster.

Note 2) The number of steps may increase due to the conditions described in Section 3.8.

*3: The number of steps may vary depending on the device and type of CPU module being used.

Component	Device		Number of Steps		
High Performance model QCPU Process CPU Redundant CPU	Word deviceBit device:Constant:	: Internal device (except for file register ZR) Devices whose device Nos. are multiples of 16, whose digit designation is K8, and which use no indexing. No limitations	6 ^{Note 1)}		
	Devices other than above				
Basic model QCPU	All devices that	All devises that can be used			
Universal model QCPU	All devices that		3 Note 2)		

Note 1) When using a High Performance model QCPU, Process CPU or Redundant CPU, the number of steps increases but the processing speed becomes faster.

Note 2) The number of steps may increase due to the conditions described in Section 3.8.

2

2.5.2 Rotation instructions

Category	Instruction Symbol	Symbol	Processing Details	Execution Condition	Number of Basic Steps	Subset	See for Description
Pight	ROR		b15 (D) b0 SM700		3		
Right rotation	RCR		b15 (D) b0 SM700		3	•	7-35
	ROL		SM700 b15 (D) b0		. 3	•	
Len rotation	RCL RCLP		SM700 b15 (D) b0		. 3	•	7-38
Right	DROR DRORP	DROR D n	(D+1) (D) b31 to b16 b15 to b0 SM700		3	•	7-41
rotation	DRCR DRCRP	DRCR D n	(D+1) (D) b31 to b16 b15 to b0 SM700		3	•	7-41
Left rotation	DROL DROLP	DROL D n	(D+1) (D) SM700 b31 to b16 b15 to b0		3	•	
	DRCL DRCLP		Carry flag Left rotation by n bits		3	•	7-44

Table 2.19 Rotation Instructions

2.5.3 Shift instructions

Category	Instruction Symbol	Symbol	Processing Details	Execution Condition	Number of Basic Steps	Subset	See for Description
	SFR SFRP	- SFR D n	b15 bn b0 Carry flag b15 b0 SM700		3	•	
of 16-bit	SFI						7-46
Gala	SFLP	SFLP D n	Carry flag SM700 b15 b0 0 to 0		3	•	
1-bit shift of n-bit data	BSFR	BSFR D n	n(D)				
	BSFRP	BSFRP D n	Carry flag SM700		3	-	7-49
	BSFL	BSFL D n	n(D)				1-45
	BSFLP	BSFLP D n	Carry flag SM700		3	-	
	SFTBR	SFTBR D n1 n2			4		
n-bit shift of n-bit	SFTBRP	SFTRP D n1 n2	(D) Carry flag SM700			-	7-51
data	SFTBL	SFTBL D n1 n2	n1				7-01
	SFTBLP	SFTBLP D n1 n2	Carry flag		4	-	
	DSFR	DSFR D n	(D)		2		
1-word shift of	DSFRP	DSFRP D n			3	•	7-54
n-words data	DSFL	DSFL D n	(D)				1-04
	DSFLP	- DSFLP D n			3	•	
	SFTWR	SFTWR D n1 n2	n1				
n-words shift of	SFTWRP	SFTWRP D n1 n2			4	-	7 56
n-words data	SFTWL	SFTWL D n1 n2	(D)		4		1-00
	SFTWLP	SFTWLP D n1 n2			4	-	

Table 2.20 Shift Instructions

2.5 Application Instructions 2.5.3 Shift instructions

2.5.4 Bit processing instructions

Category	Instruction Symbol	Symbol	Processing Details	Execution Condition	Number of Basic Steps	Subset	See for Description
	BSET	BSET D n	(D) <u>b15 bn b</u> 0		3		
Bit	BSETP	BSETP D n	1		0		7-59
set/reset	BRST	BRST D n	(D) <u>þ15 þn þ</u> 0		a		7 00
	BRSTP	BRSTP D n		9			
	TEST	TEST S1 S2 D	(S1) b15 to b0 (D)		4		
Rit tests	TESTP	TESTP S1 S2 D	Bit designated by (S2)		4	-	7-61
Dir toolo	DTEST	DTEST S1 S2 D	(S1) b31 to b0 (D)				7.01
	DTESTP	DTESTP S1 S2 D	Bit designated by (S2)		4	-	
Batch reset of bit devices	BKRST	BKRST D n	(D) ON (D) OFF OFF		3	-	7-64
	BKRSTP	BKRSTP D n	ON OFF ON OFF		0		1 04

Table 2.21 Bit Processing Instructions

2.5.5 Data processing instructions

Category	Instruction Symbol	Symbol	Processing Details	Execution Condition	Number of Basic Steps	Subset	See for Description
	SER	SER S1 S2 D n	(S1) (S2)				
Data searches	SERP	SERP S1 S2 D n	→(D): Match No. (D + 1): Number of matches		5	-	7.66
	DSER	DSER S1 S2 D n	32 bits (S1) (S2)				7-00
	DSERP	DSERP S1 S2 D n	(D): Match No. (D + 1): Number of matches		5	-	
	SUM	SUM S D	(S) b15 b0		3		
Bit checks	SUMP	SUMP S D	└────→(D): Number of 1s			-	7-69
	DSUM	DSUM S D	(S + 1) (S)	(S + 1) (S)	3	•	
	DSUMP	DSUMP S D	►(D): Number of 1s				
Decode	DECO	DECO S D n	Decode from 8 to 256		1		7_71
Decode	DECOP	DECOP S D n	(3) Decode 2^n bits		4	-	7-71
Freedo	ENCO	ENCO S D n	Decode from 256 to 8 (S)		4		7 70
Encode	ENCOP	ENCOP S D n	$ \begin{array}{c} \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} $		4	-	1-13
7-seg- ment	SEG	SEG S D			3		7-75
decode	SEGP	SEGP S D	7SEG				

Table 2.22 Data Processing Instructions

2.5 Application Instructions 2.5.5 Data processing instructions

2-35

Table 2.22 Data Processing Instructions (Continued)	
---	--

Category	Instruction Symbol	Symbol	Processing Details	Execution Condition	Number of Basic Steps	Subset	See for Description
	DIS DISP		• Separates 16-bit data designated by (S) into 4-bit units, and stores at the lower 4 bits of n points from (D). (n \leq 4)		4	-	7-77
	UNI	UNI SDn	• Links the lower 4 bits of n points from the				7 70
	UNIP	UNIP S D n	device designated by (S) and stores at the device designated by (D). (n \leq 4)		4	-	7-79
	NDIS	NDIS S1 D S2	 Separates the data in the devices starting from the one specified by (S1) into bits specified by the devices from (S2), and 				
	NDISP	NDISP S1 D S2	stores them to the devices starting from the one specified by (D).			_	7.04
Separating and linking	NUNI	NUNI S1 D S2	• Links the data in the devices starting from the one specified by (S1) with bits specified by the davies for (S2)		4	-	7-01
	NUNIP	NUNIP S1 D S2	to the devices starting from the one specified by (D).				
	WTOB	WTOB SDn	 Breaks n points of 16-bit data from the device designated by (S) into 8-bit units, 				
	WTOBP	WTOBP S D n	and stores in sequence at the device designated by (D).		Λ		7 95
	BTOW	BTOW S D n	Links the lower 8 bits of 16-bit data of n points from the device designated by (S)		-	-	60-1
	BTOWP	BTOWP S D n	into 16-bit units, and stores in sequence at the device designated by (D).				
	MAX	MAX S D n	 Searches the data of n points from the device designated by (S) in 16-bit units, 				7-89
	MAXP	MAXP S D n	and stores the maximum value at the device designated by (D).		4		
	MIN	MIN S D n	 Searches the data of n points from the device designated by (S) in 16-bit units, 		T		7-92
Search	MINP	MINP S D n	and stores the minimum value at the device designated by (D).				
Souton	DMAX	DMAX S D n	 Searches the data of 2n points from the device designated by (S) in 32-bit units, 				7-89
	DMAXP	DMAXP S D n	and stores the maximum value at the device designated by (D).		4	_	. 55
	DMIN	DMIN S D n	 Searches the data of 2n points from the device designated by (S) in 32-bit units, 		T		7-92
	DMINP	DMINP S D n	and stores the minimum value at the device designated by (D).				1 52

Table 2.22 Data Processing Instructions (Continued)

Category	Instruction Symbol	Symbol	Processing Details	Execution Condition	Number of Basic Steps	Subset	See for Description
Sort	SORT	SORT SI n S2 D1 D2 S2: Number of comparisons to be made during a single run D1: Device to be turned ON at the completion of sort D2: For system use	 Sorts data of n points from device designated by (S1) in 16-bit units. (n x (n-1)/2 scans required) 		6		7-95
	DSORT	DSORT S1 n S2 D1 D2 S2: Number of comparisons to be made during a single run D1: Device to be turned ON at the completion of sort D2: For system use	 Sorts data of 2n points from device designated by (S1) in 32-bit units. (n x (n-1)/2 scans required) 		0		1-55
	WSUM	WSUM S D n	 Adds 16 bit BIN data of n points from the device specified by (S) and stores it in 				7-99
Total value	WSUMP	WSUMP S D n	the device specified by (D).		4	-	
calculations	DWSUM	DWSUM S D n	Adds 32 bit BIN data of n points from the device specified by (S) and stores it in		4		7-101
	DWSUMP	DWSUMP S D n	the device specified by (D).				01
	MEAN	MEAN S D n	Calculates the mean of n-point devices (in 16-bit units) starting from the device				
Calculation	MEANP	MEANP S D n	specified by (S), and then stores the result into the device specified by (D).		Δ		7 100
of averages	DMEAN	DMEAN S D n	Calculates the mean of n-point devices (in 32-bit units) starting from the device		7	-	7-103
	DMEANP	DMEANP S D n	specified by (S), and then stores the result into the device specified by (D).				

2

2.5.6 Structure creation instructions

Category	Instruction Symbol	Symbol	Processing Details	Execution Condition	Number of Basic Steps	Subset	See for Description
	FOR	FOR n	• Executes n times between the FOR		2	-	7-105
Number of	NEXT	NEXT	and NEXT.		1	-	
repeats	BREAK	BREAK D Pn	Forcibly ends the execution of the FOR		3	_	7-108
	BREAKP	BREAKP D Pn	to NEXT cycle and jumps pointer Pn.				
	CALL	- CALL Pn- - CALL PnS1~Sn-	• Executes subroutine program Pn when input condition is met. (S1 to Sn are arguments sent to subroutine program. $n \leq 5$)		*1 2 +	•	7-110
	CALLP	- CALLP Pn- - CALLP PnS1~Sn-			n	*3	
	RET	RET	Returns from subroutine program		1	-	7-115
Subroutine	FCALL	- FCALL Pn-	 Performs non-execution processing of subroutine program Pn if input conditions have not been met. (S1 to 		*1 2 +	_	7-116
calls	FCALLP	- FCALLP Pn-	Sn are arguments sent to subroutine program. n \leq 5)	_	n		
	ECALL	─ ECALL ★ Pn ─ ─ ECALL ★ PnS1~Sn → ★: File name	• Executes subroutine program Pn from within designated program name when		*2 3 +	_	7-120
	ECALLP		arguments sent to subroutine program. n \leq 5)		n		

Table 2.23 Structure Creation Instructions

*1: n indicates number of arguments for subroutine program.

*2: n indicates the total of the number of arguments used in the subroutine program and the number of program name steps. The number of program name steps is calculated as "number of characters in the program/2" (decimal fraction is rounded up).

*3: The subset is effective only with the Universal model QCPU.

Table 2.23 Structure Creation Instructions (Continued)

Category	Instruction Symbol	Symbol	Processing Details	Execution Condition	Number of Basic Steps	Subset	See for Description
	EFCALL	EFCALL * Pn EFCALL * Pn EFCALL * PnS1toSn *:File name	• Performs non-execution processing of subroutine program Pn if input conditions have not been met. (S1 to Sn are arguments sent to subroutine program. N \leq 5) • Executes subroutine program Pn when input condition is met.		*2 3 +	-	7-125
Subroutine program calls	EFCALLP	EFCALLP * Pn EFCALLP * Pn EFCALLP * PnS1toSn * :File name			n		
calls	XCALL	- XCALL Pn S1∼Sn-	 Executes subroutine program Pn when input condition is met. Performs non-execution processing of subroutine program Pn if input conditions have not been met. (S1 to Sn are arguments sent to subroutine program. N ≤ 5) 		*1 2 + n	_	7-129
	СОМ	СОМ	 Performs auto refresh of intelligent function modules, link refresh, auto refresh of CPU shared memory, and communications with peripherals. 		1	-	7-134
refresh	ССОМ	CCOM	Performs auto refresh of intelligent function modules, auto refresh of CPU shared memory, and communications		1	-	7-141
	СОМ	CCOMP	with peripherals after the input conditions are met.		1	-	7-137
	IX		Perform indexing for individual devices		2	-	7-144
	IXEND	IXEND	used in device indexing ladder.		1	-	
Fixed indexing	IXDEV	IXDEV	Stores indexing value used for indexing		1	-	
	IXSET	Designates indexing value.	performed between the IX and IXEND to the device designated by D or later.		3	-	7-148

*1: n indicates number of arguments for subroutine program.

*2: n indicates the total of the number of arguments used in the subroutine program and the number of program name steps. The number of program name steps is calculated as "number of characters in the program/2" (decimal fraction is rounded up).

2.5.7 Data table operation instructions

Category	Instruction Symbol	Symbol	Processing Details	Execution Condition	Number of Basic Steps	Subset	See for Description
	FIFW	FIFW SD	(S) (D) Pointer Pointer + 1		2		7 151
	FIFWP	FIFWP SD	Device at pointer + 1		3	-	7-151
	FIFR	FIFR SD	(S) Pointer Pointer - 1 (D)		3	-	7-153
	FIFRP	FIFRP S D					
Data table	FPOP	FPOP S D	(S) Pointer Pointer - 1 (D)		3	_	7-155
processing	FPOPP	FPOPP S D	Device at pointer + 1		9		1 100
	FDEL	- FDEL SDn-	(S) Pointer Pointer - 1 (D)		4		
	FDELP	FDELP S D n	Designated by n		4	-	7-157
	FINS	FINS SDn	(S) (D) Pointer Pointer + 1		1		,
	FINSP	FINSP S D n	Designated by n		4	-	

Table 2.24 Data table Operation Instructions

2.5.8 Buffer memory access instructions

Category	Instruction Symbol	Symbol	Processing Details	Execution Condition	Number of Basic Steps	Subset	See for Description
Data read	FROM	FROM n1 n2 D n3	Reads data in 16-bit units from an		5	_	
	FROMP	FROMP n1 n2 D n3	intelligent function module.		Ũ		7-160
Data read	DFRO	DFRO n1 n2 D n3	Reads data in 32-bit units from an		5		7 100
	DFROP	DFROP n1 n2 D n3	intelligent function module.		Ŭ		
	то	TO n1 n2 S n3	Writes data in 16-bit units to an		5	_	
Data write	ТОР	TOP n1 n2 S n3	intelligent function module.			-	7-163
Data write	DTO	DTO n1 n2 S n3	Writes data in 32-bit units to an		5		7-105
	DTOP	DTOP n1 n2 S n3	intelligent function module.		5	-	

Table 2.25 Buffer Memory Access Instructions

2.5.9 Display instructions

Table 2.26 Display Instructions

Category	Instruction Symbol	Symbol	Processing Details	Execution Condition	Number of Basic Steps	Subset	See for Description
	PR	* When SM701 is OFF PR S D	 Outputs ASCII code of 8 points (16 characters) from device designated by (S) to output module. 				7-166
ASCII print	PR	* When SM701 is ON PR S D	 Outputs ASCII code from device designated by (S) to 00H to output module. 		3	-	1 100
	PRC	PRC S D	 Converts comments from device designated by (S) to ASCII code and outputs to output module. 				7-169
Reset	LEDR		 Resets annunciator and LED indicator display. 		1	-	7-172

2.5 Application Instructions 2.5.8 Buffer memory access instructions

2.5.10 Debugging and failure diagnosis instructions

Category	Instruction Symbol	Symbol	Processing Details	Execution Condition	Number of Basic Steps	Subset	See for Description
Checks	CHKST	- CHKST -	 The CHK instruction is executed when CHKST is executable. Jumps to the step following the CHK instruction when CHKST is in a non-executable status. 		1	_	7-175
	СНК		 During normal conditions → SM80 : OFF, SD80 : 0 During abnormal conditions → SM80 : ON, SD80 : Failure No. 				
	CHKCIR	- CHKCIR -	 Starts update in ladder pattern being checked by the CHK instruction. 		1		7-170
	CHKEND	- CHKEND -	 Ends update in ladder pattern being checked by the CHK instruction. 				1-113

Table 2.27 Debugging and Failure Diagnosis Instructions

2.5.11 Character string processing instructions

Category	Instruction Symbol	Symbol	Processing Details	Execution Condition	Number of Basic Steps	Subset	See for Description
BIN ↓ Decimal	BINDA BINDAP	- BINDA SD-	 Converts 1-word BIN value designated by (S) to a 5-digit, decimal ASCII value, and stores it at the word device designated by (D) 		3	-	
	DBINDA	- DBINDA SD-	Converts 2-word BIN value designated by (S) to a 10-digit, decimal ASCII value,			7-183	
	DBINDAP	- DBINDAP S D	and stores it at word devices following the word device number designated by (D).		3	-	
	BINHA	- BINHA SD-	 Converts 1-word BIN value designated by (S) to a 4-digit, hexadecimal ASCII value, and stores it at a word device 		3	-	- 7-186
BIN ↓ Hexadecimal ASCII	BINHAP	- BINHAP S D-	following the word device number designated by (D).				
	DBINHA	- DBINHA S D -	 Converts 2-word BIN value designated by (S) to an 8-digit, hexadecimal ASCII value, and stores it at word devices 		3	_	
	DBINHAP	- DBINHAP S D -	following the word device number designated by (D).				
BCD ↓ Decimal ASCII	BCDDA	- BCDDA SD-	 Converts 1-word BCD value designated by (S) to a 4-digit, decimal ASCII value, and stores it at a word device following 		3	_	- 7-189
	BCDDAP	- BCDDAP SD-	the word device number designated by (D).				
	DBCDDA	- DBCDDA SD-	 Converts 2-word BCD value designated by (S) to an 8-digit, decimal ASCII value, and stores it at word devices following 			-	
	DBCDDAP	- DBCDDAP S D -	the word device number designated by (D).				
Decimal ASCII ↓ BIN	DABIN	- DABIN S D -	Converts a 5-digit, decimal ASCII value designated by (S) to a 1-word BIN value, and stores it at a word device number	3	-		
	DABINP	DABINP S D	 designated by (D). Converts a 10-digit, decimal ASCII value 				7-192
			designated by (S) to a 2-word BIN value, and stores it at a word device number		3	-	
Hexadecimal ASCII ↓ BIN	HABIN		 designated by (D). Converts a 4-digit, hexadecimal ASCII 				
	HABINP	HABINP S D	value designated by (S) to a 1-word BIN value, and stores it at a word device number designated by (D).		3	-	
	DHABIN	- DHABIN S D	Converts an 8-digit, hexadecimal ASCII designated by (S) value to a 2-word BIN		- 3	_	- 7-195
	DHABINP	- DHABINP S D	value, and stores it at a word device number designated by (D).				

Table 2.28 Character String Processing Instructions

Table 2.28 Character String Pr	rocessing Instructions (Continued)
--------------------------------	------------------------------------

Category	Instruction Symbol	Symbol	Processing Details	Execution Condition	Number of Basic Steps	Subset	See for Description
Decimal			 Converts a 4-digit, decimal ASCII value designated by (S) to a 1-word BCD value, and stores it at a word device 		3	-	
ASCII ↓			• Converts a 8-digit decimal ASCII value designated by (S) to a 2-word BCD value, and stores it at the word device		3	-	7-198
BCD	DDABCDP						
Device	COMRD		number designated by (D).				7-201
comment read	COMRDP		 Stores comment from device designated by (S) at a device designated by (D). 		3	-	
operation Character	LEN		Stores data length (number of		\rightarrow		
string length detection	LENP	LENP S D	characters) in character string designated by (S) at a device designated by (D).		3	-	7-204
	STR	- STR S1 S2 D-	 Converts a 1-word BIN value designated by (S2) to a decimal character string with the total number of digits and the number of decimal fraction digits designated by (S1) and stores them at a device designated by (D). 		4		- 7-206
BIN ↓ Decimal character string	STRP	- STRP S1 S2 D				-	
	DSTR	DSTR S1 S2 D	Converts a 2-word BIN value designated by (S2) to a decimal character string with the total number of digits and the				
	DSTRP	DSTRP S1 S2 D	number of decimal fraction digits designated by (S1) and stores them at a device designated by (D).		4	-	
Desired	VAL	VAL S D1 D2	Converts a character string including decimal point designated by (S) to a 1-word BIN value and the number of		4	-	7 010
character	VALP	VALP S D1 D2	decimal fraction digits, and stores them into devices designated by (D1) and (D2).		-		
↓ BIN	DVAL	- DVAL S D1 D2-	 Converts a character string including decimal point designated by (S) to a 2-word BIN value and the number of 		4	_	7-212
	DVALP	DVALP S D1 D2	decimal fraction digits, and stores them into devices designated by (D1) and (D2).		4		
Floating decimal point ↓ Character string	ESTR	ESTR S1 S2 D	 Converts the 32-bit floating decimal point data designated by (S) to a character string, and stores it in devices designated by (D). 		. 4	-	7-217
	ESTRP	ESTRP S1 S2 D					
Character string ↓ Floating decimal point	EVAL	- EVAL SD-	 Converts the character string designated by (S) to a 32-bit floating decimal point data, and stores it in devices designated by (D). 		2		7 224
	EVALP	- EVALP S D-			Э	-	1-224

Table 2.28 Character String Processing Instructions (Continued)

Category	Instruction Symbol	Symbol	Processing Details	Execution Condition	Number of Basic Steps	Subset	See for Description
Hexadecimal BIN ↓ ASCII	ASC ASCP	- ASC S D n - - ASCP S D n -	 Converts the 1-word BIN value at the device numbers designated by (S) to hexadecimal ASCII, and stores n characters of them at the device numbers designated by (D) and after 		4	-	7-228
ASCII ↓ Hexadecimal BIN	HEX HEXP	- HEX SDn-	 Converts n hexadecimal ASCII characters of the device numbers designated by (S) and after to BIN values, and stores them at the device numbers designated by (D). 		4	-	7-230
Character string	RIGHT RIGHTP	- RIGHT S D n - RIGHTP S D n -	 Stores n characters from the end of a character string designated by (S) at the device designated by (D). 		4	-	7-232
	LEFT LEFTP	- LEFT SDn-	• Stores n characters from the beginning of a character string designated by (S) at the device designated by (D).		-		
	MIDR	- MIDR S1 D S2- - MIDRP S1 D S2-	 Stores the designated number of characters in the character string designated by (S1) from the position designated by (S2) at the device designated by (D). 		4	_	7-235
	MIDW MIDWP	- MIDW S1 D S2-	 Stores the character string of (S1) in the specified number to the character string of (D) at the position specified by (S2). 				
	INSTR INSTRP	- INSTR S1 S2 D n	• Searches character string (S1) from the nth character of character string (S2), and stores matched positions at (D).		5	-	7-239
	STRINS STRINSP	- STRINS S D n - STRINSP S D n -	 Inserts the character string data specified by (S) to the (n)th character (insert position) from the initial character string data specified by (D). 		4	-	7-241
	STRDEL STRDELP	- STRDEL D n1 n2 - STRDELP D n1 n2 -	 Deletes the (n2) characters data specified by (D) starting from the device(insert position) specified by n1. 		4	-	7-243
Floating decimal point ↓ BCD	EMOD	- EMOD S1 S2 D	 Converts 32-bit floating decimal point data (S1) to BCD data with number of decimal fraction digits designated by 		4	_	7-245
	EMODP	- EMODP S1S2 D	(S2) , and stores at device designated by (D).				
BCD ↓ Floating decimal point	EREXP	- EREXP S1 S2 D - EREXPP S1 S2 D	• Converts BCD data (S1) to 32-bit floating decimal point data with the number of decimal fraction digits designated by (S2), and stores at device designated by (D).		4	-	7-248

2.5.12 Special function instructions

Category	Instruction Symbol	Symbol	Processing Details	Execution Condition	Number of Basic Steps	Subset	See for Description
	SIN SINP	- SIN S D -	• Sin (S+1,S) → (D+1,D)		3	-	7-250
	COS						
	COSP		• Cos(S+1,S) (D+1,D)		3	-	7-254
	TAN					-	7-258
functions	TANP	TANP S D	• Tan(S+1,S) → (D+1,D)		- 3		
(Floating- point single-	ASIN	ASIN S D			3	-	7-262
precision)	ASINP	ASINP S D	• Sin ⁻ (S+1,S) (D+1,D)				
	ACOS	ACOS S D	• Cos ⁻¹ (S+1,S) → (D+1,D)		3		7-267
	ACOSP	ACOSP S D			5	-	1-201
	ATAN	ATAN S D	• Tan ⁻¹ (S+1,S) → (D+1,D)		3	_	7-271
	ATANP	ATANP S D			Ū		
	SIND	SIND S D	Sin(S+3, S+2, S+1, S) → (D+3, D+2, D+1, D)		3	-	7-252
	SINDP	SINDP S D					
	COSD	COSD S D	Cos(S+3, S+2, S+1, S) → (D+3, D+2, D+1, D)	3	3	-	7-256
	COSDP	COSDP S D					
Trigonometric	TAND	TAND S D	Tan(S+3, S+2, S+1, S) → (D+3, D+2, D+1, D)		3	_	7-260
functions (Floating-	TANDP	- TANDP S D					
point double- precision)	ASIND	ASIND S D	Sin ⁻¹ (S+3, S+2, S+1, S) \longrightarrow (D+3, D+2, D+1, D) Cos ⁻¹ (S+3, S+2, S+1, S) \longrightarrow (D+3, D+2, D+1, D)		3	_	7-265
	ASINDP	ASINDP S D					
	ACOSD	ACOSD S D			3	-	7-269
	ACOSDP	- ACOSDP S D					ļ
	ATAND	ATAND S D	Tan ⁻¹ (S+3, S+2, S+1, S) → (D+3, D+2, D+1, D)		3	-	7-273
	ATANDP	ATANDP S D					

Table 2.29 Special Function Instructions
Table 2.29 Special Function Instructions (Continued)

Category	Instruction Symbol	Symbol	Processing Details	Execution Condition	Number of Basic Steps	Subset	See for Description
	RAD	RAD S D	• (S+1, S) (D+1, D)		3	-	7-275
	RADP	RADPSD	Conversion from angles to radians				
Angles	RADD	RADD S D	· (S+3, S+2, S+1, S)→(D+3, D+2, D+1, D)		3	_	7-277
¢ ↓	RADDP	RADDP S D	Conversion from angle to radian				
Radians conversion	DEG	DEG S D	• (S+1, S) (D+1, D)		3	-	7-279
	DEGP	DEGP S D	Conversion from radians to angles				
	DEGD	DEGD S D	· (S+3, S+2, S+1, S) → (D+3, D+2, D+1, D)		3	_	7-281
	DEGDP	DEGDP S D			Ū		0.
	SQR	SQR S D	• √ (S+1 S) → (D+1 D)		3	_	7-287
Square root	SQRP	SQRP S D					
equale foot	SQRD	SQRD S D	√(S+3, S+2, S+1, S)→(D+3, D+2, D+1, D)		3	_	7-289
:	SQRDP	SQRDP S D	(0,0,0,2,0,1,0) (0,0,0,0,2,0,1,0)		Ū		. 200
	EXP	EXP S D	• e ^(S+1,S) → (D+1.D)		3	-	7-291
Exponent	EXPP	EXPP S D			-		
operations	EXPD	EXPD S D	e ^(S+3, S+2, S+1, S) → (D+3 D+2 D+1 D)		3	-	7-294
	EXPDP	EXPDP S D			-		
	LOG	LOG S D	• Log. (S+1.S) (D+1.D)		3	-	7-296
Natural	LOGP	LOGP S D	38(
logarithms	LOGD	LOGD S D	Log.(S+3 S+2 S+1 S)→(D+3 D+2 D+1 D)		3	-	7-298
	LOGDP	LOGDP S D	$209_{0}(0,0,0,2,0,1,0) = (0,0,0,2,0,1,0)$				
	POW	POW S1 S2 D	• (S1+1 S1) ^(S2+1,S2) → (D+1 D)		4	_	7-300
Expone	POWP	POWP S1 S2 D					1-500
ntiation	POWD	POWD S1 S2 D	• (\$1+2 \$1+2 \$1+1 \$1) (\$2+3,\$2+2,\$2+1,\$2) → (D+2 D+2 D+1 D)		4	_	7-302
	POWDP	POWDP S1 S2 D	(0+3,0+2,0+1,01) - (0+3,0+2,0+1,0)		•		1-302
	LOG10	LOG10 S D	• log10/(S+1 S)► (D+1 D)		3	-	7-300
Common	LOG10P	LOG10P S D			,		, 000
logarithm	LOG10D	LOG10D S D	_ log10/S+3 S+2S+1 S) (D+3 D+2 D+1 D)		3	-	7-302
	LOG10DP	LOG10DP S D			-		, 002

2-47

Table 2.29 Special Function Instructions (Continued)

Category	Instruction Symbol	Symbol	Processing Details	Execution Condition	Number of Basic Steps	Subset	See for Description
Random number	RND RNDP		Generates a random number (from 0 to less than 32767) and stores it at the device designated by (D)				
Random	SRND		Updates random number series		2	-	7-304
number series update	SRNDP	- SRNDP D	according to the 16-bit BIN data stored in the device designated by (S).				
	BSQR	BSQR S D	• $\sqrt{(S)} \longrightarrow (D)+0$ Integer part		2		
Square reat	BSQRP	BSQRP S D	+1 Decimal fraction part		. 3	-	7 306
	BDSQR	BDSQR S D	• $\sqrt{(S+1, S)} \rightarrow (D)+0$ Integer part		3	_	1-300
	BDSQRP	BDSQRP S D	+1 Decimal fraction part		U		
	BSIN	BSIN S D	• Sin(S) → (D)+0 Sign		3	-	7-309
	BSINP	BSINP S D	+2 Decimal fraction part				
	BCOS	BCOSSD	• Cos(S) → (D)+0 Sign +1 Integer part		3	_	7-311
	BCOSP	BCOSP S D	+2 Decimal fraction part				
	BTAN	BTAN S D	• Tan(S) → (D)+0 Sign +1 Integer part		3	-	7-313
Trigonometric	BTANP	BTANP S D	+2 Decimal fraction part				
functions	BASIN	BASIN S D	• Sin ⁻¹ (S) → (D)+0 Sign +1 Integer part		3	_	7-315
	BASINP	BASINP S D	+2 Decimal fraction part				
-	BACOS	BACOS S D	• Cos ⁻¹ (S) → (D)+0 Sign +1 Integer part		3	_	7-317
	BACOSP	BACOSP S D	+2 Decimal fraction part				
	BATAN	BATAN S D	• Tan ⁻¹ (S) → (D)+0 Sign +1 Integer part		3	-	7-319
	BATANP	BATANP S D	+2 Decimal fraction part				

2.5.13 Data control instructions

Category	Instruction Symbol	Symbol	Processing Details	Execution Condition	Number of Basic Steps	Subset	See for Description
	LIMIT	LIMIT S1 S2 S3 D	 When (S3) < (S1) Stores value of (S1) at (D) When (S1) ≦ (S3) ≦ (S2) Stores value of (S3) at (D) 		5	-	
Upper and	LIMITP	LIMITP S1 S2 S3 D	• When (S2) < (S3) Stores value of (S2) at (D)				
limit controls	DLIMIT	DLIMIT S1 S2 S3 D	 When ((S3)+1, (S3)) < ((S1)+1, S1) Stores value of ((S1)+1, (S1)) at ((D)+1, (D)) When ((S1)+1, (S1)) ≤ ((S3)+1, (S3)) < 		5		7-321
	DLIMITP	DLIMITP S1 S2 S3 D	 (S2+1, S2) Stores value of ((S3)+1, (S3)) at ((D)+1, (D)) • When ((S2), (S2)+1) < ((S3), (S3)+1) Stores value of ((S2)+1, (S2)) at ((D)+1, (D)) 		5		
	BAND	BAND S1 S2 S3 D	• When $(S1) \leq (S3) \leq (S2)0 \rightarrow (D)$ • When $(S3) < (S1) = (S3) - (S1) \rightarrow (D)$		5	-	
	BANDP	BANDP S1 S2 S3 D	• When $(S2) < (S3)$ $(S3) - (S2) \rightarrow (D)$		Ū		
Dead band controls	DBAND	DBAND S1 S2 S3 D	$\begin{array}{l} \bullet \mbox{ When } ((S1){+}1,(S1)) \leq ((S3){+}1,(S3)) \leq \\ ((S2){+}1,(S2)) \hdots \dots \dots 0 \to ((D){+}1,(D)) \\ \bullet \mbox{ When } ((S3){+}1,(S3)) < ((S1){+}1,(S1)) \hdots \dots \dots \end{array}$		5	_	7-324
	DBANDP	DBANDP S1 S2 S3 D	$\begin{split} &((S3){+}1,(S3))-((S1){+}1,(S1))\to((D){+}1,(D))\\ \bullet \text{ When }((S2){+}1,(S2))<((S3){+}1,(S3))\ldots\ldots\\ &((S3){+}1,(S3))-((S2){+}1,(S2))\to((D){+}1,(D)) \end{split}$		•		
	ZONE	ZONE S1 S2 S3 D	• When (S3) = 0 $0 \rightarrow$ (D)		5		
	ZONEP	ZONEP S1 S2 S3 D	• When $(S3) < 0$ $(S3)+(S2) \rightarrow (D)$ • When $(S3) < 0$ $(S3) - (S1) \rightarrow (D)$		0		
Zone controls	DZONE	DZONE S1 S2 S3 D	• When ((S3)+1, (S3)) = 0 0 \rightarrow ((D)+1, (D)) • When ((S3)+1, (S3)) > 0 ((S3)+1, (S3))+((S2)+1, (S2))		5	_	7-327
	DZONEP	DZONEP S1 S2 S3 D	$\label{eq:When} \begin{array}{l} \to ((D) + 1, (D)) \\ \bullet \mbox{ When } ((S3) + 1, (S3)) < 0 \\ \dots \dots ((S3) + 1, (S3)) + ((S1) + 1, (S1)) \\ \to ((D) + 1, (D)) \end{array}$				

Table 2.30 Data Control Instructions

Table 2.30 Special Function Instructions (Continued)

Category	Instruction Symbol	Symbol	Processing Details	Execution Condition	Number of Basic Steps	Subset	See for Description
	SCL	- SCL S1 S2 D	• Executes scaling for the scaling conversion data (16-bit data units) specified by (S2) with the input value specified by (S1), and then stores the				
Point-by- point coordinate data	SCLP	- SCLP S1 S2 D -	result into the device specified by (D). The scaling conversion is executed based on the scaling conversion data stored in the device specified by (S2) an up.		4	-	7-330
	DSCL	- DSCL S1 S2 D -	 Executes scaling for the scaling conversion data (32-bit data units) specified by (S2) with the input value specified by (S1), and then stores the 				7-330
	DSCLP	- DSCLP S1 S2 D -	result into the device specified by (D). The scaling conversion is executed based on the scaling conversion data stored in the device specified by (S2) an up.		4	-	
	SCL2	- SCL2 S1 S2 D -	 Executes scaling for the scaling conversion data (16-bit data units) specified by (S2) with the input value specified by (S1), and then stores the 				
X or Y coordinate data	SCL2P	- SCL2P S1 S2 D -	result into the device specified by (D). The scaling conversion is executed based on the scaling conversion data stored in the device specified by (S2) and up.		4	-	7-334
	DSCL2	- DSCL2 S1 S2 D -	 Executes scaling for the scaling conversion data (32-bit data units) specified by (S2) with the input value specified by (S1), and then stores the 				1 004
	DSCL2P	- DSCL2P S1 S2 D -	result into the device specified by (D). The scaling conversion is executed based on the scaling conversion data stored in the device specified by (S2) and up.		4	-	

2.5.14 Switching instructions

Category	Instruction Symbol	Symbol	Processing Details	Execution Condition	Number of Basic Steps	Subset	See for Description
Block number switching	RSET	RSET S	Converts extension file register block		2	-	7-337
	RSETP	RSETP S	number to number designated by (5).				
(QDRSET	QDRSET File name	• Sats file names used as file registers		*1 2		7-339
File set	QDRSETP	QDRSETP File name			+ n		1 000
File set	QCDSET	QCDSET File name			*1 2		
	QCDSETP	QCDSETP File name	Sets file names used as comment files.		+ n	-	7-342

Table 2.31 Switching Instructions

*1: n ([number of file name characters] / 2) indicates a step. (Decimal fractions are rounded up.)

2.5.15 Clock instructions

Category	Instruction Symbol	Symbol	Processing Details	Execution Condition	Number of Basic Steps	Subset	See for Description
	DATERD	DATERD D	• (Clock elements) →(D)+0 Year +1 Month +2 Day				
Read/	DATERDP		+3 Hour +4 Minute +5 Sec. +6 Day of the week		2	-	7-344
data	DATEWR	DATEWRS	• (D)+0 Year →(Clock elements) +1 Month +2 Day				
	DATEWRP	DATEWRP S	+3 Hour +4 Minute +5 Sec. +6 Day of the week		2	-	7-346
	DATE+	DATE+ S1 S2 D	(S1) (S2) (D) Hour Hour Hour		4	_	7-348
Clock data addition/	DATE+P	DATE+P S1 S2 D	$\begin{array}{c ccc} \underline{\text{Mitnute}} & + & \underline{\text{Mitnute}} & \rightarrow & \underline{\text{Mitnute}} \\ \hline & & & & \\ \hline \\ \hline$				
subtraction	DATE-	DATE- S1 S2 D	(S1) (S2) (D) Hour Hour Hour		4	_	7-350
	DATE-P	DATE-P S1 S2 D	$\begin{array}{c ccc} \underline{Mitnute} & - & \underline{Mitnute} & \rightarrow & \underline{Mitnute} \\ \underline{Sec.} & & \underline{Sec.} & & \underline{Sec.} \end{array}$				
	SECOND	SECOND S D	(S) (D) Hour Sec. (Lower 16 bits)		3		7-352
Clock data	SECONDP	SECONDP S D	$\begin{array}{r l} \hline \text{Minute} & \rightarrow & \hline \text{Sec. (Upper 16 bits)} \\ \hline \text{Sec.} & \end{array}$			-	1-552
translation	HOUR	HOUR S D	(S) (D) Sec. (Lower 16 bits) Hour		3		7-354
	HOURP	HOURP S D	Sec. (Upper 16 bits) → Mitnute Sec.		5	-	7-004

Table 2.32 Clock Instructions

Category	Instruction Symbol	Symbol	Processing Details	Execution Condition	Number of Basic Steps	Subset	See for Description
	LDDT=	DT= S1 S2 n H H					
	ANDDT=		$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $		4	-	
	ORDT=	DT= S1 S2 n	\$1)+2 ^{Day} \$2)+2 ^{Day}				
	LDDT<>	DT<> S1 S2 n H H					
	ANDDT<>	HDT<> S1 S2 n	$ \underbrace{ \begin{array}{c} (1) \\ (2) \\ (3) \\ ($		4	-	
	ORDT<>	- DT<> S1 S2 n	(S1)+2 Day (S2)+2 Day				
-	LDDT<	DT< S1 S2 n H					
	ANDDT<	HDT< S1 S2 n	$ \begin{array}{c} \textcircled{\texttt{S1}}\\ \textcircled{\texttt{S1}}_{+1} \end{matrix} \\ \begin{array}{c} \texttt{Wart}\\ \texttt{Worth} \end{array} < \begin{array}{c} \textcircled{\texttt{S2}}\\ \textcircled{\texttt{S2}}_{+1} \end{matrix} \\ \begin{array}{c} \texttt{Month}\\ \texttt{Month} \end{array} \\ \begin{array}{c} \rightarrow \texttt{Companson}\\ \texttt{operation resuit} \end{array} $		4	-	
Date	ORDT<	- DT < S1 S2 n	(S1)+2 Day (S2)+2 Day				7.056
comparison	LDDT<=	DT<= S1 S2 n H					7-300
	ANDDT<=	⊣⊢DT<= S1 S2 n	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $		4	-	
	ORDT<=	- DT<= S1 S2 n	(51)+2 Day (52)+2 Day				
	LDDT>	— DT> S1 S2 n ⊣⊢					
	ANDDT>	⊣⊢DT> S1 S2 n —	S1 Year S1+1 Month > S2 +1 Month → Companson operation result		4	-	
O LL AI	ORDT>	- DT> S1 S2 n	(5)+2 Day (5)+2 Day				
	LDDT>=	DT>= S1 S2 n H H					
	ANDDT>=	⊣⊢DT>= S1 S2 n	$\begin{array}{c c} (1) & \text{Year} \\ (1) & \text{Image} $		4	-	
	ORDT>=	- DT>= S1 S2 n	61)+2 ^[Day] 62)+2 ^[Day]				

Table 2.32 Character String Processing Instructions (Continued)

2.5 Application Instructions 2.5.15 Clock instructions

Category	Instruction Symbol	Symbol	Processing Details	Execution Condition	Number of Basic Steps	Subset	See for Description
	LDTM=	TM= S1 S2 n + +					
	ANDTM=	TM⊨ S1 S2 n	$\begin{array}{c} (51) \\ (51) + 1$		4	-	
	ORTM=	-	50+2 Jacomi 52+2 Jacomi				
	LDTM<>	H H TM<> S1 S2 n					
	ANDTM<>	- TM <> S1S2n + F	$ \begin{array}{ c c c c c } \hline & & & & & \\ \hline & & & & \\ \hline \\ \hline$		4	-	
	ORTM<>		(S1) +2 [second (S2) +2 [second				
	LDTM<	TM>S1_S2n ⊣⊢					
	ANDTM<	- - TM > S1 S2 n	$ \begin{array}{c c} (1) & Hour \\ (1) + 1 & Minute \end{array} < \begin{array}{c} (2) & Hour \\ (2) + 1 & Minute \end{array} \rightarrow \begin{array}{c} Companson \\ operation \ result \end{array} $		4	-	
Clock	ORTM<	- TM> S1 S2 n					7 361
comparison	LDTM<=	TM<=S1_S2_n_⊣⊢					7-301
	ANDTM<=	- TM<= S1 S2 n	$ \underbrace{ \begin{array}{c} \textcircled{0} \\ \end{array}{} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$		4	-	
	ORTM<=	- TM<= S1 S2 n	(S1) +2 [Score] (S2) +2 [Score]				
	LDTM>	TM <s1_s2_n_⊣⊢< td=""><td></td><td></td><td></td><td></td><td></td></s1_s2_n_⊣⊢<>					
	ANDTM>	H TM< S1 S2 n	$ \begin{array}{c c} \hline \texttt{S1} & \texttt{Hour} \\ \hline \texttt{S1} + 1 & \texttt{Minte} \end{array} > \begin{array}{c} \hline \texttt{S2} \\ \hline \texttt{S2} + 1 & \texttt{Minte} \end{array} \rightarrow \begin{array}{c} \texttt{Companson} \\ \texttt{operation resuit} \end{array} $		4	-	
, 1 	ORTM>	TM< S1 S2 n	(S1) +2 [second (S2) +2 [second				
	LDTM>=	TM>= S1 S2 n ⊣ ⊢					
	ANDTM>=	⊣⊢TM>= S1 S2 n			4	-	
	ORTM>=		(S1)+2 [scond (S2)+2 [scond				

Table 2.32 Character String Processing Instructions (Continued)

2.5.16 Expansion clock instruction

Category	Instruction Symbol	Symbol	Processing Details	Execution Condition	Number of Basic Steps	Subset	See for Description
Reading data of the expan-sion clock E	S.DAT- ERD	- S.DATERD D-	\cdot (Clock elements) \rightarrow (D) +0 Year +1 Month +2 Day +3 Hour		6	-	
	SP.DAT- ERD	- SP.DATERD D	+4 Minute +5 Sec. +6 Day of the week +7 1/1000 sec.				
Adding or subtracting data val- ues of the expansion clock	S.DATE+	- S.DATE+ S1S2 D	(S1) (S2) (D) Hour Hour Hour Minute		8		
	SP.DATE+	- SP.DATE+S1S2 D-	Sec. + Sec. → Sec.		U		
	S.DATE-	- S.DATE- S1 S2 D-	(S1) (S2) (D) Hour Hour Hour Minute Minute Minute		8		
	SP.DATE-	-SP.DATE-S1S2D-	Sec. - Sec. → Sec. 1/1000 sec. 1/1000 sec. 1/1000 sec. 1/1000 sec.				

Table 2.33 Expansion clock instruction

2.5.17 Program control instructions

Category	Instruction Symbol	Symbol	Processing Details	Execution Condition	Number of Basic Steps	Subset	See for Description
	PSTOP	PSTOP File name	Places designated program in standby		*1 2	_	7-377
	PSTOPP	- PSTOPP File name -	status.		+ n	_	1-011
	POFF	POFF File name	 Turns OUT instruction coil of designated program OFE, and places program in 		*1 2	_	7-378
	POFFP	POFFP File name	standby status.		+ n		
_	PSCAN	PSCAN File name	Registers designated program as scan		*1 2	_	7-380
Program control	PSCANP	- PSCANP File name	execution type.		+ n		
instructions	PLOW	PLOW File name	Registers designated program as		*1 2	_	7-382
	PLOWP	PLOWP File name	low-speed execution type.		+ n		1 002
	LDPCHK	PCHK File name	 In conduction when program of specified 		*1		
	ANDPCHK	H PCHK File name	file name is being executed. In non-conduction when program of 		2 +	-	7-384
	ORPCHK	PCHK File name	specified file name is not executed.		n		

Table 2.34 Program Control Instructions

*1: n ([number of file name characters] / 2) indicates a step. (Decimal fractions are rounded up.)

2.5.18 Other instructions

Category	Instruction Symbol	Symbol	Processing Details	Execution Condition	Number of Basic Steps	Subset	See for Description
WDT reset	WDT WDTP	- WDT - WDTP -	 Resets watchdog timer during sequence program. 		1	-	7-386
Timing clock	DUTY	DUTY n1 n2 D	(D) n1 scans SM420 to SM424, SM430 to SM434		4	-	7-388
Time check	ТІМСНК	TIMCHK S1 S2 D	 Turns ON device specified by (D) if measured ON time of input condition is longer than preset time continuously. 		4	-	7-390
	ZRRDB	ZRRDB n D	0 Lower 8 bits 1 Upper 8 bits		0		7 004
	ZRRDBP	ZRRDBP n D	$ \begin{array}{c c} 2 & \underline{Lower \ o \ Dits} \\ 3 & \underline{Upper \ 8 \ bits} \end{array} \end{array} \xrightarrow{2 \ (D)} $		3	-	7-391
Direct read/ write	ZRWRB	ZRWRB n S	(S) 0 Lower 8 bits 1 Upper 8 bits 2 Lower 8 bits 3 Upper 8 bits Th 8 bits		0		
operations in 1-byte units	ZRWRBP	ZRWRBP n S			3	-	7-393
	ADRSET	ADRSET S D	(S) (D) Indirect address of designated device Device name		3	_	7-395
	ADRSETP	ADRSETP S D			0		7 000
Numerical key input from keyboard	KEY	KEY S n D1 D2	 Takes in ASCII data for 8 points of input unit designated by (S), converts to hexadecimal value following device number designated by (D1), and stores. 		5	-	7-396
Batch save of index	ZPUSH	ZPUSH D	 Saves the contents of index registers to a location starting from the device 				
register	ZPUSHP	ZPUSHPD	designated by (D).		2	_	7-400
Batch recovery of	ZPOP	- ZPOP D	 Reads the data stored in the location starting from the device designated by 				
index register	ZPOPP	ZPOPP D	(D) to index registers.				
operation to	EROMWR	EROMWR S D1 n D2	Writes a batch of data to E ² PROM file		5	-	7-400
E ² PROM file register	EROMWRP	EROMWRP S D1 n D2	register.				
Reading module infor- mation	UNIRD	UNIRD n1 D n2	• Reads the module information stored in the area starting from the I/O No. designated by n by the points designated by n2, and stores it in the area starting		4	-	
l	UNIRDP	UNIRDP n1 D n2	trom the device designated by (D).				

Table 2.35 Other Instructions

2-57

Table 2.35 Other Instructions (Continued)

Category	Instruction Symbol	Symbol	Processing Details	Execution Condition	Number of Basic Steps	Subset	See for Description
Module model name read	TYPERD TYPERDP	TYPERD n D	• This instruction reads the module information stored in the area starting from the I/O number specified by "n", and stores it in the area starting from the device specified by (D).		3	-	
Trace set	TRACE	TRACE	• Stores the trace data set with peripheral device by the number of times set when SM800, SM801 and SM802 turn on, to the sampling trace file.		1	_	
Trace rset	TRACER	TRACER	Resets the data set the TRACE instruction.		1	-	
Writing data to the designated file	SP.FWRITE	SP.FWRITE U0 S0 D0 S1 S2 D1	Writes data to the designated file.		11	-	
Reading data from designated file	SP.FREAD	- SP.FREAD U0 S0 D0 S1 S2 D1-	Reads data from the designated file.		11	-	
Writing data to standard ROM	S.DEVST	- SP.DEVST n1 S n2 D	Writes data to the device data storage file in the standard ROM.		9	-	
Reading data from standard ROM	S.DEVLD SP.DEVLD	- S.DEVLD n1 D n2 - SP.DEVLD n1 D n2	 Reads data from the device data storage file in the standard ROM. 		8	1	
Loading program from memory	PLOADP	PLOADP S D	 Transfers the program stored in a memory card or standard memory (other than drive 0) to drive 0 and places the program in standby status. 		3	-	
Unloading program from program memory	PUNLOADP	- PUNLOADP S D	• Deletes the standby program stored in standard memory (drive 0).		3	-	
Load + Unload	PSWAPP	- PSWAPP S1 S2 D-	• Deletes standby program stored in standard memory (drive 0) designated by (S1). Then, transfers the program stored in a memory card or standard memory (other than drive 0) designated by (S2) to drive 0 and places it in standby status.		4	-	
High-speed block transfer of	RBMOV	- RBMOV S D n	Transfers n points of 16-bit data from the device designated by (S) to the devices of n points starting from the one		4	-	
file register	RBMOVP	RBMOVP S D n	designated by (D).				

2.5.19 Instructions for Data Link

Category	Instruction Symbol	Symbol	Processing Details	Execution Condition	Number of Basic Steps	Subset	See for Description
	S.ZCOM	S.ZCOM Jn					
Q link instruction:	SP.ZCOM	- SP.ZCOM Jn	Refreshes the designated network		5	_	8-2
Network refresh	S.ZCOM	S.ZCOM Un			U		
SP.ZCOM		SP.ZCOM Un					
	S.RTREAD	- S.RTREAD n D					
Reading routing	SP.RTREAD	- SP.RTREAD n D -	Reads data set at routing parameters.		7	_	8-6
information	Z.RTREAD	Z.RTREAD n D					
	ZP.RTREAD	ZP.RTREAD n D					
	S.RTWRITE	S.RTWRITE n S					
Registering	SP.RTWRITE	- SP.RTWRITE n S	Writes routing data to the area designated by		8		8-8
information	Z.RTWRITE	Z.RTWRITE n S	routing parameters.		U	-	0-0
	ZP.RTWRITE	ZP.RTWRITE n S					

Table 2.36 Instructions for Data Link

2.5.20 Multiple CPU dedicated instruction

Category	Instruction Symbol	Symbol	Processing Details	Execution Condition	Number of Basic Steps	Subset	See for Description
	S. TO	S.TO n1 n2 n3 n4 D	Writes device data of the host station to		5	-	9-4
	SP. TO	SP.TO n1 n2 n3 n4 D	the host CPU shared memory.				
Write to host	то	TO n1 n2 S n3	Writes device data of the host station to		5		
CPU shared memory TC	TOP	TOP n1 n2 S n3	the host CPU shared memory.		0		9-7
	DTO	DTO n1 n2 S n3	Writes device data of the host station to the host CPU shared memory in 32 bit		Б		5-1
	DTOP	DTOP n1 n2 S n3	units.		5	-	
	FROM	FROM n1 n2 D n3	Reads device data from the other CPU shared memories, and stores the data in		5		
Read from other	FROMP	FROMP n1 n2 D n3	the host station.				0-12
memory	DFRO	DFRO n1 n2 D n3	Reads device data from the other CPU shared memories in 32 bit units, and		5		5-12
	DFROP	DFROP n1 n2 D n3	stores the data in the host station.		5	-	

Table 2.37 Multipe CPU dedicated instruction

2.5.21 Multiple CPU high-speed transmission dedicated instruction

Category	Instruction Symbol	Symbol	Processing Details	Execution Condition	Number of Basic Steps	Subset	See for Description
	D.DDWR	-D.DDWR n S1 S2 D1 D2-	In multiple CPU system, data stored in a device specified by host CPU ($^{\textcircled{SD}}$) or later is		10	-	
Writing Devices to Another CPU	DP.DDWR	-DP.DDWR n S1 S2 D1 D2-	stored by the number of write points specified by $(\textcircled{02}+1)$ into a device specified by another CPU (n) $(\textcircled{01})$ or later		10	-	10-13
Reading Devices	D.DDRD	-D.DDRD n S1 S2 D1 D2-	In multiple CPU system, data stored in a device specified by another CPU (n) $(\widehat{\mathbb{O}})$ or		10	-	
from Another CPU	DP.DDRD	-DP.DDRD n S1 S2 D1 D2-	Irater is stored by the number of read points specified by $(\widehat{\mathbb{S}})$ +1) into a device specified by host CPU $(\widehat{\mathbb{S}})$ or late		10	-	10-17

Table 2.40 Multiple CPU high-speed transmission dedicated instruction

2.5.22 Redundant system instructions (For Redundant CPU)

Category	Instruction Symbol	Symbol	Processing Details	Execution Condition	Number of Basic Steps	Subset	See for Description
System switching	SP.CONTSW	SP.CONTSW S D	Switches between the control system and standby system at the END processing of the scan executed with the SP.CONTSW instruction.		8	-	11-2

Table 2.39 Redundant System Instructions (For Redundant CPU)

MEMO

CONFIGURATION OF INSTRUCTIONS

Most CPU module instructions consist of an instruction part and a device part.

Each part is used for the following purpose:

- Instruction part indicates the function of the instruction.
- Device part.....indicates the data that is to be used with the instruction.

The device part is classified into source data, destination data, and number of devices.

- (1) Source (S)
 - (a) Source is the data used for operations.
 - (b) The following source types are available, depending on the designated device:
 - Constant Designates a numeric value to be used in the operation. This is set when the program is created, and cannot be changed during the execution of the program. Constants should be indexed when used as variable data.
 Bit devices and word devices Designates the device that stores the data to be used in the operation. Data must be stored in the designated device until the operation is executed. By changing the data stored in a designated

device during program execution, the data to be used in the instruction can be changed.

- (2) Destination (D)
 - (a) The destination stores the data after the operation has been conducted. However, some instructions require storing the data to be used in an operation at the destination prior to the operation execution.

- (b) A device for the data storage must always be set to the destination.
- (3) Number of devices and number of transfers (n)
 - (a) The number of devices and number of transfers designate the numbers of devices and transfers used by instructions involving multiple devices.

Example Block transfer instruction

(b) The number of devices or number of transfers can be set between 0 and 32767.However, if the number is 0, the instruction will be a no-operation instruction.

The following six types of data can be used with CPU module instructions.

3.2.1 Using bit data

Bit data is data used in one-bit units, such as for contacts or coils.

"Bit devices" and "Bit designated word devices" can be used as bit data.

(1) When using bit devices

Bit devices are designated in one-point units.

- (2) Using word devices
 - (a) Word devices enable the use of a designated bit number 1/0 as bit data by the designation of that bit number.

(b) Word device bit designation is done by designating " Word device . Bit No. (Designation of bit numbers is done in hexadecimal.)

For example, bit 5 (b5) of D0 is designated as D0.5, and bit 10 (b10) of D0 is designated as D0.A. However, there can be no bit designation for timers (T), retentive timers (ST), counters (C) or index register (Z). (Example Z0.0 is not available).

3.2.2 Using word (16 bits) data

Word data is 16-bit numeric data used by basic instructions and application instructions.

The following two types of word data can be used with CPU module:

- Decimal constants..... K-32768 to K32767
- Hexadecimal constants H0000 to HFFFF

Word devices and bit devices designated by digit can be used as word data.

For direct access input (DX) and direct access output (DY), word data cannot be designated by digit. (For details of direct access input and direct access output, refer to the QnUCPU User's Manual (Function Explanation, Program Fundamentals) or Qn(H)/QnPH/QnPRHCPU User's Manual (Function Explanation, Program Fundamentals).

- (1) When Using Bit Devices
 - (a) Bit devices can deal with word data when digits are designated.
 Digit designation of bit devices is done by designating

"Number of digits Head number of bit device". Digit designation of bit devices can be done in

4-point (4-bit) units, and designation can be made for K1 to K4. (For link direct devices,

designation is done by "J Network No. \ Number of digits

Head number of bit device ".

When X100 to X10F are designated for Network No.2, it is done by J2\K4X100).For example, if X0 is designated for digit designation, the following points would be designated:

- K1X0 The 4 points X0 to X3 are designated.
- K2X0 The 8 points X0 to X7 are designated.
- K3X0 The 12 points X0 to XB are designated.
- K4X0 The 16 points X0 to XF are designated.

Fig 3.1 Digit Designation Setting Range for 16-Bit Instruction

(b) In cases where digit designation has been made at the source (S), the numeric values shown in Table 3.1 are those which can be dealt with as source data.

Table 3.1 List of Numeric Values that Can Be Dealt with as Digit Designation

Number of Digits Designated	With 16-Bit Instruction
K1 (4 points)	0 to 15
K2 (8 points)	0 to 255
K3 (12 points)	0 to 4095
K4 (16 points)	-32768 to 32767

(c) When destination (D) data is a word device The word device for the destination becomes 0 following the bit designated by digit designation at the source.

Fig 3.2 Ladder Example and Processing Conducted

(d) In cases where digit designation is made at the destination (D), the number of points designated are used as the destination.

Bit devices below the number of points designated as digits do not change.

Fig 3.3 Ladder Example and Processing Conducted

(2) Using word devices

Word devices are designated in 1-point (16 bits) units.

- 1. When digit designation processing is conducted, a random value can be used for the bit device initial device number.
- 2. Digit designation cannot be made for the direct access I/O (DX, DY).

3.2.3 Using double word data (32 bits)

Double word data is 32-bit numerical data used by basic instructions and application instructions.

The two types of double word data that can be dealt with by CPU module are as follows:

- Decimal constants...... K-2147483648 to K2147483647
- Hexadecimal constants H00000000 to HFFFFFFF

Word devices and bit devices designated by digit designation can be used as double word data.

For direct access input (DX) and direct access output (DY), designation of double word data is not possible by digit designation.

- (1) When Using Bit Devices
 - (a) Digit designation can be used to enable a bit device to deal with double word data. Digit designation of bit devices is done by designating

" Number of digits Head number of bit device ". For link direct devices, designation is done by

"J Network No. Number of digits Head number of bit device ". When X100 to X11F are designated for Network No.2, it is done by J2\K8X100. Digit designation of bit devices can be done in 4-point (4-bit) units, and designation can be made for K1 to K8. For example, if X0 is designated for digit designation, the following points would be designated:

- K1X0 The 4 points X0 to X3 are designated.
- K2X0 The 8 points X0 to X7 are designated.
- K3X0 The 12 points X0 to XB are designated.
- K4X0 The 16 points X0 to XF are designated.
- K5X0..... The 20 points X0 to X13 are designated.
- K6X0..... The 24 points X0 to X17 are designated.
- K7X0..... The 28 points X0 to X1B are designated.
- K8X0..... The 32 points X0 to X1F are designated.

Fig 3.4 Digit Designation Setting Range for 32-Bit Instructions

(b) In cases where digit designation has been made at the source (S), the numeric values shown in Table 3.2 are those which can be dealt with as source data.

Table 3.2 List of Numeric Values that Can Be Dealt with as Digit Designation

Number of Digits Designated	With 32 Bit Instructions	Number of Digits Designated	With 32 Bit Instructions
K1 (4 points)	0 to 15	K5 (20 points)	0 to 1048575
K2 (8 points)	0 to 255	K6 (24 points)	0 to 16777215
K3 (12 points)	0 to 4095	K7 (28 points)	0 to 268435455
K4 (16 points)	0 to 65535	K8 (32 points)	-2147483648 to 2147483647

(c) When destination (D) data is a word device

The word device for the destination becomes 0 following the bit designated by digit designation at the source.

(d) In cases where digit designation is made at the destination (D), the number of points designated are used as the destination. Bit devices below the number of points designated as digits do not change.

Fig 3.6 Ladder Example and Processing Conducted

POINT

- 1. When digit designation processing is conducted, a random value can be used for the bit device initial device number.
- 2. Digit designation cannot be made for the direct access I/O (DX, DY).

(2) Using word devices

A word device designates devices used by the lower 16 bits of data. A 32-bit instruction uses (designation device number) and (designation device number + 1).

3.2.4 Using real number data

Real number data is floating decimal point data used with basic instructions and application instructions.

Only word devices are capable of storing real number data.

(1) Single-precision floating-point data

Instructions which deal with single-precision floating-point data designate devices which are used for the lower 16 bits of data.

Single-precision floating-point data are stored in the 32 bits which make up (designated device number) and (designated device number + 1).

b23 to b30	FFH	FЕн	FDн		\sum	81	80	7Fн	7Ен	\mathbb{S}	02	01	00
n	Not used	127	126	5	$\left\{ \right\}$	2	1	0	-1	$\left \right\rangle$	-125	-126	Not used

- Variable part The 23 bits from b0 to b22, represents the XXXXXX... at binary 1.XXXXXX....
- (2) Double-precision floating-point data

Instructions which deal with double-precision floating-point datadesignate devices which are used for the lower 16 bits of data.

Double-precision floating-point data are stored in the 64 bits which make up (designated device number) to (designated device number + 3).

b52 to b62	7FFн	7FEн	7FDн	($\langle \rangle$	400н	3FFн	3FEн	3FDн	3FCн	($\langle \rangle$	02н	01н	00н
n	Not used	1023	1022	($\langle \rangle$	2	1	0	-1	-2	($\langle \rangle$	-1021	-1022	Not used

• Variable part The 52 bits from b0 to b51, represents the XXXXXX... at binary 1.XXXXXX....

- 1. The CPU module floating decimal point data can be monitored using the monitoring function of a peripheral device.
- 2. When floating-point data is used to express 0, all data in the following range are turned to 0.
 - (a) Single-precision floating-point data: b0 to b31
 - (b) Double-precision floating-point data: b0 to b63
- 3. The setting range of floating decimal point data is as follows. *1
 - (a) Single-precision floating-point data
 - -2^{128} < Device data $\leq -2^{-126}$, 0, $2^{-126} \leq$ Device data < 2^{128}
 - (b) Double-precision floating-point data
 - -2^{1024} < Device data $\leq -2^{-1022}$,0,2⁻¹⁰²² \leq Device data < 2^{1024}
- 4. Do not specify −0 in floating-point data (when only the most significant bit of the floating-point real number is 1). (An operation error will occur if floating-point operation is performed with −0.) The CPU module that performs the internal operation of floating-point operation with double precision does not result in operation error since it performs floating-point operation after converting −0 into 0 in the CPU module when −0 is specified. The CPU module that performs the internal operation of floating-point operation with single precision results in operation error since it gives priority to the processing speed and uses −0 in floating-point operation without conversion when −0 is specified.
 - (a) The following CPU modules will not result in operation error when −0 is specified.
 - High Performance model QCPU where internal operation is set to double precision *²
 - (The internal operation of floating-point operation defaults to double precision.)
 - (b) The following CPU modules will result in operation error when -0 is specified.
 - Basic model QCPU *3
 - High Performance model QCPU where internal operation is set to single precision *²
 - Process CPU
 - Redundant CPU
 - Universal model QCPU

^{*1:} For operations when a real number is out of range and operations when an invalid value is input, refer to the QnUCPU User's Manual (Function Explanation, Program Fundamentals) or Qn(H)/QnPH/QnPRHCPU User's Manual (Function Explanation, Program Fundamentals).

^{*2:} Switch between single precision and double precision of the internal operation of floating-point operation in the PLC system of the PLC parameter dialog box. For the single precision and double precision of floating-point operation, refer to the QnUCPU User's Manual (Function Explanation, Program Fundamentals) or Qn(H)/QnPH/QnPRHCPU User's Manual (Function Explanation, Program Fundamentals).

^{*3:} The Basic model QCPU can perform floating-point operation if its first five digits of serial No. are "04122 or later".

3.2.5 Using character string data

Character string data is character data used by basic instructions and application instructions.

The target ranges from the designated character to the NULL code (00H) that indicates the end of the character string.

(1) When designated character is the NULL code

One word is used to store the NULL code.

(2) When character string is even

Uses (number of characters/2 + 1) words, and stores character string and NULL code. For example, if "ABCD" is transferred to D0, the character string ABCD is stored at D0 and D1, and the NULL code is stored at D2. (The NULL code is stored as the last one word.)

(3) When number of characters is odd

Uses (number of characters/2) words (rounds up decimal fractions) and stores the character string and NULL code.

For example, if "ABCDE" is transferred to devices starting from D0, the character string (ABCDE) and the NULL code are stored from D0 to D2. (The NULL code is stored into the upper 8 bits of the last one word.)

- (1) Overview of indexing
 - (a) Indexing is an indirect setting made by using an index register.
 When an Indexing is used in a sequence program, the device to be used will become the device number specified directly plus the contents of the index register.
 For example, if D2Z2 has been specified, the specified device is calculated as follows: D(2+3) = D5 and the content of Z2 is 3 become the specified device.
 - (b) Indexing with 16-bit index registers and indexing with 32-bit index registers are possible only for Universal model QCPU.
- (2) Indexing with 16-bit index registers
 - (a) Example of indexing

Each index register can be set between -32768 and 32767. Indexing is performed in the way shown below:

- (b) Devices to which indexing can be used With the exception of the restrictions noted below, Indexing can be used with devices used with contacts, coils, basic instructions, and application instructions.
 - 1) Devices to which indexing can not be used

Device	Meaning
K, H	32-bit constant
E	Floating decimal point data
\$	Character string data
0.0	Bit designated for word device
FX, FY, FD	Function devices
Р	Pointers used as labels
I	Interrupt pointers used as labels
Z	Index register
S	Step relay
TR	SFC transfer devices*1
BL	SFC block devices*1

*1: SFC transfer devices and SFC block devices are devices for SFC use. Refer to the manual below for how to use these devices.

• QCPU (Q mode)/QnACPU Programming Manual (SFC)

2) Devices with limits for use with index registers

Remark

For timer and counter present values, there are no limits on index register numbers used.

(c) A case where Indexing has been performed, and the actual process device, would be as follows:

Ladder Example Actual Process Device X1 MOV K20 Z0 MOV K2X64 ┥┟ K1M33 Description MOV K-5 Z1 K2X50Z0 ····· K2X(50 + 14) = K2X64 Converts K20 into a hexadecimal number. MOV K2X50Z0 K1M38Z1 K1M38Z1 ······ K1M(38 - 5) = K1M33 X0 MOV K20 ┥┝ Z0 MOV D20 K3Y12/ Description MOV K-5 Z1 D0Z0 ····· D (0 + 20) = D20 K3Y12FZ1 ····· K3Y(12F - 5) = K3Y12A X1 MOV D0Z0 K3Y12FZ1 Hexadecimal number

Fig. 3.7 Ladder Example and Actual Process Device

(3) Indexing with 32-bit (only Universal model QCPU)

(When Z0 = 20 and Z1 = -5)

A method of specifing index registers in indexing with 32-bit can be selected from the following two methods.

• Specifing the index registers' range used for indexing with 32-bit.

• Specifing the 32-bit indexing using "ZZ" specification.

The 32-bit indexing with "ZZ" specification is available only for the following CPU modules that the version of GX Developer is 8.68W or later.

- The first five digits of the serial No. for QnU(D)(H)CPU is "10042" or higher.
- QnUDE(H)CPU
- (a) Example of specifing the range of index registers for use of 32-bit indexing.
 - 1) Each index register can be set between -2147483648 and 2147483647. An example of indexing is shown below.

2) Specification method

For indexing with a 32-bit index register, specify the head number of an index register to be used on the Device tab of the Q parameter setting screen on GX Developer.

Indexing setting of ZR device 32 bit Indexing Z after (0 to 18)	Indexing setting of ZR device 32 bit Indexing Use Z after (0 to 18) Use ZZ
GX Developer 8.68R or earlier	GX Deveioper 8.68W or later

Fig. 3.8 Setting windows for ZR device indexing setting parameter

⊠POINT -

When the head number of the index register used is changed on the Device tab of the Q parameter setting screen, do not change the parameters only or do not write only the parameters into the programmable controller. Be sure to write the parameter into the programmable controller with the program.

When the parameter is forced to be written into the programmable controller, an error of CAN'T EXE. PRG. occurs. (Error code: 2500)

3) Device that indexing can be used

Indexing can be used only for the device shown below.

Device	Meaning
ZR	Serial number access format file register
D	Extended data register (D)
W	Extended link register (W)

4) Usable range of index registers

The following table shows the usable range of index registers for indexing with 32-bit index registers.

For indexing with 32-bit index registers, the specified index register (Zn) and the next index register of the specified register (Zn+1) are used. Be sure not to overlap index registers to be used.

Setting Value	Index Registers to be Used	Setting Value	Index Registers to be Used
ZO	Z0, Z1	Z10	Z10, Z11
Z1	Z1, Z2	Z11	Z11, Z12
Z2	Z2, Z3	Z12	Z12, Z13
Z3	Z3, Z4	Z13	Z13, Z14
Z4	Z4, Z5	Z14	Z14, Z15
Z5	Z5, Z6	Z15	Z15, Z16
Z6	Z6, Z7	Z16	Z16, Z17
Z7	Z7, Z8	Z17	Z17, Z18
Z8	Z8, Z9	Z18	Z18, Z19
Z9	Z9, Z10	Z19	Cannot be specified

5) An example of indexing and the actual process device are as follows.

(When Z0 (32-bit) = 100000 and Z2 (16-bit) = -20)

Fig. 3.9 Ladder Example and Actual Process Device

- (b) Example of specifing 32-bit indexing with "ZZ" specification.
 - 1) One index register can specify 32-bit indexing by using "ZZ" specification such as "ZR0ZZ4".

The 32-bit indexing with "ZZ" specification is as follows.

M0 + +DMOVP Н Stores 100000 at Z4 and Z5. K100000 74 M0 Indexing ZR device with 32-bit Н [MOVP K100 ZR0ZZ4 - + index registers (Z4 and Z5) ZR (0+100000) =ZR100000

2) Specification method

To perform 32-bit indexing by using "ZZ" specification, select "Use of ZZ" in "Indexing Setting for ZR Device" in PC parameter for GX Developer.

Indexing setting of ZR device			
32 bit Indexing			
C Use Z	after (0 to 18)		
Use ZZ			

Fig. 3.10 Setting window for indexing setting parameter for ZR device

3) Device that indexing can be used

The following device is available for indexing.

Device	Meaning
ZR	Serial number access format file register
D	Extended data register (D)
W	Extended link register (W)

4) Usable range of index registers

The following table shows the usable range of index registers in 32-bit indexing used "ZZ" specification.

The 32-bit indexing with "ZZ" specification is specified as the format ZRmZZn. Specifying ZRmZZn enables Zn and Zn+1 of 32-bit values to index the device number, ZRm,

"ZZ" specification ^{*1}	Index Registers Used	"ZZ" specification ^{*1}	Index Registers Used
⊡zzo	Z0, Z1	⊡ZZ10	Z10, Z11
⊡zz1	Z1, Z2	□ ZZ11	Z11, Z12
ZZ2	Z2, Z3	□ ZZ12	Z12, Z13
ZZ3	Z3, Z4	⊡ ZZ13	Z13, Z14
ZZ4	Z4, Z5	□ ZZ14	Z14, Z15
ZZ5	Z5, Z6	□ZZ15	Z15, Z16
⊡ zz6	Z6, Z7	⊡ ZZ16	Z16, Z17
⊡ zz 7	Z7, Z8	⊡ ZZ17	Z17, Z18
ZZ8	Z8, Z9	⊡ ZZ18	Z18, Z19
⊡zz9	Z9, Z10	⊡ ZZ19	Not available

*1: refers to device name (ZR) for indexing target.

5) The 32-bit indexing used "ZZ" specification and the acutual processing device are as follows.

Ladder Example Actual Process Device X1 ⊣ ⊢ X0 -[MOV] ZR101000 D10 DMOV K100000 Z0 -[END Z2 MOV K-20 Description - MOV ZR1000ZZ0 D30Z2 ZR1000ZZ0···ZR(1000+100000)=ZR101000 D30Z2·····D(30-20)=D10

(Z0 (32-bit) = 100000.Z2 (16-bit) = -20)

Fig.3.10 Ladder Example and Actual Process Device

6) Available functions for "ZZ" specification

The 32-bit indexing specification with "ZZ" specification applies in the following functions in GX Developer.

No.	Function Name and Description
1	Specifing devices in program instruction
2	Monitoing device registrations
3	Testing devices execution type
4	Testing devices with conditions
5	Setting monitor conditions
6	Tracing sampling (Trace point(specifing devices), Trace taget device)

Single ZZn cannot be used as a device like "DMOV K100000 ZZ0". When setting values of index registers to specify 32-bit indexing with "ZZ" specification, set the value of Zn (Z0~Z19).

Single ZZAn cannot be input to each function in GX Developer.

(4) Index modification using extended data register (D) and extended link register (W) (Universal model QCPU(except Q00UJCPU))

Like index modification using data register (D) and link register (W) of internal user device, a device can be specified by index modification within the range of the extended data register (D) and extended link register (W).

 Index modification where the device number crosses over the boundary between the internal user device and the extended data register (D) or extended link register (W)

The specification of index modification where the device number crosses over the boundary between the internal user device and the extended data register (D) or extended link register (W) cannot be made.

If doing so, an error occurs when the device range check is enabled at index modification (error code: 4101).

 Index modification where the device number crosses over the boundary among the file register (ZR), extended data register (D), and extended link register (W)

Index modification where the device number crosses over the boundary among the file register (ZR), extended data register (D), and extended link register (W) will not cause an error.

However, an error occurs if the index modification result of file register (ZR), extended data register (D), and extended link register exceeds the file register range (error code: 4101).

- (5) Other index modifications
 - (a) Bit data

Device numbers can be index modified when performing digit designation. However, Indexing is not possible by digit designation.

(b) Both I/O numbers and buffer memory number can be performed indexing with intelligent function module devices^{*1}.

(c) Both network numbers and device numbers can be performed indexing with link direct devices*¹.

- *1: For the intellingent function module device, link direct devices, refer to the QnUCPU User's Manual (Function Explanation, Program Fundamentals) or Qn(H)/QnPH/QnPRHCPU User's Manuall (Function Explanation, Program Fundamentals)
- (d) When indexing is used for multiple CPU shared devices^{*2}, indexing for the head I/O numbers of CPU modules and indexing for the CPU shared memory address are automatically executed.

*2: For the multiple CPU shared device, refer to the QnUCPU User's Manual (Function Explanation, Program Fundamentals) or Qn(H)/QnPH/QnPRHCPU User's Manuall (Function Explanation, Program Fundamentals)
3

 (e) Index modification using extended data register (D) and extended link register (W) by 32 bits (Universal model QCPU(except Q00UJCPU))

Like index modification using file register (ZR), index modification using extended data register (D) and extended link register (W) by 32 bits can be performed by the following two methods.

- · Specifing the index registers' range used for indexing with 32-bit.
- Specifing the 32-bit indexing using "ZZ" specification.

The 32-bit indexing with "ZZ" specification is available only for the following CPU modules that the version of GX Developer is 8.68W or later.

- The first five digits of the serial No. for QnU(D)(H)CPU is "10042" or higher. (except Q00UJCPU)
- QnUDE(H)CPU

(6) Cautions

(a) Performing indexing between the FOR and NEXT instructions
 Pulses can be output between the FOR and NEXT instructions by use of the edge relay
 (V). However, pulse output using the PLS/PLF/pulse (□ P) instruction is not allowed.

(M0Z1 provides normal pulse output.)

[When edge relay is used]

SM400 [MOV K0 Z1 [FOR K10 X0Z1 V0Z1 [MOZ1 SM400 [INC Z1 [NEXT]

[When	edge	relay	is not	used]
(14074				

(M0Z1 does not provide normal pulse output.)

SM400	[MOV	K0	Z1	
		FOR	K10	
X0Z1		-[PLS	M0Z1	
SM400		-[INC	Z1	
			[NEXT	

Remark

The ON/OFF data of X0Z1 is stored by the edge relay V0Z1. For example, the ON/OFF data of X0 is stored by V0, and that of X1 by V1.

(b) Performing indexing with the CALL instruction

Pulses can be output with the CALL instruction by use of the edge relay (V). However, pulse output using the PLS/PLF/pulse (\Box P) instruction is not allowed.

[When edge relay is used]

(M0Z1 provides normal pulse output.)

(M0Z1 does not provide normal pulse output.)

[When edge relay is not used]

(c) Device range check during indexing

1) CPUs other than Universal model QCPU

Device range checks are not conducted during indexing. Therefore, when the data after index modification exceed the user specified device range, the data is written to another device without causing an error.(Note, however, that when the data after index modification is written to the device for system use exceeding the user specified device range, an error occurs. (Error code: 1103))

Take extra precaution when using indexing in programming.

2) Universal model QCPU

The device range is checked for indexing. With changing the settings of the PLC parameter on GX Developer, the device range is not checked.

 (d) Changing indexing with 16-bit index register for indexing with 32-bit index register For changing indexing with 16-bit index register for indexing with 32-bit index register, check if the program has enough spaces for indexing.
 For indexing with 32-bit index registers, the specified index register (Zn) and the next index register of the specified register (Zn+1) are used. Be sure not to overlap index registers to be used.

- (1) Indirect Specification
 - (a) Indirect specification is a method that specifies address of the device to be used in a sequence program using two word devices (two points of word device). Use indirect specification as index modification when the index register is insufficient.

- (b) Specify the device to be used for specifying the address as "@ + (word device number)". For example, when @D100 is specified, the device address will be the contents of D101 and D100.
- (c) The address of the device specified indirectly can be confirmed with the ADRSET instruction. For the ADRSET instruction, refer to Section 7.18.6.
- (2) Indirect specification available devices

Table 3.3 shows that the CPU module devices can be specified indirectly.

Device Type		Availability of Indirect Specification	Example of Indirect Specification
	Bit device *1	N/A	
Internal user device	Word device *1	Available	• @D100 • @D100Z2 *2
	Bit device *1	N/A	
Link direct device	Word device *1	Available*3	• @J1\W10 • @J1Z1\W10Z2 *2
Intelligent function module	e device	Available*3	• @U10\G0 • @U10Z1\G0Z2 *2
Index register		N/A	
File register		Available	• @R0, @ZR20000 • @R0Z1,@ZR20000Z1 *2
Extended data register (D)	Available	• @D1000
Extended link register (W)			• @W1000
Nesting			
Pointer			
Constants			
	SFC block device	N/A	
Other	SFC transition device		
	Network No. specification		
	I/O INO. specification device		

*1: For the device names, refer to the QnUCPU User's Manual

- (Function Explanation, Program Fundamentals) or Qn(H)/QnPH/QnPRHCPU User's Manuall (Function Explanation, Program Fundamentals)
- *2: Indicates when index modification by an index register is performed.
- *3: Indirect specification is possible, but the address can not be written with the ADRSET instruction.

3.4 Indirect Specification

- (3) Precautions
 - (a) The address for indirect specification uses two words. Therefore, to substitute indirect specification for index modification, the addition/subtraction of 32-bit data is required. The following is the ladder used for the address addition/subtraction of the device stored in D1 and D0 for indirect specification.

[To add "1" to the address of the device for indirect specification]

[To subtract "1" from the address of the device for indirect specification]

(b) Indirect specification of extended data register (D) and extended link register (W) Indirect specification with indirect address can be performed in the extended data register (D) and extended link register (W).

Note that when indirect specification is performed to the extended data register (D) and data register (D) in internal device or to the extended link register (W) and link register (W) in internal device, the areas of the internal user device and extended data register (D) or extended link register (W) are not treated as a sequence.

3.5.1 Subset Processing

Subset processing is used to place limits on bit devices used by basic instructions and application instructions in order to increase processing speed.

However, the instruction symbol does not change.

To shorten scans, run instructions under the conditions indicated below.

- (1) Conditions which each device must meet for subset processing
 - (a) When using word data

Device	Condition
Bit device	 Designates a bit device number in a factor of 16. Only K4 can be designated for digit designation. Does not perform indexing.
Word device	 Internal user device. File register (R, ZR *¹) Multiple CPU shared device *¹, *² Index register (Z) / Standard device register (Z) *¹
Constants	No limitations

(b) When using double word data

Device	Condition	
Bit device	 Designates a bit device number in a factor of 16. Only K8 can be designated for digit designation. Does not perform indexing. 	
Word device	 Internal user device. File register (R, ZR *1) Multiple CPU shared device *1, *2 Index register (Z) / Standard device register (Z) *1 	
Constants	No limitations	

(c) When using bit data

Device	Condition
Bit device	Internal user device (indexing possible)
	Bit specification of internal user device
Word device	 Bit specification of file register (R, ZR *¹)
	 Bit specification of multiple CPU shared device *1, *2

*1: Only for Universal model QCPU

*2: Valid only for the multiple CPU high speed transmission area (from U3En\G10000)

(Excluding the case that indexing is executed for the head I/O number of the CPU module (U3En\G10000))

(2) Instructions for which subset processing can be used

Types of Instructions	Instruction Symbols	
Contact instructions	LD,LDI,AND,ANI,OR,ORI,LDP,LDF,ANDP,ANDF,ORP,ORF,LDPI,ANDPI,ANDFI,	
	ORPI,ORFI	
Output instructions	OUT,SET,RST	
Comparison operation instruction	\bullet =,<>,<,<=,>,>=,D=,D<>,D<,D<=,D>,D>=	
Arithmetic operation	• +, -, *, /, INC, DEC, D+, D -, D*, D/, DINC, DDEC	
	• B+,B-,B*,B/, E+,E-,E*,E/	
Data conversion instructions	• BCD, BIN, DBCD, DBIN, FLT, DFLT, INT, DINT	
Data transfer instruction	• MOV, DMOV, CML, DCML, XCH, DXCH	
	• FMOV, BMOV, EMOV	
Program branch instruction	• CJ, SCJ, JMP	
Logic operations	• WAND, DAND, WOR, DOR, WXOR, DXOR, WXNR, DXNR	
Rotation instruction	• RCL, DRCL, RCR, DRCR, ROL, DROL, ROR, DROR	
Shift instruction	• SFL, DSFL, SFR, DSFR	
Data processing instructions	• SUM, SEG	
Structure creation instructions	• FOR, CALL	

3.5.2 Operation processing with standard device registers (Z) (only Universal model QCPU)

Operation processing time can be reduced with standard device registers (Z).

The following shows an example program with standard device registers.

Operation processing time is reduced with the instructions that the subset processing is possible. For the number of steps, refer to Section 3.8.

For the operation time for each instruction, refer to Appendix 1.

Because standard device registers are the same devices as index registers, do not use device numbers of the standard device registers for the index registers.

Operation errors are returned in the following cases when executing basic instructions and application instructions with CPU module:

- An error listed on the explanatory page for the individual instruction occurred.
- When an intelligent function module device is used, no intelligent function module is installed at the specified I/O number position.
- When an intelligent function module device is used, the specified buffer memory address does not exist.
- The relevant network does not exist when using a link device.
- When a link device is used, no network module is installed at the specified I/O number position.
- When a multiple CPU shared device is used, a CPU module is not installed at the head I/O number position of the specified CPU module.
- · When a multiple CPU shared device is used, the specified shared memory address does not exist.
- The setting of the device number crosses over the boundary between the internal user device and the extended data register (D) or extended link register (W). (Universal model QCPU only)

When file register is set but a memory card is not installed or when file register is not set, writing/reading to/from file register is as follows:

- (1) For the High Performance model QCPU, Process CPU, and Redundant CPU An error does not occur even when writing/reading to/from file register is performed. However, "0H" is stored when reading from file register is performed.
- (2) For the Universal model QCPU

The OPERATION ERROR (error code:4101) occurs when writing/reading to/ from file register is performed.

(1) Device range check

Device range checks for the devices used by basic instructions and application instructions in CPU module are as indicated below:

- (a) Instructions for specified each device, including MOV and DMOV
 - 1) CPUs other than Universal model QCPU

The device range is not checked. In cases where the corresponding device range is exceeded, data is written to other devices. *¹

For example, in a case where the data register has been allocated 12k points, there will be no error even if it exceeds D12287.

performing indexing, data is written to other devices.*1

*1: For the assignment order of internal user devices, refer to this Section (c) Character string data.

2) Universal model QCPU

The device range is checked. When the device number is outside the device range, an operation error occurs.

For example, when12 k points are assigned to a data register, an error occurs if the device number of the data register exceeds D12287.

The device range is checked even though indexing is executed. With changing the settings of the PLC parameter on GX Developer, the device

range is not checked.*²

- *2: For changing the settings of the PLC parameter on GX Developer, refer to the following manual. • QCPU User's Manual (Function Explanation, Program Fundamentals)
- (b) Instructions for a block of devices, including BMOV and FMOV
 - 1) CPUs other than Universal model QCPU

The device range is checked.

When the device number is outside the device range, an operation error occurs.

For example, when 12 k points are assigned to a data register, an error occurs if the device number of the data register exceeds D12287.

Device range checks are also conducted when indexing is performed. However, if indexing has been conducted, there will be no error returned if the initial device number exceeds the relevant device range.

2) Universal model QCPU

The device range is checked.

When the device number is outside the device range, an operation error occurs.

For example, when 12 k points are assigned to a data register, an error occurs if the device number of the data register exceeds D12287.

However, an operation error occurs because D12288 does not exist.

The device range is checked even though indexing is executed.

An error occurs when the head device number of the devices with indexing exceeds the device range.

With changing the settings of the PLC parameter on GX Developer, the device range is not checked.*2

- For changing the settings of the PLC parameter on GX Developer, refer to the following manual. *2: QCPU User's Manual (Function Explanation, Program Fundamentals)
- (c) Character string data

Because all character string data is of variable length, device range checks are performed.

In cases where the corresponding device range has been exceeded, an operation error will be returned.

For example, in a case where the data register has been allocated 12k points, there will be an error if it exceeds D12287.

However, with CPUs other than Universal model QCPU, when indexing is executed and the head device number is outside the device range, no error occurs and the other devices are accessed.

When performing the following access in Universal model QCPU, an error (error code: 4101) occurs.

1) Access crossing the boundary of devices caused by indexing

```
(range of A area)
```

The allocation order of individual devices is shown below:

- 2) Access crossing the boundary of file registers caused by indexing
- 3) Access to file registers (R, ZR) without setting file register files
- 4) Access to file registers (R, ZR) exceeded the range of file register files

Presetting PC parameter not to check indexing device range enables the Universal model QCPU not to detect an error in the above accesses from 1) to 4). Detecting an error in the above accesses from 1) to 4), however, depends on the serial No. of Universal model QCPU.^{*2}

Setting device range in indeving	First 5 digits of serial No. for Universal model QCPU		
Setting device range in indexing	Serial No."10021" or lower	Serial No."10022" or higer	
Set	Detected errors in accesses 1) to 4)		
Not set	Detected errors in accesses 2) to 4)	Not detected	

*2: For changing the settings of the PLC parameter on GX Developer, refer to the QnUCPU User's Manual (Function Explanation, Program Fundamentals) or Qn(H)/QnPH/QnPRHCPU User's Manual (Function Explanation, Program Fundamentals).

When indexing is executed only with Universal model QCPU, devices between internal user devices (SW) and file registers (R) cannot be skipped. (Error code: 4101).

Remark For the how to change the internal user device allocation, referto User's Manual (Functions Explanation, Program Fundamentals) for the CPU module used.

- (d) Device range checks are conducted when indexing is performed by direct access output (DY).
- (e) Set the following items so that the specification does not cross over theboundary between the internal user device and the extended data register (D) or extended link register (W).
 - Index modification
 - · Indirect specification
 - Specification for the instructions which target data block^{*1}

*1 Data block indicates the following data.

- Data used in the instructions, such as FMOV, BMOV, BK+, which multiple words are targeted for operation
- Control data, composed of two or more words, specified in the instructions, such as SP.FWRITE, SP.FREAD
- Data whose data type is 32-bit or more (BIN 32-bit, real number, indirect address of the device)

(2) Device data check

Device data checks for the devices used by basic instructions and application instructions in CPU module are as indicated below:

(a) When using BIN data

No error is returned even if the operation results in overflow or underflow. The carry flag does not go on at such times, either.

- (b) When using BCD data
 - 1) Each digit is check for BCD value (0 to 9). An operation error is returned if individual digits are outside the 0 to 9 (A to F) range.
 - 2) No error is returned even if the operation results in overflow or underflow. The carry flag does not go on at such times, either.
- (c) When using floating-point data
 - 1) An operation error occurs when the following operation results are returned with the single-precision floating-point operation instruction.

When the absolute value of the floating decimal point data is 1.0 \times 2⁻¹²⁷ or lower When absolute value of floating decimal point data is 1.0 \times 2¹²⁸ or higher

2) An operation error occurs when the following operation results are returned with the double-precision floating-point operation instruction.

When the absolute value of the floating decimal point data is 1.0×2^{-1023} or lower When absolute value of floating decimal point data is 1.0×2^{1024} or higher

- (d) Using character string data No data check is conducted.
- (3) Buffer memory access

For accessing buffer memories, using instructions with intelligent function module devices (from Un\G0) is recommended.

(4) Multiple CPU shared memory access

For accessing multiple CPU shared memories, using instructions with multiple CPU shared devices (from U3En\G10000) is recommended.

The following four types of execution conditions exist for the execution of CPU module sequence instructions, basic instructions, and application instructions:

Non-conditional execution..... Instructions executed without regard to the ON/OFF status of the device

	Example LD X0, OUT Y10
Executed at ON	Instructions executed while input condition is ON
	Example MOV instruction, FROM instruction
• Executed at leading edge	Instructions executed only at the leading edge of the input
	condition (when it goes from OFF to ON) Example
	PLS instruction, MOVP instruction.
• Executed at trailing edge	Instructions executed only at the trailing edge of the input
	condition (when it goes from ON to OFF) Example
	PLF instruction.

For coil or equivalent basic instructions or application instructions, where the same instruction can be designated for either execution at ON or leading edge execution, a "P" is added after the instruction name to specify the condition for execution.

- Instruction to be executed at ON Instruction name
- Instruction to be executed at leading edge Instruction name + P

Execution at ON and execution at leading edge for the MOV instruction are designated as follows:

The number of steps in CPU module sequence instructions, basic instructions, and application instructions differs depending on whether indirect setting of the device used is possible or not.

(1) Counting the number of basic steps

The basic number of steps for basic instructions and application instructions is calculated by adding the device number and 1.

For example, the "+ instruction" would be calculated as follows:

(2) Conditions for increasing the number of steps

The number of steps is increased over the number of basic steps in cases where a device is used that is designated indirectly or for which the number of steps is increased.

(a) When device is designated indirectly

In cases where indirect designation is done by @ the number of steps is increased 1 step over the number of basic steps.

For example, when a 3-step MOV instruction is designated indirectly (example: MOV K4X0 <u>@D0</u>), one step is added and the instruction becomes 4 steps.

Devices with Additional Steps	Added Steps	Example
Intelligent function module device		MOV <u>U4\G10</u> D0
Multiple CPU shared device		MOV <u>U3E1\G0</u> D0
Link direct device		MOV <u>J3\B20</u> D0
Index register	1	MOV <u>Z0</u> D0
Serial number access format file register		MOV <u>ZR123</u> D0
32-bit constant		DMOV <u>K123</u> D0
Real constant		EMOV <u>E0.1</u> D0
	For even numbers: (number of characters) / 2	
Character string constant	For odd numbers:	\$MOV <u>"123"</u> D0
	(number of characters + 1) / 2	

(b) Devices with additional steps (Except Universal model QCPU)

(c) Devices with additional steps (Universal model QCPU(except Q00UJCPU))

1) Instructions applicable to subset processing

The following table shows steps depending on the devices.

Instruction Symbols	Devices with Additional Steps	Added Steps (Number of Instruction Steps)	Basic Number of Steps
LD,LDI,AND,ANI,OR,ORI, LDP,LDF,ANDP,ANDF,ORP,ORF	Serial number access format file register, Extended data register (D), Extended link register (W) Multiple CPU shared device	1(2)	1
LDPI,LDFI	Serial number access format file register, Extended data register (D), Extended link register (W) Multiple CPU shared device	1(4)	3
ANDPI,ANDFI,ORPI,ORFI	Serial number access format file register, Extended data register (D), Extended link register (W) Multiple CPU shared device	1(5)	4
SET	Serial number access format file register Extended data register (D), Extended link register (W) Multiple CPU shared device	1(2)	1
	Timer/Counter	3(4)	
OUT	Serial number access format file register Extended data register (D), Extended link register (W) Multiple CPU shared device	1(2)	1
RST (bit device)	Serial number access format file register Extended data register (D), Extended link register (W) Multiple CPU shared device	1(2)	1
RST (word device)	Timer/Counter (Bit/word device)	2(4)	
	Serial number access format file register Extended data register (D), Extended link register (W)	1(3)	2
	Multiple CPU shared device	1(3)	
	Standard device register * ²	-1	
LD=,LD<>,LD<,LD<=,LD>,LD>=, AND=,AND<>,AND<,AND<=,AND>,AND>=, OR=,OR<>,OR<.OR<=,OR>,OR>=	Serial number access format file register Extended data register (D), Extended link register (W) Multiple CPU shared device	1	3
	Standard device register * ²	-1	
LDD=,LDD<>,LDD<,LDD<=,LDD>,LDD>=, ANDD=,ANDD<>,ANDD<,ANDD<=,ANDD>, AND>=,ORD=,ORD<>,ORD<.ORD<=, ORD>,ORD>=	Serial number access format file register Extended data register (D), Extended link register (W) Multiple CPU shared device Decimal constant, hexadecimal constant, real constant	1	3
	Standard device register * ²	(□) :_1	
+,-,+P,-P,WAND,WOR,WXOR,WXNR, WANDP,WORP,WXORP,WXNRP (2 devices)	Serial number access format file register Extended data register (D), Extended link register (W) Multiple CPU shared device	\$):1,®:3	3

Instruction Symbols	Devices with Additional Steps	Added Steps (Number of Instruction Steps)	Basic Number of Steps
	Standard device register *2	D:-1	
D+,D-,D+P,D-P,DAND,DOR,DXOR,DXNR, DANDP,DORP,DXORP,DXNRP (2 devices)	Serial number access format file register Extended data register (D), Extended link register (W) Multiple CPU shared device	\$J:1,©:3	3
	Decimal constant, hexadecimal constant, real constant	SD:1	
+,-,+P,-P,WAND,WOR,WXOR,WXNR, WANDP,WORP,WXORP,WXNRP (3 devices)* ¹	Serial number access format file register Extended data register (D), Extended link register (W)	⑤),ᡚ:1,①:2	3
· · · · · · · · · · · · · · · · · · ·	Multiple CPU shared device		
D+,D-,D+P,D-P,DAND,DOR,DXOR,DXNR, DANDP,DORP,DXORP,DXNRP	Serial number access format file register Extended data register (D), Extended link register (W)	\$1,10:2	3
(3 devices)* ¹	Multiple CPU shared device		C C
()	Decimal constant, hexadecimal constant, real constant	\$1,\$2:1	
*, *P, /, /P	Serial number access format file register Extended data register (D), Extended link register (W)	\$1,10:2	3
	Multiple CPU shared device		
D*, D*P, D/, D/P, E*, E*P	Serial number access format file register Extended data register (D), Extended link register (W) Multiple CPU shared device	₲), @:1, 0 :2	3
	Decimal constant, hexadecimal constant, real constant	\$1,\$2:1	

Instruction Symbols	Devices with Additional Steps	Added Steps (Number of Instruction Steps)	Basic Number of Steps
	Index register/Standard device register *2	-1	
INC INCEDEC DECEDINC DINCE	Serial number access format file register		
	Extended data register (D),	3	2
5520,5520	Extended link register (W)	5	
	Multiple CPU shared device		
	Serial number access format file register		
MOVMOVP	Extended data register (D),	1	2
	Extended link register (W)		
	Multiple CPU shared device		
	Serial number access format file register		
	Extended data register (D),		
	Extended link register (W)	1	2
	Multiple CPU shared device		
	Decimal constant, hexadecimal		
	constant, real constant		
	Serial number access format file register		
	Extended data register (D),	<u>(</u> ୩.1 ଡେ.2	2
	Extended link register (W)	۰. ۲٫۵۵۰.۲	-
	Multiple CPU shared device		
	Serial number access format file register		
	Extended data register (D),	<u>(</u> ୩.1 ୧୭.2	
DBCD,DBCDP,DBIN,DBINP,INT,INTP,DINT,	Extended link register (W)	.1,@.2	2
DINTP,DFLT,DFLTP,DCML,DCMLP	Multiple CPU shared device		
	Decimal constant, hexadecimal	S1) · 1	
	constant, real constant		

If the same device is used for 1 and 2, the number of basic steps increases by one. *1: *2:

The number of steps decreases with a standard device register.

When multiple standard device registers are used in an instruction applicable to subset processing, the number of steps decreases. The following table shows the number of steps for each instruction.

Instruction Symbols	Locations Where Standard Device Regis- ter Is Used	Added Steps (Number of Instruction Steps)	Basic Number of Steps
LD=,LD<>,LD<,LD<=,LD>,LD>=, AND=,AND<>,AND<,AND<=,AND>,AND>=, OR=,OR<>,OR<.OR<=,OR>,OR>= LDD=,LDD<>,LDD<,LDD<=,LDD>,LDD>=, ANDD=,ANDD<>,ANDD<,ANDD<=,ANDD>, AND>=,ORD=,ORD<>,ORD<.ORD<=, ORD>,ORD>=	§ি) and S⊉	-2(1)	3
+,-,+P,-P,D+,D-,D+P,D-P, WAND,WOR,WXOR,WXNR, DAND,DOR,DXOR,DXNR, WANDP,WORP,WXORP,WXNRP, DANDP,DORP,DXORP,DXNRP (2 devices)	গ্রী and 🛈	-2(1)	3
	(\mathfrak{S}) , (\mathfrak{S}) , and (\mathbb{D})	-2(1)	
	${ m (s)}$, or ${ m (s)}$ and ${ m (D)}$	-1(2)	
+,-,+P,-P,D+,D-,D+P,D-P, WAND,WOR,WXOR,WXNR, DAND,DOR,DXOR,DXNR, WANDP,WORP,WXORP,WXNRP, DANDP,DORP,DXORP,DXNRP	(only when that device that the number of steps does not increase is specified for (1))	±0(3)	3
(3 devices)* ¹	(only when a serial number access format file register is specified for (1))	+2(5)	

*1: If the same device is used for (1) and (1), the number of basic steps increases by one.

Instruction Symbols	Locations Where Standard Device Regis- ter Is Used	Added Steps (Number of Instruction Steps)	Basic Number of Steps
* *P / /P	(1) , (2) , and (1)	-2(1)	3
, 1,7,71	(\mathfrak{Y}) , or (\mathfrak{Y}) and (\mathfrak{Y})	-1(2)	Ŭ
	\mathbb{S} , \mathbb{S} , and \mathbb{O}	-2(1)	
	(1) , or (2) and (1)	-1(2)	
D*, D*P, D/, D/P, E*, E*P	(5) and (52) (only when that device that the number of steps does not increase is specified for (10)	±0(3)	3
	(only when a serial number access format file register is specified for \textcircled{D})	+2(5)	
MOV,MOVP,DMOV,DMOVP,EMOV,EMOVP	(5)) and (1))	-1(1)	2
BCD,BCDP,BIN,BINP,DBCD,DBCDP, DBIN,DBINP,FLT,FLTP,DFLT,DFLTP, INT,INTP,DINT,DINTP,CML,CMLP, DCML,DCMLP	⑤ and ①	-1(1)	2

2) Except Instructions applicable to subset processing

The following table shows steps depending on the devices.

Devices with Additional Steps	Added Steps	Example
Intelligent function module device		MOV <u>U4\G10</u> D0
Multiple CPU shared device		MOV <u>U3E1\G10000</u> D0
Link direct device		MOV <u>J3\B20</u> D0
Index register / standard device register		MOV <u>Z0</u> D0
Serial number access format file register	1	MOV <u>ZR123</u> D0
Extended data register(D)		MOV D123
Extended link register(W)		MOV W123
32-bit constant		DMOV <u>K123</u> D0
Real constant		EMOV <u>E0.1</u> D0
Character string constant	For even number: (number of characters) / 2 For odd numbers: (number of characters + 1) / 2	\$MOV <u>"123"</u> D0

(d) In cases where the conditions described in (a) to (c) above overlap, the number of steps becomes a culmination of the two.

Example MOV If U1 G10 ZR123 has been designated, a total of 2 steps are added.

Increased by 2 steps

3.9 Operation when the OUT, SET/RST, or PLS/PLF Instructions Use the Same Device

The following describes the operation for executing multiple instructions of the OUT, SET/RST, or PLS/PLF that use the same device in one scan.

(1) OUT instructions using the same device

Do not program more than one OUT instruction using the same device in one scan. If the OUT instructions using the same device are programmed in one scan, the specified device will turn ON or OFF every time the OUT instruction is executed, depending on the operation result of the program up to the relevant OUT instruction. Since turning ON or OFF of the device is determined when each OUT instruction is executed, the device may turn ON and OFF repeatedly during one scan. The following diagram shows an example of a ladder that turns the same internal relay (M0) with inputs X0 and X1 ON and OFF.

With the refresh type CPU module, when the output (Y) is specified by the OUT instruction, the ON/OFF status of the last OUT instruction of the scan will be output.

- (2) SET/RST instructions using the same device
 - (a) The SET instruction turns ON the specified device when the execution command is ON and performs nothing when the execution command is OFF.
 For this reason, when the SET instructions using the same device are executed two or more times in one scan, the specified device will be ON if any one of the execution commands is ON.
 - (b) The RST instruction turns OFF the specified device when the execution command is ON and performs nothing when the execution command is OFF. For this reason, when the RST instructions using the same device are executed two or more times in one scan, the specified device will be OFF if any one of the execution commands is ON.
 - (c) When the SET instruction and RST instruction using the same device are programmed in one scan, the SET instruction turns ON the specified device when the SET execution command is ON and the RST instruction turns OFF the specified device when the RST execution command is ON.

When both the SET and RST execution commands are OFF, the ON/OFF status of the specified device will not be changed.

[Ladder]

[Timing Chart]

When using a refresh type CPU module and specifying output (Y) in the SET/RST instruction, the ON/OFF status of the device at the execution of the last instruction in the scan is returned as the output (Y).

(3) PLS instructions using the same device

The PLS instruction turns ON the specified device when the execution command is turned ON from OFF.

It turns OFF the device at any other time (OFF to OFF, ON to ON, or ON to OFF). If two or more PLS instructions using the same device are executed in one scan, each instruction turns ON the device when the corresponding execution command is turned ON from OFF and turns OFF the device in other cases.

For this reason, if multiple PLS instructions using the same device are executed in a single scan, a device that has been turned ON by the PLS instruction may not be turned ON during one scan.

[Ladder]

[Timing Chart]

• The ON/OFF timing of the X0 and X1 is different. (The specified device does not turn ON throughout the scan.)

• The X0 and X1 turn ON from OFF at the same time.

When using a refresh type CPU module and specifying output (Y) in the PLS instructions, the ON/OFF status of the device at the execution of the last PLS instruction in the scan is returned as the output (Y).

(4) PLF instructions using the same device

The PLF instruction turns ON the specified device when the execution command is turned OFF from ON.

It turns OFF the device at any other time (OFF to OFF, OFF to ON, or ON to ON). If two or more PLF instructions using the same device are executed in one scan, each instruction turns ON the device when the corresponding execution command is turned OFF from ON and turns OFF the device in other cases.

For this reason, if multiple PLF instructions using the same device are executed in a single scan, a device that has been turned ON by the PLF instruction may not be turn ON during one scan.

[Ladder]

[Timing Chart]

• The ON/OFF timing of the X0 and X1 is different. (The specified device does not turn ON throughout the scan.)

• The X0 and X1 turn OFF from ON at the same time.

When using a refresh type CPU module and specifying output (Y) in the PLF instructions, the ON/OFF status of the device at the execution of the last PLF instruction in the scan is returned as the output (Y).

This section explains the precautions for use of the file registers in the QCPU.

(1) CPU modules that cannot use file registers

The Q00JCPU and Q00UJCPU cannot use the file registers. When using the file registers, use the CPU module of other than the Q00JCPU and Q00UJCPU.

(2) Setting of file registers to be used

When using the file registers, the file registers to be used must be set with the PLC parameter or QDRSET instruction. (The PLC parameters of the Q00CPU and Q01CPU need not be set since they are preset to "Use file register".) If the file registers to be used have not been set, normal operation cannot be performed with the instructions that use the file registers.

Even when file registers to be used are not set in the PLC parameter, a program that uses file registers can be created. For the CPU module other than the Universal model QCPU, an error does not occur when that program is written to the CPU module.

However, note that the correct data cannot be written/read to/from the file register. For the Universal model QCPU, an error occurs if the program where file registers are used is executed.

(3) Securing of file register area

(a) High Performance model QCPU, Process CPU, Redundant CPU, Universal model QCPU

When using file registers, register the file registers to the standard RAM/memory card to secure the file register area.

(b) Basic Model QCPU (except Q00JCPU)

The file register area has been secured in the standard RAM beforehand. The user need not secure the file register area.

Memory	High Performance model QCPU Process CPU Redundant CPU Universal model QCPU	Basic Model QCPU (except Q00JCPU)
Standard RAM	0	0
Memory card *1 *2	⊜*3	×

The following table indicates the memories that can use the file registers in each CPU module.

 \bigcirc : Can be registered, \times : Cannot be registered.

*1: When the flash memory is used, only read from the file registers can be performed. (Write to the flash ROM cannot be performed.)

*2: When the E^2 PROM is used, write to the E^2 PROM can be performed with the PROMWR instruction.

*3: Unusable for the Q00UCPU and Q01UCPU.

For the file register setting method and file register area securing method, refer to User's Manual (Functions Explanation, Program Fundamentals) for the CPU module used.

- (4) Designation of file register number in excess of the registered number of points
 - (a) CPUs other than Universal model QCPU

An error will not occur if data are written or read to or from the file registers that have numbers greater than the registered number of points. However, note that the read/write of correct data to/from the file registers cannot be performed.

- (b) Universal model QCPU When data are written to or read from the file registers that are not registered, an error occurs. (Error code: 4101)
- (5) File register specifying method

There are the block switching method and serial number access method to specify the file registers.

(a) Block switching method

In the block switching method, specify the number of used file register points in units of 32k points (one block). For file registers of 32k points or more, specify the file registers by switching the block No. to be used with the RSET instruction. Specify each block as R0 to R32767.

ω

(b) Serial number access method

In the serial number access method, specify the file registers beyond 32k points with consecutive device numbers. The file registers of multiple blocks can be used as consecutive file registers. Use "ZR" as the device name.

- (6) Settings and restrictions when refreshing file registers
 - (a) Settings

The settings of refresh devices are as follows.

- Refresh settings for CC-Link IE controller network
- Refresh settings for MELSECNET/H
- · Refresh settings for CC-Link
- · Auto refresh settings for the intelligent function module
- · Auto refresh settings for the multiple CPU system
- (b) Restrictions

The restrictions when specifying file registers to refresh devices are as follows.

- Refresh cannot be performed correctly if the use of file register which has the same name as the program is specified by the PLC parameter.
 When the file register which has the same name as the program is used, refresh is performed to the data of the file register having the same name as the program that is set at the last number in the [Program] tab page of PLC parameter. To read/write the refresh data, specify the file register to the refresh device after switching the file register to the corresponding one with the QDRSET instruction.
- 2) Refresh cannot be performed correctly if the file name of file register or the drive number is changed by the QDRSET instruction.

If the file name of file register or the drive number is changed by the QDRSET instruction, link refresh is performed to the data of the setting file at the time of the END instruction execution. To read/write the refresh data, specify the file register of the setting file at the time of the END instruction execution. If the drive number is changed by the QDRSET instruction when "ZR" is specified for the device in the CPU modules other than the Universal model QCPU, an error (LINK PARA ERROR (3101)) occurs. (Note that an error does not occur when "R" is specified for the device.)

- 3) When a block number is switched by the RSET instruction, refresh is performed to the data of the file register (R) in the switched block number. When a block number is switched by the RSET instruction, refresh is performed to the data of the file register (R) in the block number at the time of the END instruction execution. To read/write the refresh data, specify the file register of the block number at the time of the END instruction execution.
- (7) Precautions when file registers in the flash memory are used This section explains the precautions for use of the flash memory.
 - (a) The following flash memory can be used.

Flash card

(b) File registers in the flash memory can be only read in a sequence program. (Write to the flash memory cannot be performed in a sequence program.)

When using the flash memory for the file registers, write data in advance. Using GX Developer, write data to the flash card.

ω

MEMO

The description of instructions that are contained in the following chapters are presented in the following format.

- 1) Code used to write instruction (instruction symbol).
- 2) Section number and general category of instructions described.
- 3) Shows if instructions are enabled or disabled for each CPU module type.

		lcon			
Universal model QCPU	Basic model QCPU	High Performance model QCPU	Process CPU	Redundant CPU	Meaning
Universal	Basic	High performance	Process	Redundant	A normal icon means the corresponding instruction can be used.
Ver. Universal	Ver. Basic	High performance	Ver. Process	Ver. Redundant	The icon with Ver. means the instruction can be used with some restrictions (e.g., function version, software version).
Universal	Basic	High performance	Process	Redundant	The icon with \times (cross) means the corresponding instruction cannot be used.

4) Indicates ladder mode expressions and execution conditions for instructions.

Execution Condition	Non-conditional Execution	Executed while ON	Executed One Time at ON	Executed while OFF	Executed One Time at OFF
Code recorded on description page	No symbol recorded				

5) Indicates the data set for each instruction and the data type.

Data Type	Meaning
Bit	Bit data or head number in bit data
BIN 16 bits	BIN 16-bit data or head number in word device
BIN 32 bits	BIN 32-bit data or head number in double word device
BCD 4-digit	4-digit BCD data
BCD 8-digit	8-digit BCD data
Real number	Floating decimal point data
character string	Character string data
Device name	Device name data

6) Devices which can be used by the instruction in question are indicated with circle. The types of devices that can be used are as indicated below:

Setting Data	Interna (Syste	ll Devices m, User)	File Register	Link direct	device *4	Intelligent function	Index register	Constant *5	Others *5
	Bit	Word	R, ZR	Bit	Word	U\G	Zn		
Applicable devices *1	X, Y, M, L, SM, F, B, SB, FX, FY *2	T, ST, C, *3 D, W, SD, SW, FD, @	R, ZR	J[]/X J[]/Y J[]/B	J[]/M MS/[]1	U [] (G []	Z	K, H , E, \$	P, I, J, U, DX, DY, N, BL, TR, BL \ S,V

*1: For the description for the individual devices, refer to the QnUCPU User's Manual

(Function Explanation, Program Fundamentals) or Qn(H)/QnPH/QnPRHCPU User's Manuall (Function Explanation, Program Fundamentals)

*2: FX and FY can be used only for bit data, and FD only for word data.

*3: When T, ST and C are used for other than the instructions below, only word data can be used. (Bit data cannot be used.)

[Instructions that can be used with bit data] LD, LDI, AND, ANI, OR, ORI, LDP, LDF, ANDP, ANDF, ORP, ORF, LDPI, LDFI, ANDPI, ANDFI, ORPI, ORFI, OUT, RST

*4: Usable with the CC-Link IE controller network, MELSECNET/H, and MELSECNET/10.

*5: Devices which can be set are recorded in the "Constant" and the "Other" columns.

- 7) Indicates the function of the instruction.
- 8) Indicates conditions under which error is returned, and error number. See Section 3.6 for errors not included here.
- 9) Indicates both ladder and list for simple program example. Also indicates the types of individual devices used when the program is executed.

SEQUENCE INSTRUCTIONS

Category	Processing Details	Reference Section
Contact instruction	Operation start, series connection, parallel connection	Section 5.1
Association instruction	Ladder block connection, creation of pulses from operation results, store/read operation results	Section 5.2
Output instruction	Bit device output, pulse output, output reversal	Section 5.3
Shift instruction	Bit device shift	Section 5.4
Master control instruction	Master control	Section 5.5
Termination instruction	Program termination	Section 5.6
Other instruction	Program stop, instructions such as no operation which do not fit in the above categories	Section 5.7

5.1 Contact Instructions

5.1.1 Operation start, series connection, parallel connection (LD,LDI,AND,ANI,OR,ORI)

(\$) : Devices used as contacts (bits)

Data Bit Word Bit Word Di. (Gi.) Di. (Gi.) S O O O O O	Setting	Internal Devices		R 7R	J\		umem	7n	Constants	Other
S 0 - 0	Data	Bit	Word	.,	Bit	Word	0:1(G:)		Conotanto	DX, BL
	S	0							-	0

Granition Function

LD, LDI

- (1) LD is the A contact operation start instruction, and LDI is the B contact operation start instruction. They read ON/OFF information from the designated device*¹, and use that as an operation result.
 - *1: When a bit designation is made for a word device, the device turns ON or OFF depending on the 1/0 status of the designated bit.

AND, ANI

- (1) AND is the A contact series connection instruction, and ANI is the B contact series connection instruction. They read the ON/OFF data of the designated bit device*², perform an AND operation on that data and the operation result to that point, and take this value as the operation result.
 - *2: When a bit designation is made for a word device, the device turns ON or OFF depending on the 1/0 status of the designated bit.
- (2) There are no restrictions on the use of AND or ANI, but the following applies with a peripheral device used in the ladder mode:
 - (a) Write When AND and ANI are connected in series, a ladder with up to 24 stages can be displayed.
 - (b) Read....... When AND and ANI are connected in series, a ladder with up to 24 stages can be displayed. If the number exceeds 24 stages, up to 24 will be displayed.

OR, ORI

- (1) OR is the A contact single parallel connection instruction, and ORI is the B contact single parallel connection instruction. They read ON/OFF information from the designated device^{*3}, and perform an OR operation with the operation results to that point, and use the resulting value as the operation result.
 - *3: When a bit designation is made for a word device, the device turns ON or OFF depending on the 1/0 status of the designated bit.
- (2) There are no limits on the use of OR or ORI, but the following applies with a peripheral device used in the ladder mode.
 - (a) Write OR and ORI can be used to create connections of up to 23 ladders.
 - (b) Read......OR and ORI can be used to create connections of up to 23 ladders. The 24th or subsequent ladders cannot be displayed properly.

Operation Error

(1) There are no operation errors with LD, LDI, AND, ANI, OR, or ORI instruction.

Program Example

(1) A program using the LD, AND, OR, and ORI instructions.

(2) A program linking contacts using the ANB and ORB instructions.

(3) A parallel program with the OUT instruction.

[Ladder Mode]

[List Mode]

Step	Instruction	Device
0 1 2 3 4 5 6	LD OUT AND OUT AN I OUT END	X5 X35 X8 Y36 X9 Y37
5.1.2 Pulse operation start, pulse series connection, pulse parallel connection (LDP,LDF,ANDP,ANDF,ORP,ORF)

LDP, LDF

(1) LDP is the leading edge pulse operation start instruction, and is ON only at the leading edge of the designated bit device (when it goes from OFF to ON). If a word device has been designated, it is ON only when the designated bit changes from 0 to 1.

In cases where there is only an LDP instruction, it acts identically to instructions for the creation of a pulse that are executed during $ON(\square P)$.

(2) LDF is the trailing edge pulse operation start instruction, and is ON only at the trailing edge of the designated bit device (when it goes from ON to OFF).

If a word device has been designated, it is ON only when the designated bit changes from 1 to 0.

ANDP, ANDF

(1) ANDP is a leading edge pulse series connection instruction, and ANDF is a trailing edge pulse series connection instruction. They perform an AND operation with the operation result to that point, and take the resulting value as the operation result.

The ON/OFF data used by ANDP and ANDF are indicated in the table below:

Device Specified	in ANDP or ANDF		
Bit Device	Bit Designated for Word Device	ANDP State	ANDF State
OFF to ON	0 to 1	ON	
OFF	0		OFF
ON	1	OFF	
ON to OFF	1 to 0		ON

ORP, ORF

(2) ORP is a leading edge pulse parallel connection instruction, and ORF is a trailing edge pulse serial connection instruction. They perform an OR operation with the operation result to that point, and take the resulting value as the operation result.

 Device Specified in ORP or ORF
 ORP State
 ORF State

 Bit Device
 Bit Designated for Word Device
 ORP State
 ORF State

 OFF to ON
 0 to 1
 ON

The ON/OFF data used by ORP and ORF are indicated in the table below:

0

1

1 to 0

✓ Operation Error

(1) There are no operation errors with LDP, LDF, ANDP, ANDF, ORP, or ORF instruction.

Program Example

(1) The following program executes the MOV instruction at input X0, or at the leading edge of b10 (bit 11) of data register D0.

[Ladder Mode]

[List Mode]

OFF

OFF

ON

ON to OFF

OFF

ON

*1: Word device bit designation is performed in hexadecimal. Bit b10 of D0 will be D0.A.

5.1.3 Pulse NOT operation start, pulse NOT series connection, pulse NOT parallel connection (LDPI,LDFI,ANDPI,ANDFI,ORPI,ORFI)

• QnU(D)(H)CPU: The serial number (first five digits) is "10102" or later. • QnUDE(H)CPU: The serial number (first five digits) is "10102" or later.

Grant Function

LDPI, LDFI

(1) LDPI is the leading edge pulse NOT operation start instruction that is on only at the leading edge of the specified bit device (when the bit device goes from on to off) or when the bit device is on or off. If a word device has been specified, LDPI is on only when the specified bit is 0, 1, or changes from 1 to 0.

(2) LDFI is the trailing edge pulse NOT operation start instruction that is on only at the trailing edge of the specified bit device (when the bit device goes from off to on) or when the bit device is on or off. If a word device has been specified, LDFI is on only when the specified bit is 0, 1, or changes from 0 to 1.

Device Specifie	d in LDPI or LDFI		
Bit Device	Bit Designated for Word Device	LDPI State	LDFI State
OFF to ON	0 to 1	OFF	ON
OFF	0	ON	ON
ON	1	ON	ON
ON to OFF	1 to 0	ON	OFF

ANDPI, ANDFI

(1) ANDPI is a leading edge pulse NOT series connection, and ANDFI is a trailing pulse NOT series connection. ANDPI and ANDFI execute an AND operation with the previous operation result, and take the resulting value as the operation result.

The on or off data used by ANDPI and ANDFI are indicated in the table below.

Device Specified	in ANDPI or ANDFI		
Bit Device	Bit Designated for Word Device	LDPI State	LDFI State
OFF to ON	0 to 1	OFF	ON
OFF	0	ON	ON
ON	1	ON	ON
ON to OFF	1 to 0	ON	OFF

ORPI, ORFI

(1) ORPI is a leading edge pulse NOT parallel connection, and ORFI is a trailing pulse NOT parallel connection. ORPI and ORFI execute an OR operation with the previous operation result, and take the resulting value as the operation result.
The an end off data used by ORFI and ORFI execute in disated in the table below.

Device Specified	d in ORPI or ORFI		
Bit Device	Bit Designated for Word Device	Designated for ORPI State Vord Device	
OFF to ON	0 to 1	OFF	ON
OFF	0	ON	ON
ON	1	ON	ON
ON to OFF	1 to 0	ON	OFF

The on or off data used by ORPI and ORFI are indicated in the table below.

Operation Error

(1) There are no operation errors with LDPI, LDFI, ANDPI, ANDFI, ORPI, or ORFI instruction.

Program Example

(1) The following program stores 0 into D0 when X0 is on, off, or turns from on to off, or M0 is on, off, or turns from off to on.

[Ladder Wode]					LIST IVI	odej		
X0	From	70	D.O.		Step	Instruction	De	vice
	Luov	KU	10	Ľ	0	LDPI	XO	
MO					3	ORFI	MO	
					7	MOV	КO	DO
			F	_	9	END		
9			END	1				

(2) The following program stores 0 into D0 when X0 is on and b10 (bit 11) of D0 is on, off, or turns from on to off.

5.2 Association Instructions

5.2.1 Ladder block series connection and parallel connection (ANB,ORB)

Grant Function

ANB

- (1) Performs an AND operation on block A and block B, and takes the resulting value as the operation result.
- (2) The symbol for ANB is not the contact symbol, but rather is the connection symbol.
- (3) When programming in the list mode, up to 15 ANB instructions (16 blocks) can be written consecutively.

ORB

- (1) Conducts an OR operation on Block A and Block B, and takes the resulting value as the operation result.
- (2) ORB is used to perform parallel connections for ladder blocks with two or more contacts. For ladder blocks with only one contact, use OR or ORI; there is no need for ORB in such cases.

- (3) The ORB symbol is not the contact symbol, but rather is the connection symbol.
- (4) When programming in the list mode, it is possible to use up to 15 ORB instructions successively (16 blocks).

Poperation Error

(1) There are no operation errors associated with ANB or ORB instruction.

Program Example

(1) A program using the ANB and ORB instructions.

5.2.2 Operation results push, read, pop (MPS, MRD, MPP)

Basic High performance Process Redundant Universal

MPS

- (1) Stores the memory of the operation result (ON or OFF) immediately prior to the MPS instruction.
- (2) Up to 16 MPS instructions can be used successively. If the MPP instruction is used during this process, the number of uses calculated for the MPS instruction will be decremented by one.

MRD

(1) Reads the operation result stored for the MPS instruction, and uses that result to perform the operation in the next step.

MPP

- (1) Reads the operation result stored for the MPS instruction, and uses that result to perform the operation in the next step.
- (2) Clears the operation results stored by the MPS instruction.
- (3) Subtracts 1 from the number of MPS instruction times of use.

1. The following shows ladders both using and not using the MPS, MRD, and MPP instructions.

 The MPS and MPP instructions must be used the same number of times. Failure to observe this will not correctly display the ladder in the ladder mode of the peripheral device.

Operation Error

(1) There are no errors associated with the MPS, MRD, or MPP instruction.

Program Example

- [List Mode] X1C 1) Ma Step Instruction Device -CY30 X1C 1) **(**Y31 2) M8 Y30 345 X1D 3) M9 4) M68 2) **(**Y32 Y31 X1D 4 1 3) M9 5) **(**Y33 9 10 4) M68 Y32 6) -(Y34 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 5) T0 Y33 X1E M81 7) M96 -(Y35 6) Y34 X1E M81 M97 8) **(**Y36 7) M96 Y35 M98 9) **-(**Y37 8) M97 Y36 **-(**Y38 9) 10) M98 Y37 10) -[END 30 Y38
- (1) A program using the MPS, MRD, and MPP instructions. [Ladder Mode]

0 10 20	
1 MPS 2 AND X1	
3 MPS	
4 AND XZ 5 MPS	
6 AND X3	
/ MPS 8 AND X4	
9 MPS	
10 AND X5 11 MPS	
12 AND X6	
13 MPS 14 AND X7	
15 MPS	
16 AND X8	
18 AND X9	
19 MPS 20 AND YOA	
20 AND X0A 21 OUT Y0	
22 MPP	
23 001 141 24 MPP	
25 OUT Y42	
26 MPP 27 OUT Y43	
28 MPP	
29 001 144 30 MPP	
31 OUT Y45	
32 MPP 33 OUT Y46	
34 MPP	
35 OUT Y47 36 MPP	
37 OUT Y48	
38 MPP 30 OUT V40	
40 MPP	
41 OUT Y4A 42 END	

5.2.3 Operation results inversion (INV)

	Basic High performance Process Redundant Universal
INV Command	<u>→</u> →
Setting DataInternal DevicesBitWord	J∭\ Bit Word U∭\G∭ Zn Constants Other
Function	
Inverts the operation result immediately p	rior to the INV instruction.
Operation Result Immediately Prior to the INV Instruction	Operation Result Following the Execution of the INV Instruction
OFF	ON
ON	UFF
 (1) There are no operation errors associated associated as a second contract of the second contract o	ated with the INV instruction. DFF data, and outputs from Y10. [List Mode]
	Step Instruction Device
0	
3LEN	D 3 2 001 910 3 END
[Timing Chart]	
Y10 OFF	

- 1. The INV instruction operates based on the results of calculation made until the INV instruction is given. Accordingly, use it in the same position as that of the AND instruction.
 - The INV instruction cannot be used at the LD and OR positions.
- 2. When a ladder block is used, the operation result is inverted within the range of the ladder block. To operate a ladder using the INV instruction in combination with the ANB instruction, pay attention to the range that will be inverted.

For details of the ANB instruction, refer to Section 5.2.1

5.2.4 Operation result conversions (MEP,MEF)

5.2.5 Pulse conversions of edge relay operation results (EGP,EGF)

Grant Function

EGP

- (1) Operation results up to the EGP instruction are stored in memory by the edge relay (V).
- (2) Goes ON (continuity status) at the leading edge (OFF to ON) of the operation result up to the EGP instruction.

If the operation result up to the EGP instruction is other than a leading edge (i.e., from ON to ON, ON to OFF, or OFF to OFF), it goes OFF (non-continuity status).

- (3) The EGP instruction is used for subroutine programs, and for conducting pulse operations for programs designated by indexing between the FOR and NEXT instructions.
- (4) The EGP instruction can be used like an AND instruction.

EGF

- (1) Operation results up to the EGF instruction are stored in memory by the edge relay (V).
- (2) Goes ON at the trailing edge (from ON to OFF) of the operation result up to the EGF instruction.

If the operation result up to the EGF instruction is other than a trailing edge (i.e., from OFF to ON, ON to ON, or OFF to OFF), it goes OFF (non-continuity status).

- (3) The EGF instruction is used for subroutine programs, and for conducting pulse operations for programs designated by indexing between the FOR and NEXT instructions.
- (4) The EGF instruction can be used like an AND instruction.

Coperation Error

(1) There are no operation errors associated with the EGP or EGF instruction.

Program Example

(1) A program using the EGP instruction in the subroutine program using the EGD instruction [Ladder Mode][List Mode]

 Since the EGP and EGF instructions are executed according to the operation results performed immediately before the EGP/EGF instructions, these instructions must be used at the same position as the AND instruction. (Refer to Section 5.1.1.)

The EGP and EGF instruction cannot be used at the position of the LD or OR instruction.

2. EGP and EGF instructions cannot be used at the ladder block positions shown below.

5.3 Output Instructions

5.3.1 Out instruction (excluding timers, counters, and annunciators) (OUT)

Grant Function

- (1) Operation results up to the OUT instruction are output to the designated device.
 - (a) When Using Bit Devices

Operation Results	Coil
OFF	OFF
ON	ON

(b) When Bit Designation has been Made for Word Device

Operation Results	Bit Designated
OFF	0
ON	1

Operation Error

(1) There are no operation errors associated with the OUT instruction.

Program Example

(1) When using bit devices [Ladder Mode]

(2) When bit designation has been made for word device [Ladder Mode] [List Mode]

5.3.2 Timers (OUT T,OUTH T)

Basic

Process

Redundant

Universal

Grant Function

(1) When the operation results up to the OUT instruction are ON, the timer coil goes ON and the timer counts up to the value that has been set; when the time up status (total numeric value is equal to or greater than the setting value), the contact responds as follows:

A Contact	Continuity
B Contact	Non-continuity

(2) The contact responds as follows when the operation result up to the OUT instruction is a change from ON to OFF:

Type of Timer Timer Coil	Present Value of Prior to Time Up		me Up	After Time Up		
Type of filler		Timer	A Contact	B Contact	A Contact	B Contact
Low speed timer	OFF	0	Non-continuity	Continuity	Non-continuity	Continuity
High speed timer	011	Ū	Non-continuity	Continuity	Non-continuity	Continuity
Low speed						
retentive timer	OFF	Maintains the	Non-continuity	Continuity	Continuity	Non-continuity
High speed		present value	,	,	,	
retentive timer						

- (3) To clear the present value of a retentive timer and turn the contact OFF after time up, use the RST instruction.
- (4) A negative number (-32768 to -1) cannot be set as the setting value for the timer.^{*3} If the setting value is 0, the timer will time out when the time the OUT instruction is executed.
 - *3: When specifying a setting value for the timer using a word device (D, W, R, ZR, JEME) or UEME), whether the value is in the setting range is not checked. Check the value in the user program so that a negative number is not set.
- (5) The following processing is conducted when the OUT instruction is executed:
 - OUT T \boxdot coil turned ON or OFF
 - OUT T□ contact turned ON or OFF
 - OUT T present value updated

In cases where a JMP instruction or the like is used to jump to an OUT T \square instruction while the OUT T \square instruction is ON, no present value update or contact ON/OFF operation is conducted.

Also, if the same OUT T instruction is conducted two or more times during the same scan, the present value of the number of repetitions executed will be updated.

(6) Indexing for timer coils or contacts can be conducted only by Z0 or Z1. Timer setting value has no limitation for indexing.

Remark •••••			
--------------	--	--	--

1. Timer's time limit

Time limit of the timer is set in the PLC system of the PLC parameter dialog box.

Type of Timer	QCPU		
Type of filler	Setting Range	Setting Unit	
Low speed timer Low speed retentive timer	1 ms to 1000 ms (Default: 100 ms)	1 ms	
High speed timer High speed retentive timer	0.1 ms to 100.0 ms (Default: 10.0 ms)	0.1 ms	

- 2. For information on timer counting methods, User's Manual
 - (Functions Explanation, Program Fundamentals) for the CPU module used.

3. The number of basic steps of the OUT C \square instruction is 4.

(1) There are no operation errors associated with the OUT T \square instruction.

Caution

(1) When creating a program in which the operation the timer contact triggers the operation of other timer, create the program for the timer that operates later first.

In the following cases, all timers go ON at the same scan if the program is created in the order the timers operate.

- If the set value is smaller than a scan time.
- If "1" is set

Example

• For timers T0 to T2, the program is created in the order the timer operates later.

• For timers T0 to T2, the program is created in the order of timer operation.

Program Example

(1) The following program turns Y10 and Y14 ON 10 seconds after X0 has gone ON.[Ladder Mode][List Mode]

- *3: The setting value of the low-speed timer indicates its default time limit (100 ms).
- (2) The following program uses the BCD data at X10 to X1F as the timer's set value. [Ladder Mode]

Converts the BCD data at X10 to X1F to BIN and stores the converted value at D10. When X2 is turned ON, T2 starts measurement using the data stored in D10 as the set value. Y15 goes ON at the count-up of T2.

[List Mode]

(3) The following program turns Y10 ON 250 ms after X0 goes ON. [Ladder Mode] [List Mode]

*4: The setting value of the high-speed timer indicates its default time limit (10 ms).

5.3.3 Counter (OUT C)

				Basic	High performance Pro	Redundant	Universal
	Command				50 Set Set frc	t value etting in the ra om 1 to 32767 t value ata register va e range from 2 ?767 is valid.	nge is valid.) lue in 1 to
	D : Co Set value : Co	ounter number (l ounter setting va	oits) lue (BIN 16	bits ^{*1})			
Setting Data	Internal Devices Bit Wor	R, ZR	J Bit	VIII VIII\GIII	Zn	Constants K	Other
D	(Only C) —	-	_			_	
Set value	O(Ot than T	her , C)	_	0	_	○ *2	_
*1: Cou	nter value cannot	be set by indi	rect desigr	ation.			
See *2: Cour	Section 3.4 for fu	rther informati	ion on indir	ect designation is ermitted. ect designation. constant (K). A hexadec	imal constan	it (H) or a real	number

Grant Function

(1) When the operation results up to the OUT instruction change from OFF to ON, 1 is added to the present value (count value) and the count up status (present value ≥ set value), and the contacts respond as follows:

A Contact	Continuity
B Contact	Non-continuity

- (2) No count is conducted with the operation results at ON. (There is no need to perform pulse conversion on count input.)
- (3) After the count up status is reached, there is no change in the count value or the contacts until the RST instruction is executed.
- (4) A negative number (-32768 to -1) cannot be set as the setting value for the timer. If the set value is 0, the processing is identical to that which takes place for 1.
- (5) Indexing for the counter coil and contact can use only Z0 and Z1.

Counter setting value has no limitation for indexing.

P Operation Error

(1) There are no operation errors associated with the OUT C \square instruction.

Program Example

(1) The following program turns Y30 ON after X0 has gone ON 10 times, and resets the counter when X1 goes ON.

(2) The following program sets the value for C10 at 10 when X0 goes ON, and at 20 when X1 goes ON.

Stores 10 at D0 when X0 goes ON.

Stores 20 at D0 when X1 goes ON.

C10 executes counting using the data stored in D0 as the set value.

Y30 goes ON at the count-up of C10.

[List Mode]

Step	Instruction	[Device	
0 1 2 4 5 6 8 9	LD AN I MOVP LD AN I MOVP LD OUT	X0 X1 K10 X1 X0 K20 X3 C10	DO DO DO	
13 14	LD OUT	C10 Y30		

5.3.4 Annunciator output (OUT F)

Operation Error

- (1) There are no operation errors associated with the OUT F^{\odot} instruction.
 - Remark ••
 - <u>rk</u>
 - 1. For details of annunciators, refer to the User's Manual (Functions Explanation, Program Fundamentals) for the CPU module used.
 - 2. The number of basic steps for the OUT module F^{\Box} instruction is 2.
 - 3. The table below shows which CPU module features either the LED display device on front of the CPU module or "USER" LED.

Type of LED	CPU Module Type Name
"USER" LED	High Performance model QCPU, Process CPU, Redundant CPU, Universal model QCPU
"ERR." LED	Basic model QCPU

Program Example

 The following program turns F7 ON when X0 goes ON, and stores the value 7 from SD64 to SD79.

[Operation]

5.3.5 Setting devices (except for annunciators) (SET)

				Basic	High performance Pro	ccess Redundant	Universal
	SET	Command			SET	D	
	D : Bit devi	ce number to be se	t (ON)/Word device bit c	lesignation (bit	5)		
	Setting Internal Device Data Bit W	ord R, ZR	J∷∐∖!∷] Bit Word	U\G	Zn	Constants	Other BL, DY
		(Other than T, C)	0				0
🗘 Func	ion						
	(1) When the execution of as shown below:	command is to	urned ON, the sta	atus of the	designate	ed devices b	ecomes

Device	Device Status
Bit device	Coils and contacts turned ON
When Bit Designation has been Made for Word Device	Designation bit set at 1

(2) Devices turned ON by the instruction remain ON when the same command is turned OFF. Devices turned ON by the SET instruction can be turned OFF by the RST instruction.

(3) When the execution command is OFF, the status of devices does not change.

Operation Error

(1) There are no operation errors associated with the SET instruction.

Program Example

(1) The following program sets Y8B (ON) when X8 goes ON, and resets Y8B (OFF) when X9 goes ON.

[Ladder Mode]

[List Mode]

(2) The following program sets the value of D0 bit 5 (b5) to 1 when X8 goes ON, and set the bit value to 0 when X9 goes ON.

5.3.6 Resetting devices (except for annunciators) (RST)

					Basic	High performance	Process Redund	ant Universal
	RST _	Com	nand		[RST	D	-
		(D) : Bit device nur Word device nur	nber to be re number to be	eset/ Word device bit des e reset (BIN 16 bits)	signation (bits)			
	Setting Data	Internal Devices Bit Word	R, ZR	J∰¥∰ Bit Word	U∭¥G∭	Zn	Constants	Other DY
	D			0			_	0
☆ Functio	n							

(1) When the execution command is turned ON, the status of the designated devices becomes as shown below:

Device	Device Status
Bit device	Turns coils and contacts OFF
Timers and counters	Sets the present value to 0, and turns coils and contacts OFF
When Bit Designation has been Made for Word Device	Sets value of designated bit to 0
Word devices other than timers and counters	Sets contact to 0

- (2) When the execution command is OFF, the status of devices does not change.
- (3) The functions of the word devices designated by the RST instruction are identical to the following ladder:

Operation Error (1) There are no operation errors associated with the RST instruction. Remark The basic number of steps of the RST instruction is as follows. a) For bit processing • Internal device (bit to be specified by bit device or word device) : 1 · Direct access output :2 · Timer, counter :4 · When using serial number access format file register (Only for Universal model QCPU) :2 (Other than Universal model QCPU) : 3 · Other than above :3 b) For word processing Internal device :2 Index resister : 2 · When using serial number access format file register (Only for Universal model QCPU) : 2 (Other than Universal model QCPU) : 3 Other than above : 3

Program Example

 The following program sets the value of the data register to 0. [Ladder Mode]

Stores the contents at X10 to X1F in D8 when X0 is turned ON. Resets D8 to 0 when X5 is turned ON.

[List Mode]

Steps	Instruction	Device
0 1 3 4 6	LD MOV LD RST END	X0 K4X10 D8 X5 D8

(2) The following program resets the 100 ms retentive timer and counter. [Ladder Mode]

2

)

When ST225 is set as retentive timer, it is turned ON when X4 ON time reaches 30 min. Counts the number of times ST225 was turned ON. Resets the coil, contact and present value of ST225 when the contact of ST225 is turned ON.

Y55 goes ON at the count-up of C23.

Resets C23 to 0 when X5 is turned ON.

[List Mode]

Step	Instruction	D)evice
0 1 5 6 10 14 15 16 17	LD OUT LD OUT RST LD OUT LD RST	X4 ST225 ST225 C23 ST225 C23 ST225 C23 Y55 X5 C23	K18000 K16

5.3.7 Setting and resetting the annunciators (SET F,RST F)

				Basic	High performance Pro	DCESS Redundant	Universal
SET	- <u>_</u>	Command		[SET	D -	-
RST		Command		[RST	D -	-
	SET (D) : Nu RST (D) : Nu	mber of the annun	ciator to be set (F numbe ciator to be reset (F num	er) (bits) ber) (bits)			
Se	tting Internal Device ata Bit Wo	es R, ZR	J Bit Word	U∭\G∭	Zn	Constants	Other
(D (Only F)						
☆ Function							
SET							

- (1) The annunciator designated by **(**) is turned ON when the execution command is turned ON.
- (2) The following responses occur when an annunciator (F) is turned ON.
 - The "USER" LED goes ON.*1
 - The annunciator numbers which are ON (F numbers) are stored in special registers (SD64 to SD79).
 - The value of SD63 is incremented by 1.

*1: When using the Basic model QCPU, the "ERR."LED goes ON.

(3) If the value of SD63 is 16 (which happens when 16 annunciators are already ON), even if a new annunciator is turned ON, its number will not be stored at SD64 to SD79.

RST

- (1) The annunciator designated by \bigcirc is turned OFF when the execution command is turned ON.
- (2) The annunciator numbers (F numbers) of annunciators that have gone OFF are deleted from the special registers (SD64 to SD79), and the value of SD63 is decremented by 1.

Remark
1. For details of annunciators, refer to the User's Manual (Functions Explanatio Program Fundamentals) for the CPU module used.

2. The number of basic steps for the SET F^{\Box} and RST F^{\Box} instructions is 2.

(3) When the value of SD63 is "16", the annunciator numbers are deleted from SD64 to SD79 by the use of the RST instruction. If the annunciators whose numbers are not registered in SD64 to SD79 are ON, these numbers will be registered.

If all annunciator numbers from SD64 to SD79 are turned OFF, the LED display device on the front of the CPU module, or the "USER" LED, will be turned OFF.^{*2}

*2: When using the Basic model QCPU, the "ERR." LED goes OFF.

[Operations which take place when SD63 is 16]

Coperation Error

(1) There are no operation errors associated with the SET $F \square$ or RST $F \square$ instruction.

Program Example

(1) The following program turns annunciator F11 ON when X1 goes ON, and stores the value 11 at the special register (SD64 to SD79). Further, the program resets annunciator F11 if X2 goes ON, and deletes the value 11 from the special registers (SD64 to SD79).

[Operation]

5-36

5.3.8 Leading edge and trailing edge outputs (PLS,PLF)

FUNCTION

PLS

(1) Turns ON the designated device when the execution command is turned OFF \rightarrow ON, and turns OFF the device in any other case the execution command is turned OFF \rightarrow ON (i.e., at ON \rightarrow ON, ON \rightarrow OFF or OFF \rightarrow OFF of the execution command).

When there is one PLS instruction for the device designated by $_{\textcircled{D}}$ during one scan, the specified device turns ON one scan.

See Section 3.9 for the operation to be performed when the PLS instruction for the same device is executed more than once during one scan.

(2) If the RUN/STOP key switch is changed from RUN to STOP after the execution of the PLS instruction, the PLS instruction will not be executed again even if the switch is set back to RUN.

(3) When designating a latch relay (L) for the execution command and turning the power supply OFF to ON with the latch relay ON, the execution command turns OFF to ON at the first scan, executing the PLS instruction and turning ON the designated device.

The device turned ON at the first scan after power-ON turns OFF at the next PLS instruction.

PLF

(1) Turns ON the designated device when the execution command is turned ON→OFF, and turns OFF the device in any other case the execution command is turned ON → OFF (i.e., at OFF → OFF, OFF → ON or ON → ON of the execution command).

When there is one PLF instruction for the device designated by $_{\bigcirc}$ during one scan, the specified device turns ON one scan.

See Section 3.9 for the operation to be performed when the PLF instruction for the same device is executed more than once during one scan.

(2) If the RUN/STOP key switch is changed from RUN to STOP after the execution of the PLF instruction, the PLF instruction will not be executed again even if the switch is set back to RUN.

POINT –

Note that the device designated by D may remain ON for more than one scan if the PLS or PLF instruction is jumped by the CJ instruction or if the executed subroutine program was not called by the CALL instruction.

Operation Error

(1) There are no operation errors associated with the PLS or PLF instruction.

Program Example

(1) The following program executes the PLS instruction when X9 goes ON.[Ladder Mode][List Mode]

(2) The following program executes the PLF instruction when X9 goes OFF. [Ladder Mode] [List Mode]

5.3.9 Bit device output reverse (FF)

				Basic	High performance Pro	cess Redundant	Universal
	FF	Command		[FF		+
D : Device number of the device to be reversed (bits)							
	Setting Data	Internal Devices Bit Word	J∷i∖∷i Bit Word	U∭\G∭	Zn	Constants	Other DY
	D		0		-		0
्रे F	unction	_					

Reverses the output status of the device designated by

 when the execution command is turned OFF→ON.

Device	Device Status			
	Prior to FF Execution	After FF Execution		
Bit device	OFF	ON		
	ON	OFF		
Bit designated for word device	0	1		
	1	0		

Operation Error

(1) There are no operation errors associated with the FF instruction.

Program Example

(1) The following program reverses the output of Y10 when X9 goes ON.[Ladder Mode][List Mode]

[Timing Chart]

5.3.10 Pulse conversions of direct outputs (DELTA(P))

Basic High performance Process Redundant Universal
DELTA Command DELTA DELTA D DELTAP Command DELTAP D
 Bit for which pulse conversion is to be conducted (bits)
Setting Data Internal Devices R, ZR JIII/III UIII/GIII Zn Other DY D O
S Function
 (1) Conducts pulse output of direct access output (DY) designated by If DELTA DY0 has been designated, the resulting operation will be identical to the ladder shown below, which uses the SET/RST instructions. [Ladder using the DELTA instruction] [Ladder using the DELTA instruction] [Ladder using the DELTA DY0 + D
[Operation] END processing DELTA DY0 DELTA DY0 ON X100 OFF ON DY0 OFF
(2) The DELTA (P) instruction is used by commands for leading edge execution for an intelligent function module.

- (1) In the following case, an operation error occurs, the error flag (SM0) turns ON, and an error code is stored into SD0.
 - A direct access output number designated by <a>b has exceeded the CPU module output range. (Error code: 4101)

Program Example

(1) The following program presets CH1 of the AD61 mounted at slot 0 of the main base unit, when X20 goes ON.

[Ladder Mode]

Stores preset value (0) at addresses 1 and 2 of the AD61 buffer memory.

[List Mode]

Function

5.4 Shift Instructions

5.4.1 Bit device shifts (SFT(P))

Basic	performance Process Re	dundant Universal
SFTPCommand SFTPCommand	SFT D	
(b) : Device number to shift (bits)		
Setting Data Internal Devices R, ZR Jiii\iii Bit Word Bit Word D Other than T, C)	Zn Const	ants Other DY

- (1) When bit device is used
 - (a) Shifts to a device designated by b the ON/OFF status of the device immediately prior to the one designated by b, and turns the prior device OFF. For example, if M11 has been designated by the SFT instruction, when the SFT instruction is executed, it will shift the ON/OFF status of M10 to M11, and turn M10 OFF.
 - (b) Turn the first device to be shifted ON with the SET instruction.
 - (c) When the SFT and SFTP are to be used consecutively, the program starts from the device with the larger number.

(2) When word device bit designation is used

to 0.

(a) Shifts to a bit in the device designated by
 (b) the 1/0 status of the bit immediately prior to the one designated by
 (c) and turns the prior bit to 0.
 (c) For example, if D0.5 (bit 5 [b5] of D0) has been designated by the SFT instruction, when the SFT instruction is executed, it will shift the 1/0 status of b4 of D0 to b5, and turn b4

Operation Error

- (1) In the following case, an operation error occurs, the error flag (SM0) turns ON, and an error code is stored into SD0.

Program Example

 The following program shifts Y57 to Y5B when X8 goes ON. [Ladder Mode]

Basic High Process Redundant Un

5.5 Master Control Instructions

5.5.1 Setting and resetting the master control (MC,MCR)

MC	n D	
	Master control ladder	
MCR	MCR n	
	 n : Nesting (N0 to N14) (Nesting) (D) : Device number to be turned ON (bits) 	
Setting Data	Internal Devices R, ZR Jiii/iii Uiii/Giii Zn Constants	other
n		
D	0 – –	0

Function

The master control instruction is used to enable the creation of highly efficient ladder switching sequence programs, through the opening and closing of a common bus for ladders.

A ladder using the master control is as follows:

MC

(1) If the execution command of the MC instruction is ON when master control is started, the result of the operation from the MC instruction to the MCR instruction will be exactly as the instruction (ladder) shows.

If the execution command of the MC instruction is OFF, the result of the operation from the MC instruction to the MCR instruction will be as shown below:

Device	Device Status		
High speed timer Low speed timer	Count value goes to 0, coils and contacts all go OFF.		
High speed retentive timer Low speed retentive timer Counter	Coils go OFF, but counter values and contacts all maintain current status.		
Devices in OUT instruction	All turned OFF		
SET, RST SFT Basic, Application	Maintain current status		

(2) Even when the MC instruction is OFF, instructions from the MC instruction to the MCR instruction will be executed, so scan time will not be shortened.

When a ladder with master control contains instructions that do not require any contact instruction (such as FOR to NEXT, EI, DI instructions), the CPU module executes these instructions regardless of the ON/OFF status of the MC instruction execution command.

- (3) By changing the device designated by D, the MC instruction can use the same nesting (N) number as often as desired.

MCR

- (1) This is the instruction for recovery from the master control, and indicates the end of the master control range of operation.
- (2) Do not place contact instructions before the MCR instruction.
- (3) Use the MC instruction and MCR instruction of the same nesting number as a set. However, when the MCR instructions are nested in one place, all master controls can be terminated with the lowest nesting (N) number. (Refer to the "Precautions for nesting" in the program example.)

Coperation Error

(1) There are no operation errors associated with the MC or MCR instruction.

Program Example

The master control instruction can be used in nesting. The different master control regions are distinguished by nesting (N). Nesting can be performed from N0 to N14.

The use of nesting enables the creation of ladders which successively limit the execution condition of the program.

A ladder using nesting would appear as shown below:

Cautions when Using Nesting Architecture

(1) Nesting can be used up to 15 times (N0 to N14)

When using nesting, nests should be inserted from the lower to higher nesting number (N) with the MC instruction, and from the higher to the lower order with the MCR instruction. If this order is reversed, there will be no nesting architecture, and the CPU module will not be capable of performing correct operations. For example, if nesting is designated in the order N1 to N0 by the MC instruction, and also designated in the N1 to N0 order by the MCR instruction, the vertical bus will intersect and a correct master control ladder will not be produced.

(2) If the nesting architecture results in MCR instructions concentrated in one location, all master controls can be terminated by use of just the lowest nesting number (N).

5.6 Termination Instructions

5.6.1 End main routine program (FEND)

Operation Error

- (1) In any of the following cases, an operation error occurs, the error flag (SM0) turns ON, and an error code is stored into SD0.
 - The FEND instruction is executed after the execution of the CALL, FCALL, ECALL, or EFCALL instruction, and before the execution of the RET instruction.

(Error code: 4211)

- The FEND instruction is executed after the execution of the FOR instruction, and before the execution of the NEXT instruction. (Error code: 4200)
- The FEND instruction is executed during an interrupt program, and before the execution of the IRET instruction. (Error code: 4221)
- The FEND instruction is executed between the CHKCIR and CHKEND instructions.

(Error code: 4230)

• The FEND instruction is executed between the IX and IXEND instructions.

(Error code: 4231)

Program Example

 The following program uses the CJ instruction. [Ladder Mode]

When XB is ON, the program jumps to label P23 and the steps that follow P23 are executed.

Executed when XB is OFF.

Indicates the termination of the sequence program to be executed when XB is OFF.

[List Mode]

Step	Instruction	Device
0	LD	XO
1	OUT	Y20
2	LD	XOB
3	CJ	P23
5	LD	X13
6	OUT	Y30
7	LD	X14
8	OUT	Y31
9	FEND	
10	P23	
11	LD	X1
12	OUT	Y22
13	END	

5.6.2 End sequence program (END)

Grant Function

(1) Indicates termination of programs, including main routine program, subroutine program, and interrupt programs.

Execution of the END instruction will cause the CPU module to terminate the program that was being executed.

- (2) The END instruction cannot be used during the execution of the main sequence program. If it is necessary to perform END processing during the execution of a program, use the FEND instruction.
- (3) When programming in the ladder mode of a peripheral device, it is not necessary to input the END instruction.

(4) The use of the END and FEND instructions is broken down as follows for main routine programs, subroutine programs, and interrupt programs:

Main routine program			
FEND			
Subroutine program		Main seq	uence
	L	program	aica
Interrupt program			
END	\Box (END instruction is necessary.)		<u>r_</u>

Operation Error

- (1) In any of the following cases, an operation error occurs, the error flag (SM0) turns ON, and an error code is stored into SD0.
 - The END instruction was executed before the execution of the RET instruction and after the execution of the CALL, FCALL, ECALL, or EFCALL instruction.

(Error code: 4211)

 The END instruction was executed before the execution of the NEXT instruction and after the execution of the FOR instruction.

(Error code: 4200)

 The END instruction was executed during an interrupt program prior to the execution of the IRET instruction.

(Error code: 4221)

- The END instruction was executed within the CHKCIR to CHKEND instruction loop.
 (Error code: 4230)
- The END instruction was executed within the IX to IXEND instruction loop.
 (Error code: 4231)

5.7 Other instructions

5.7.1 Sequence program stop (STOP)

				Basic	erformance Proc	Redundant	Universal
ST		Command				STOP	-
	Setting Internal Devi Data Bit V	vord R, ZR	J∭\∏ Bit Word	U∭\G∭	Zn	Constants	Other

Grant Function

(1) Resets the output (Y) and stops the CPU module operation when the execution command is turned ON.

(The same result will take place if the RUN/STOP (key) switch is turned to the STOP setting.)

(2) Execution of the STOP instruction will cause the value of b4 to b7 of the special register SD203 to become "3".

(3) In order to restart CPU module operations after the execution of the STOP instruction, return the RUN/STOP key switch, which has been changed from RUN to STOP, back to the RUN position.

Operation Error

- (1) In any of the following cases, an operation error occurs, the error flag (SM0) turns ON, and an error code is stored into SD0.
 - The STOP instruction was executed before the execution of the RET instruction and after the execution of the CALL/FCALL/ECALL/EFCALL/XCALL instruction.

(Error code: 4211)

- The STOP instruction was executed before the execution of the NEXT instruction and after the execution of the FOR instruction. (Error code: 4200)
- The STOP instruction was executed during an interrupt program prior to the execution of the IRET instruction.
 (Error code: 4221)
- The STOP instruction was executed within the CHKCIR to CHKEND instruction loop.
 (Error code: 4230)
- The STOP instruction was executed within the IX to IXEND instruction loop.

(Error code: 4231)

The STOP instruction was executed during the fixed scan execution type program.
 (For the Universal model QCPU only)
 (Error code: 4223)

Program Example

 The following program stops the CPU module when X8 goes ON. [Ladder Mode]

Stops the programmable controller when X8 goes ON.

Sequence program

[List Mode]

Step	Instruction	Device
0	LD	X8
2		XOA
3 4	OUT LD	Y13 XOB
5 6	OUT END	Y23

5.7.2 No operations (NOP,NOPLF,PAGE n)

Basic Process Redundant Universal In the ladder display, NOP is not displayed. Command NOP NOP NOPLF NOPLF PAGE n PAGE n Setting Internal Devices Constants R, ZR U....\G.... Zn Other Data Word Ri Word

Granitical Function

NOP

- (1) This is a no operation instruction that has no impact on any operations up to that point.
- (2) The NOP instruction is used in the following cases:
 - (a) To insert space for sequence program debugging.
 - (b) To delete an instruction without having to change the number of steps. (Replace the instruction with NOP.)
 - (c) To temporarily delete an instruction.

NOPLF

- (1) This is a no operation instruction that has no impact on any operations up to that point.
- (2) The NOPLF instruction is used when printing from a peripheral device to force a page change at any desired location.
 - (a) When printing ladders
 - A page break will be inserted between ladder blocks with the presence of the NOPLF instruction.
 - The ladder cannot be displayed correctly if an NOPLF instruction is inserted in the midst of a ladder block.

Do not insert an NOPLF instruction in the midst of a ladder block.

- (b) When printing instruction lists
 - The page will be changed after the printing of the NOPLF instruction.
- (3) Refer to the Operating Manual for the peripheral device in use for details of printouts from peripheral devices.

PAGE n

- (1) This is a no operation instruction that has no impact on any operations up to that point.
- (2) No processing is performed at peripheral devices with this instruction.

Operation Error

(1) There are no errors associated with the NOP, NOPLF, or PAGE instruction.

Program Example

NOP

- (1) Contact closed Deletes the AND or ANI instruction.
 - [Ladder Mode]

[List Mode]

(2) Contact closed....LD, LDI changed to NOP. (Note carefully that changing the LD and LDI instructions to NOP completely changes the nature of the ladder.)

[Ladder Mode]

Before change

[List Mode]

NOPLF

[Ladder Mode]

[List Mode]

)

• Printing the ladder will result in the following:

• Printing an instruction list with the NOPLF instruction will result in the following:

PAGE n

[List Mode]										
Step	Instruction	Device								
0 1 2 3 4 5 6 7 8 9 10 11	PAGE LD AND OUT LD OUT NOPLF PAGE LD OUT END	K5 X0 Y1 Y2 Y1 K6 X3 Y2								

BASIC INSTRUCTIONS

Category	Processing Details	Reference Section
Comparison operation instruction	Compares data to data.	Section 6.1
Arithmetic operation instruction	Adds, subtracts, multiplies, divides, increments, or decrements data with other data.	Section 6.2
Data conversion instructions	Converts data types.	Section 6.3
Data transfer instruction	Transmits designated data.	Section 6.4
Program branch instruction	Program jumps.	Section 6.5
Program run control instruction	Enables and disables program interrupts.	Section 6.6
I/O refresh instruction	Refreshes bit devices.	Section 6.7
Other convenient instructions	Up/down counters, teaching timers, special function timers, rotary table shortest direction controls, etc.	Section 6.8

6.1 Comparison Operation Instructions

6.1.1 BIN 16-bit data comparisons (=,<>,>,<=,<,>=)

indicates an instruction symbol of =/ <>/>>/

LD

AND

Command

OR

Command

Command

Si< Si</td>

OR

(b), (c) : Data for comparison or head number of the devices where the data for comparison is stored (BIN 16 bits)

Basic

Process Redundant Universal

Data Bit Word N, EX Bit Word Di(Gi) En K, H Output Si	Setting	Internal Devices		R ZR J∭\∭			7n	Constants	Other	
	Data	Bit	Word	Ν, ΖΝ	Bit	Word	0::\G::	<u> </u>	К, Н	Other
	§1	0								_
	62	0								

Grant Function

- (1) Treats BIN 16-bit data from device designated by (s) and BIN 16-bit data from device designated by (s) as an a normally-open contact, and performs comparison operation.
- (2) The results of the comparison operations for the individual instructions are as follows:

Instruction Symbol in	Condition	Comparison Operation Result	Instruction Symbol in	Condition	Comparison Operation Result
=	§2 = §1		=	$(51) \neq (52)$	
< >	S1 ≠ S2		< >	§2 = §1	
>	§1 > §2	Continuity	>	\$1 ≦ \$2	Non-continuity
<=	\$1 ≦ \$2	Continuity	<=	\$1 > \$2	Non continuity
<	61 < 62		 	\$1 ≧ \$2	
>=	$(51) \ge (52)$		>=	S1 < S2	

(3) When and are assigned by a hexadecimal constant and the numerical value (8 to F) whose most significant bit (b15) is "1" is designated as a constant, the value is considered as a negative BIN value in comparison operation.

Operation Error

(1) There are no operation errors associated with the =, <>, >, <=, <, or >= instruction.

Program Example

(1) The following program compares the data at X0 to XF with the data at D3, and turns Y33 ON if the data is identical.

(2) The following program compares BIN value K100 to the data at D3, and establishes continuity if the data in D3 is something other than 100.

(3) The following program compares the BIN value 100 with the data at D3, and establishes continuity if the D3 data is less than 100.

(4) The following program compares the data in D0 and D3, and if the data in D0 is equal to or less than the data in D3, establishes continuity.

6.1.2 BIN 32-bit data comparisons (D=,D<>,D>,D<=,D<,D>=)

Basic High performance Process Redundant Universal

(s), (s) : Data for comparison or head number of the devices where the data for comparison is stored (BIN 32 bits)

Setting	Internal	Devices	R 7R	J\		U ^m \G ^m	u ^m \c	ui a Zn	7n	Constants	Other
Data	Bit	Word	,	Bit	Word	0		К, Н	o tinoi		
S1	0						—				
62					0				_		

Grant Function

- (1) Treats BIN 32-bit data from device designated by (5) and BIN 32-bit data from device designated by (5) as an a normally-open contact, and performs comparison operation.
- (2) The results of the comparison operations for the individual instructions are as follows:

Instruction Symbol in	Condition	Comparison Operation Result	Instruction Symbol in	Condition	Comparison Operation Result	
D=	§2 = §1	- Continuity	D=	$(51) \neq (52)$		
D<>	§1) ≠ §2		D<>	S2 = S1		
D>	§1 > §2		D>	\$1 \$2	Non-continuity	
D<=	$(51) \leq (52)$		D<=	S1 > S2		
D<	S1 < S2		D<	$(51) \ge (52)$		
D>=	S1 ≥ S2		D>=	§1 < §2		

- (3) When (s) and (s) are assigned by a hexadecimal constant and the numerical value (8 to F) whose most significant bit (b31) is "1" is designated as a constant, the value is considered as a negative BIN value in comparison operation.
- (4) Data used for comparison should be designated by a 32-bit instruction (DMOV instruction, etc.).

If designation is made with a 16-bit instruction (MOV instruction, etc.), comparisons of large and small values cannot be performed correctly.

Device

Operation Error

(1) There are no operation errors associated with the D=, D<>, D>, D<=, D< or D>=instruction.

Program Example

(1) The following program compares the data at X0 to X1F with the data at D3 and D4, and turns Y33 ON, if the data at X0 to X1F and the data at D3 and D4 match.

(2) The following program compares BIN value K38000 to the data at D3, and D4, and establishes continuity if the data in D3 and D4 is something other than 38000.

(3) The following program compares BIN value K-80000 to the data at D3 and D4, and establishes continuity if the data in D3 and D4 is less than -80000. [Ladder Mode] [List Mode]

(4) The following program compares the data in D0 and D1 with the data in D3 and D4, and establishes continuity if the data in D0 and D1 is equal to or less than the data in D3 and D4.

6.1.3 Floating decimal point data comparisons (Single precision) (E=,E<>,E>,E<=,E<,E>=)

Basic High performance Process Redundant Universal

Basic model QCPU: The upper five digits of the serial No. are "04122" or larger.

(s), (c) : Data for comparison or head number of the devices where the data for comparison is stored (real number)

Setting	Internal	ernal Devices		umem	7n	Constants	Other		
Data	Bit	Bit Word Bit Word		E	o unon				
<u>(S1)</u>		C	\supset	—		0	—	0	—
S2		(\supset	_		0		0	_

*1:Available only in multiple Universal model QCPU

- (1) The 32-bit floating decimal point data from device designated by (s) and 32-bit floating decimal point data from device designated by (s) as A normally-open contact, and performs comparison operation.
- (2) The results of the comparison operations for the individual instructions are as follows:

Instruction Symbol in	Condition	Comparison Operation Result	Instruction Symbol in	Condition	Comparison Operation Result
E=	§2 = §1		E=	§1) ≠ §2)	
E<>	§1 ≠ §2		E<>	§2 = §1	
E>	8 > 5	Continuity	E>	(2) ≦	Non-continuity
E<=	(2) \∭ (5)	Continuity	E<=	8 > 5	Non continuity
E<	\$1 < \$2		E<	\$1 ≧ \$2	
E>=	\$1 ≧ \$2		E>=	\$1 < \$2	

Note that use of the E= instruction can on occasion result in situations where errors cause the two values to not be equal.

✓ Operation Error

- (1) In any of the following cases, an operation error occurs, the error flag (SM0) turns ON, and an error code is stored into SD0.
 - The value of the specified device is -0. *1
 (For the Basic model QCPU, High Performance model QCPU, Process CPU, Redundant CPU)
 (Error code: 4100)
 (Error co
 - *1: There are CPU modules that will not result in an operation error if -0 is specified. For details, refer to Section 3.2.4.
 - The value of the specified device is outside the following range. (For the Universal model QCPU)

 $0, 2^{-126} \le |$ value of specified device $| < 2^{128}$ (Error code: 4140)

• The value of the specified device is -0, unnormalized number, nonnumeric, and $\pm \infty$. (For the Universal model QCPU only) (Error code: 4140)

Program Example

(1) The following program compares 32-bit floating decimal point real number data at D0 and D1 to 32-bit floating decimal point real number data at D3 and D4.

[Ladder Mode]

[List Mode]

(2) The following program compares the floating decimal point real number 1.23 to the 32-bit floating decimal point real number data at D3 and D4.

(3) The following program compares 32-bit floating decimal point real number data at D0 and D1 to 32-bit floating decimal point real number data at D3 and D4.

(4) The following program compares the 32-bit floating decimal point data at D0 and D1 to the floating decimal point real number 1.23.

6.1.4 Floating decimal point data comparisons (Double precision) (ED=,ED<>,ED>,ED<=,ED<,ED>=)

(s), (s): Data for comparison or head number of the devices where the data for comparison is stored (real number)

Setting	Internal	Devices	R 7R	J			Zn	Constants	Other
Data	Bit	Word	, <u></u>	Bit	Word	0::\G:!	20	\$	Othor
§1)	_		0	—	0	—
\$2	-	()	_		0		0	

Grant Function

- (1) The 64-bit floating decimal point real number from device designated by (s) and 64-bit floating decimal point real number from device designated by (s) as A normally-open contact, and performs comparison operation.
- (2) The results of the comparison operations for the individual instructions are as follows:

Instruction Symbol in	Condition	Comparison Operation Result	Instruction Symbol in	Condition	Comparison Operation Result	
ED=	S2 = S1		ED=	S1 ≠ S2		
ED<>	§1) ≠ §2		ED<>	§2 = §1		
ED>	§1 > §2	Continuity	ED>	$(s) \leq (s)$	Non-continuity	
ED<=	$(5) \leq (52)$	Continuity	ED<=	\$ 5		
ED<	S1 < S2		ED<	\$1 ≧ \$2		
ED>=	$(\mathfrak{S}) \geq \mathfrak{S}$		ED>=	\$1 < \$2		

✓ Operation Error

- (1) In any of the following cases, an operation error occurs, the error flag (SM0) turns ON, and an error code is stored into SD0.
 - The value of the specified device is not in the following range: (Error code: 4140) $0.2^{-1022} \le |$ value of specified device $| < 2^{1024}$
 - The value of the designated device is -0. (Error code: 4140)

Program Example

(1) The following program compares 64-bit floating decimal point real number data at D0 to D3 with 64-bit floating decimal point real number data at D4 to D7.

[Ladder Mode]

[List Mode]

(2) The following program compares the floating decimal point real number 1.23 with the 64-bit floating decimal point real number data at D4 to D7.

[Ladder Mode]

[List Mode]

(3) The following program compares 64-bit floating decimal point real number data at D0 to D3 with 64-bit floating decimal point real number data at D4 to D7.

(4) The following program compares the 64-bit floating decimal point data at D0 to D3 with the floating decimal point real number 1.23.

Caution

(1) Since the number of digits of the real number that can be input by GX Developer is up to 15 digits, the comparison with the real number whose number of significant digits is 16 or more cannot be made by the instruction shown in this section.

When judging match/mismatch with the real number whose significant digits is 16 or more by the instruction in this section, compare it with the approximate values of the real number to be compared and judge by the sizes.

Example When judging the match of E1.234567890123456+10 (Number of significant digits is 16) and the double-precision floating-point data.

6.1.5 Character string data comparisons (\$=,\$<>,\$>,\$<=,\$<,\$>=)

(s), (s): Data for comparison or head number of the devices where the data for comparison is stored (character string)

Setting	Internal	Internal Devices		R.ZR J⊡\∭		U G	Zn	Constants	Other
Data	Bit	Word	, <u></u>	Bit	Word	U:;\G:;	2.1	\$	Other
§1			\supset					0	
\$2	-	(\supset	_		0	_		

- (1) Compares the character string data designated by ⑤ with the character string data designated by ∞ as a normally-open contact.
- (2) A comparison operation involves the character-by-character comparison of the ASCII code of the first character in the character string.
- (3) The character string data of (s) and (s) for comparison refers to the data stored at the range from the designated device number to the device number where "00H" code is stored.
 - (a) If all character strings match, the comparison result will be matched.

Instruction Symbol in	Comparison Operation Result	Instruction Symbol in	Comparison Operation Result	
\$=	Continuity	\$<=	Continuity	
\$<>	Non-continuity	\$<	Non-continuity	
\$>	Non-continuity	\$>=	Continuity	

(b) If the character strings are different, the character string with the larger character code will be the larger.

<u>b15b8_b7b0</u>	_ t;	15	<u>b8 b7</u>	<u> b0</u>
(S1) 42н (B) 41н (A)	<u>(S2</u>	42н (E	3) 41H	(A)
S1 +1 44 _H (D) 43 _H (C)	S2+1	44 _H (E	0) 43н	(C)
(S1) +2 00н 46н (F)	S2+2	00н	45н	(E)
"ABCDF"		4 "	BCDE"	

Instruction Symbol in	Comparison Operation Result	Instruction Symbol in	Comparison Operation Result
\$=	Non-continuity	\$<=	Non-continuity
\$<>	Continuity	\$<	Non-continuity
\$>	Continuity	\$>=	Continuity

(c) If the character strings are different, the first different sized character code will determine whether the character string is larger or smaller.

~	b15	b8	b7	b0				
(\$1)	32н	(2)	31н	(1)				
§1)+1	34н	(4)	33н	(3)				
§1)+2	00н		35н	(5)				
	"12 <u>3</u> 45"							

~	<u>b15</u>	b8	b7	b0
\$2	32н	(2)	31н	(1)
\$2+1	33н	(3)	34н	(4)
\$2+2	00н		35н	(5)
		"124	<u>1</u> 35"	

Instruction Symbol in	Comparison Operation Result	Instruction Symbol in	Comparison Operation Result
\$=	Non-continuity	\$<=	Continuity
\$<>	Continuity	\$<	Continuity
\$>	Non-continuity	\$>=	Non-continuity

(4) If the character strings designated by (5) and (2) are of different lengths, the data with the longer character string will be larger.

<u>b15b8 b7 b0</u>						
S1)	32н	(2)	31н	(1)		
§1)+1	34н	(4)	33н	(3)		
\$1+2	36н	(6)	35н	(5)		
\$1+3	00н		37н	(7)		
"123456 <u>7</u> "						

~	<u>b15</u>	b8	b7	b0
\$2)	32н	(2)	31н	(1)
\$2+1	34н	(4)	33н	(3)
\$2+2	36н	(6)	35н	(5)
\$2+3	00н		00н	

"123456"

Instruction Symbol in	Comparison Operation Result	Instruction Symbol in	Comparison Operation Result
\$=	Non-continuity	\$<=	Non-continuity
\$<>	Continuity	\$<	Non-continuity
\$>	Continuity	\$>=	Continuity

6-´	12
-----	----

✓ Operation Error

- (1) In any of the following cases, an operation error occurs, the error flag (SM0) turns ON, and an error code is stored into SD0.
 - The code "00H" does not exist within the range of the relevant device, starting from the device number designated by (s) and (s). (Error code: 4101)
 - The character string of (s) and (s) exceeds 16383 characters. (Error code: 4101)

The character string data comparison instruction checks the device range while comparing the designated character string data. For this reason, if the "00H" code does not exist in the relevant device range, the instruction outputs the comparison result instead of returning an operation error when no match of characters is detected.

If so and so data are as shown above, the second character of so does not

match with that of \mathfrak{S}_2 , and the comparison result is expressed as $\mathfrak{S}_1 \neq \mathfrak{S}_2$ (the operation result is "non-conductive"). Though the "00H" code is not included

within the so device range, no operation error is returned, because the no-match is detected at D12287, which is within the device range.

Program Example

(1) The following program compares character strings stored following D0 and characters following D10.

[Ladder Mode] [List Mode] Step Instruction Device 0.5 **-**(Y33 LD\$= OUT END D0 Y33 03 -Fend

(2) The following program compares the character string "ABCDEF" with the character string stored following D10.

D10

(3) The following program compares the character string stored following D10 with the character string stored following D100.

(4) The following program compares the character string stored following D200 with the character string "12345".

6.1.6 BIN block data comparisons (BKCMP \Box ,BKCMP \Box P)

Basic High Process Redundant Universal

- Compares BIN 16-bit data the nth point from the device number designated by (s) with BIN 16-bit data the nth point from the device number designated by (s), and stores the result from the device designated by (b) onward.
 - (a) If the comparison condition has been met, the device designated by D will be turned ON.
 - (b) If the comparison condition has not been met, the device designated by will be turned OFF.

- (2) The comparison operation is conducted in 16-bit units.
- (3) The constant designated by \mathfrak{S} can be between -32768 and 32767 (BIN 16-bit data).

(4) The results of the comparison operations for the individual instructions are as follows:

Instruction Symbols	Condition	Comparison Operation Result	Instruction Symbols	Condition	Comparison Operation Result	
BKCMP=	§2 = §1	ON (1)	BKCMP=	S1 ≠ S2	OFF (0)	
BKCMP<>	§1) ≠ §2		BKCMP<>	§2 = §1		
BKCMP>	5 5		BKCMP>	§1 §2		
BKCMP<=	(2) ≦		BKCMP<=	8 > 5		
BKCMP<	\$1 < \$2		BKCMP<	\$1 ≧ \$2		
BKCMP>=	$(51) \ge (52)$		BKCMP>=	§1 < §2		

(5) If all comparison results stored n points from **D** are ON (1), SM704 (block comparison signal) goes ON.

Coperation Error

- (1) In any of the following cases, an operation error occurs, the error flag (SM0) turns ON, and an error code is stored into SD0.
 - The range of the device n points from a device designated by (s), (s) or (b) exceeds the relevant device. (Error code: 4101)
 - The device range for n points starting from the device designated by (5) overlaps with the device range for n points starting from the device designated by (5).

(Error code: 4101)

• The device range for n points starting from the device designated by (2) overlaps with the device range for n points starting from the device designated by (2).

(Error code: 4101)

Program Example

(1) The following program compares, when X20 is turned ON, the data stored at D100 to D103 with the data stored at R0 to R3 and stores the operation result into the area starting from M10.

(2) The following program compares, when X1C is turned ON, the constant K1000 with the data stored at D10 to D13, and stores the operation result at b4 to b7 in D0.

(3) The following program compares, when X20 is turned ON, the data at D10 to D12 with the data at D30 to D32, and stores the operation result into the area starting from M100. The following program transfers the character string "ALL ON" to D100 onward when all devices from M100 onward have reached the 1 "ON" state.

(BIN)

(BIN)

5678

9999

D31

D32

5678

9876

D11

D12

(BIN)

(BIN)

 \leq

െറ

6

ON

ON

\$MOV

ON

M101

M102

<u>b15---- b8b7 ---- b0</u>

 D100
 4CH
 (L)
 41H
 (A)

 D101
 20H
 (...)
 4CH
 (L)

 D102
 4EH
 (N)
 4FH
 (O)

6.1.7 BIN 32-bit block data comparisons (DBKCMP \Box ,DBKCMP \Box P)

QnU(D)(H)CPU: The serial number (first five digits) is "10102" or later. QnUDE(H)CPU: The serial number (first five digits) is "10102" or later.

(BIN 32 bits) (BIN 32 bits)

② : Head number of the devices where the comparison data are stored (BIN 32 bits)

n	: Number o	f comparison	data blocks	(BIN	16 bits

Setting	Internal Devices		R. ZR	J\		u ^m ic ^m i	7n	Constants	Other
Data	Bit	Word	,	Bit	Word	0	_	К, Н	o anoi
S1		0				0	—		
S2		0				_	_		
D	0	C	0			_	_		
n	0	(\supset			0		0	_

Grant Function

- (1) This instruction compares BIN 32-bit data stored in n-point devices starting from the device specified by so with BIN 32-bit data stored in n-point devices starting from the device specified by a constant and so and then stores the result into the nth device specified by and up.
 - (a) If the comparison condition has been met, the corresponding devices specified by **(b)** will be turned on.
 - (b) If the comparison condition has not been met, the corresponding devices specified by will be turned off.

- (2) The comparison operation is executed in 32-bit units.
- (3) The constant in the device specified by \mathfrak{S} can be between -2147483648 and 2147483647 (BIN 32-bit data).

- (4) (b) specifies out of the device range of n-point devices starting from the device specified by (s) and (s).
- (5) The following table shows the results of the comparison operations for each individual instruction.

Instruction Symbols	Condition	Comparison Operation Result	Instruction Symbols	Condition	Comparison Operation Result
DBKCMP=	§2 = §1		DBKCMP=	$(S1) \neq (S2)$	
DBKCMP<>	S1 ≠ S2		DBKCMP<>	§2 = §1	
DBKCMP>	§1 > §2	ON (1)	DBKCMP>	\$1 ≦ \$2	
DBKCMP<=	$(s) \leq s^2$		DBKCMP<=	S1 > S2	
DBKCMP<	S1 < S2		DBKCMP<	\$1 ≧ \$2	
DBKCMP>=	\$1 ≧ \$2		DBKCMP>=	S1 < S2	

(6) If all comparison results stored into the devices starting from the device specified by
^D to nth device are on(1), or one of the results is off(2), the special relays will be on or off in accordance with the conditions as follows.

	Number	When all result	s of comparison op	erations are on(1)	When results of comparison operations have a result of off(0)			
No.		Initial execu- tion/Scan	Interrupt (other than I45)/Fixed scan execution	Interrupt(l45)	Initial execution/ Scan	Interrupt (other than I45)/Fixed scan execution	Interrupt(I45)	
1	SM704	ON	ON	ON	OFF	OFF	OFF	
2	SM716	ON			OFF	_	_	
3	SM717		ON			OFF	_	
4	SM718	_		ON	—	_	OFF	

In a standby program, a special relay depending on the caller program turns on or off.

(7) If the value specified by n is 0, the instruction will be not processed.

Operation Error

- (1) In any of the following cases, an operation error occurs, the error flag (SM0) turns on, and an error code is stored into SD0.
 - A negative value is specified for n. (Error code: 4100)
 - The range of the n-point devices starting from the device specified by (s), (s). or (D) exceeds the specified device range. (Error code: 4101)
 - The range of the n-point devices starting from the device specified by (s) overlaps with the range of the n-point devices starting from the device specified by (D).

(Error code: 4101)

• The range of the n-point devices starting from the device specified by (2) overlaps with the range of the n-point devices starting from the device specified by (2).

(Error code: 4101)

Program Example

(1) The following program compares the value data stored at R0 to R5 with the value data stored at D20 to D25, and then stores the operation result into Y0 to Y2, when M0 is turned on,

[Operation]

b31 b(0	b31 b(0			
R1,R0	-2147483000			D21,D20	-2147483000		Y0	OFF	(0)
R3,R2	0	<	>	D23,D22	1	$ \square \rangle$	Y1	ON	(1)
R5,R4	2147483000			D25,D24	2147482999		Y2	ON	(1)

(2) The following program compares the constant with the value data stored at D0 to D9, and then stores the operation result into D10.5 to D10.9, when M0 is turned on,

[Ladder Mode]

D10.5

K5

FND

[List Mode]

 Step
 Instruction
 Device

 0
 LD
 M0

 1
 DBKCMP>=
 K-60000
 D0
 D10.5
 K5

 7
 END
 K5
 K5
 K5
 K5

[Operation]

When cer	tain bits ar	e specified	l in a word o	device, bits oth	er than the certain bits
that store	the operation	tion result c	do not chan	ge.	
D1	0.F				D10.0
Before execution	0 0 1	0 1 1 ′	1 1 1 0	0 1 1 0	0 0
D1	0.F				D10.0
After execution	0 0 1	0 1 1 (0 0 0 0	1 1 1 0	0 0
				<u> </u>	
	No ch	lange		No chang	је

(3) The following program compares the value data stored at D0 to D5 with the value data stored at D10 to D15, and then stores the operation result into M20 to M22, when M0 is turned on. Also, the program transfers the character string "ALL ON" to D100 and up when all devices from M20 to M22 have reached the on status.

[Operation]

b31 b0			b31 b0			0			
D1,D0	-2147483000			D11,D10	-2147483000]	M20	ON	(1)
D3,D2	60000		<=	D13,D12	60001	$ \square \rangle$	M21	ON	(1)
D5,D4	-900000			D15,D14	-899999		M22	ON	(1)

When all operation results are on(1), the special relays corresponding to each program turn on(1). (Since this program examples refer

(Since this program examples refer to scan programs, SM704 and SM716 turn on(1), SM7171 and SM718 do not change in the scan program)

	M20	ON	(1)	
>	M21	ON	(1)	
	M22	ON	(1)	
		Į	Ļ	
C			/	
SI	M704	ON	(1)	
ļsi	M716	ON	(1)]
SI	M717	OFF	(0)	
SI	M718	OFF	(0)]

6.2 Arithmetic Operation Instructions

6.2.1 BIN 16-bit addition and subtraction operations (+(P),-(P))

					Basic	High performance Proc	Redundant	Universal
	1	When two	o data are set (\mathbb{D} + \mathbb{S} $ ightarrow$), (D- S→ D)				
	+,- +P,-P		Command Command		indicate	s an instructio	on symbol of	+/
			 (S) : Data for additing/subtracting (BIN 16 bits) (D) : Head number of the devices 	or head number of where the data to	the devices wher	e the data for a	dditing/subtrac	ting is stored
		Setting Data	Internal Devices Bit Word R, ZR	J∷\∷ Bit Word	U	Zn	Constants K, H	Other
^				U			—	_

÷

(1) Adds 16-bit BIN data designated by (b) to 16-bit BIN data designated by (s) and stores the result of the addition at the device designated by (b).

- (2) Values for \odot and \odot can be designated between -32768 and 32767 (BIN, 16 bits).
- (3) The judgment of whether data is positive or negative is made by the most significant bit (b15).
 - 0: Positive
 - 1: Negative
- (4) The following will happen when an underflow or overflow is generated in an operation result: The carry flag in this case does not go ON.

· K32767	+К2	→ K—32767	Since bit 15 value is "1", result of operation takes a negative value.
(7FFFн)	(0002н)	(8001н)	
• K—32768	+K—2——	→ K32766	Since bit 15 value is "0", result of operation takes a positive value.
(8000н)	(FFFEн)	(7FFЕн)	

(1) Subtracts 16-bit BIN data designated by ^(D) from 16-bit BIN data designated by ^(S) and stores the result of the subtraction at the device designated by ^(D).

- (2) Values for \odot and \odot can be designated between -32768 and 32767 (BIN, 16 bits).
- (3) The judgment of whether data is positive or negative is made by the most significant bit (b15).
 - 0: Positive
 - 1: Negative
- (4) The following will happen when an underflow or overflow is generated in an operation result: The carry flag in this case does not go ON.

К—32768 (8000н)	— К2 (0002н)	►K32766 ···· (7FFEн)	• • • • • • •	Since bit 15 value is "0", result of operation takes a positive value.
К32767 ⁻ (7FFFн)	– К—2 — (FFFEн)	► K—32767 (8001н)	• • • • • • •	Since bit 15 value is "1", result of operation takes a negative value.

Operation Error

(1) There are no operation errors associated with the +(P) or -(P) instruction.

2 When three data are set ($(\mathfrak{g} + \mathfrak{g} \rightarrow \mathbb{D}, \mathfrak{g} - \mathfrak{g} \rightarrow \mathbb{D})$)

- (s) : Data to be added to/subtracted from or head number of the devices where the data to be added to/subtracted from is stored (BIN 16 bits)
- I Data for additing/subtracting or head number of the devices where the data for additing/subtracting is stored (BIN 16 bits)

(D) : Head number of the devices where the addition/subtraction operation result will be stored (BIN 16 bits)

Setting	Internal Devices		R 7R	J\		U	Zn	Constants	Other
Data	Bit	Word	н <u>с</u> , <u>2</u> нс	Bit	Word	0:		К, Н	01.101
S1				0				0	—
\$2	0							0	_
D				0				_	

Function

+

- (2) Values for \mathfrak{G} , \mathfrak{D} \mathfrak{D} and can be designated between \mathfrak{D} 32768 and 32767 (BIN, 16 bits).
- (3) The judgment of whether data is positive or negative is made by the most significant bit (b15).
 - 0: Positive
 - 1: Negative
- (4) The following will happen when an underflow or overflow is generated in an operation result: The carry flag in this case does not go ON.

· K32767	+К2 — •	К—32767	Since bit 15 value is "1", result of operation takes a negative value.
(7FFFн)	(0002н)	(8001н)	
· K—32768	в +К—2►	К32766 ······	Since bit 15 value is "0",
(8000н)	(FFFЕн)	(7FFEн)	result of operation takes a positive value.

(1) Subtracts 16-bit BIN data designated by ⑤ from 16-bit BIN data designated by ⊗ and stores the result of the subtraction at the device designated by .

- (2) Values for $\mathfrak{G}, \mathfrak{D}$ and can be designated between \mathbb{D} 32768 and 32767 (BIN, 16 bits).
- (3) The judgment of whether data is positive or negative is made by the most significant bit (b15).
 - 0: Positive
 - 1: Negative
- (4) The following will happen when an underflow or overflow is generated in an operation result: The carry flag in this case does not go ON.

К—32768	3—К2 —	→ K32766	Since bit 15 value is "0", result of operation takes a positive value.
(8000н)	(0002н)	(7FFЕн)	
К32767	—К—2 ——	→ K-32767	Since bit 15 value is "1", result of operation takes a negative value.
(7FFFн)	(FFFEн)	(8001н)	

Operation Error

(1) There are no operation errors associated with the +(P) or -(P) instruction.

Program Example

(1) The following program adds, when X5 is turned ON, the data at D3 and D0 and outputs the operation result at Y38 to Y3F.

[Ladder Mode]

(2) The following program outputs the difference between the set value for timer T3 and its present value in BCD to Y40 to Y53.

6.2 Arithmetic Operation Instructions 6.2.1 BIN 16-bit addition and subtraction operations (+(P),-(P))

6.2.2 BIN 32-bit addition and subtraction operations (D+(P),D-(P))

Basic High

Process Redundant Universal

1 When two data are set ((@+1,@)+((+1,(+)))) ((+1,(+))), ((+1,(+))) ((+1,(+)))) ((+1,(+))) ((+1,(indicates an instruction symbol of D+/D-. Command D+, D-┥┝ (S) D+P, D−P_ Command (S) Р (s) : Data for additing/subtracting or head number of the devices where the data for additing/subtracting is stored (BIN 32 bits) D : Head number of the devices where the data to be added to/subtracted from is stored (BIN 32 bits) Setting Internal Devices Constants J....\ R, ZR Other U....\G.... Zn К, Н Data Word Bit Word S \bigcirc \bigcirc \bigcirc

Grant Function

D+

(1) Adds 32-bit BIN data designated by (1) to 32-bit BIN data designated by (3), and stores the result of the addition at the device designated by (1).

D+1 D		(S)+1 (S)		(D)+1	D
b31b16 b15b0		<u>b31b16 b15b0</u>		b31b16	b15b0
567890 (BIN)	$^+$	123456 (BIN)	$\Box\!\!\!>$	691346	6 (BIN)

- (2) The values for \odot and \odot can be designated at between -2147483648 and 2147483647 (BIN 32 bits).
- (3) Judgment of whether the data is positive or negative is made on the basis of the most significant bit (b31).
 - 0: Positive
 - 1: Negative
- (4) The following will happen when an underflow or overflow is generated in an operation result: The carry flag in this case does not go ON.

· K2147483647 (7FFFFFFFн)	+K2 → K-2147483647 ····· (0000002H) (80000001H)	Since bit 31 value is "1", result of operation takes a negative value.
• K—2147483648 (8000000н)	+К—2►К2147483646 ······· (FFFFFFEн) (7FFFFFEн)	Since bit 31 value is "0", result of operation takes a positive value.

D-

(1) Subtracts 32-bit BIN data designated by D from 32-bit BIN data designated by S and stores the result of the subtraction at the device designated by D.

<u>D</u> +1 D		<u>S</u> +1	Ś		<u>D</u> +1	D
<u>b31b16 b15b0</u>		<u>b31b16</u>	b15 b0		<u>b31b16 </u>	b15 b0
567890 (BIN)	_	123456	6 (BIN)	\square	444434	(BIN)

- (2) The values for ${}_{\scriptsize (S)}$ and ${}_{\scriptsize (D)}$ can be designated at between -2147483648 and 2147483647 (BIN 32 bits).
- (3) Judgment of whether the data is positive or negative is made on the basis of the most significant bit (b31).
 - 0: Positive
 - 1: Negative
- (4) The following will happen when an underflow or overflow is generated in an operation result: The carry flag in this case does not go ON.

· К— 2147483648-	-К2	К2147483646 ······	Since bit 31 value is "0", result of operation takes a positive value.
(8000000н)	(00000002н)	(7FFFFFEн)	
· K2147483647 —	К—2 →	К—2147483647	Since bit 31 value is "1",
(8000000н)	(FFFFFFEн)	(80000001н)	result of operation takes a negative value.

Operation Error

(1) There are no operation errors associated with the D+(P) or D-(P) instruction.

2 When three data are set ((((1, 1), (1, 1),

- (s) : Data to be added to/subtracted from or head number of the devices where the data to be added to/subtracted from is stored (BIN 32 bits)
- I Data for additing/subtracting or head number of the devices where the data for additing/subtracting is stored (BIN 32 bits)

D : Head number of the devices where the addition/subtraction operation result will be stored (BIN 32 bits)

Setting	Internal	Devices	evices		JED/E		Zn	Constants	Other
Data	Bit	Word	Ν, ΖΝ	Bit	Word	0:;\G:;	ΣΠ	К, Н	Other
<u>S1</u>				0				0	—
\$2	0						0		
D		0						_	

Grant Function

D+

(1) Adds 32-bit BIN data designated by ⑤ to 32-bit BIN data designated by ⑥, and stores the result of the addition at the device designated by ⑦.

- (2) The values for (a), (a) and (b) can be designated at between -2147483648 and 2147483647 (BIN 32 bits).
- (3) Judgment of whether the data is positive or negative is made on the basis of the most significant bit (b31).
 - 0: Positive
 - 1: Negative
- (4) The following will happen when an underflow or overflow is generated in an operation result: The carry flag in this case does not go ON.

```
      · K2147483647
      +K2
      K-2147483647
      Since bit 31 value is "1", result of operation takes a negative value.

      · K-2147483648
      +K-2
      K2147483646
      Since bit 31 value is "0", result of operation takes a positive value.

      · K-2147483648
      +K-2
      K2147483646
      Since bit 31 value is "0", result of operation takes a positive value.
```

D-

(1) Subtracts 32-bit BIN data designated by (5) from 32-bit BIN data designated by (2) and stores the result of the subtraction at the device designated by (2).

<u>(§1)+1</u> (<u>§1)</u>		<u></u>		<u>D</u> +1	D
b31 b16 b15 b0	_	<u>b31b16 b15⁻</u>	- <u>b0</u>	<u>b31⁻⁻b16</u>	<u>b15⁻⁻b0</u>
567890 (BIN)		123456 (BIN	↓) □ 二>	444434	(BIN)

- (2) The values for §), §2 and (b) can be designated at between -2147483648 and 2147483647 (BIN 32 bits).
- (3) Judgment of whether the data is positive or negative is made on the basis of the most significant bit (b31).
 - 0: Positive
 - 1: Negative
- (4) The following will happen when an underflow or overflow is generated in an operation result: The carry flag in this case does not go ON.

· К—2147483648 (8000000н)	-K2	К2147483646 ····· (7FFFFFEн)	Since bit 31 value is "0", result of operation takes a positive value.
· K2147483647	−K−2 →	К—2147483647····	Since bit 31 value is "1",
(7FFFFFFFн)	(FFFFFFEH)	(80000001н)	result of operation takes a negative value.

Operation Error

(1) There are no operation errors associated with the D+(P) or D-(P) instruction.

Program Example

(1) The following program adds 28-bit data from X10 to X2B to the data at D9 and D10 when X0 goes ON, and outputs the result of the operation to Y30 to Y4B.

(2) The following program subtracts the data from M0 to M23 from the data at D0 and D1 when XB goes ON, and stores the result at D10 and D11.

6.2 Arithmetic Operation Instructions
 6.2.2 BIN 32-bit addition and subtraction operations (D+(P),D-(P))

6.2.3 BIN 16-bit multiplication and division operations (*(P),/(P))

	Basic High performance Proc	Redundant	Universal
*,/	Command S1 S2 D	n symbol of *	* ,/ .
*P, / P	Command		
	(b) : Data to be multiplied/divided or head number of the devices where the data to be (BIN 16 bits)	multiplied/divi	ided is stored
	 Data for multiplying/dividing or head number of the devices where the data for m (BIN 16 bits) 	ultiplying/divid	ling is stored
	\textcircled{D} $% \label{eq:constraint}$: Head number of the devices where the multiplication/division operation result with the second secon	II be stored (B	IN 32 bits)
Setting Data	Internal Devices R, ZR J[]]\[]] U[]]\G[]] Zn Bit Word Bit Word Zn	Constants K, H	Other
(3)	0	0	
<u></u> \$2	0	0	
D	0		

*

(1) Multiplies BIN 16-bit data designated by (5) and BIN 16-bit data designated by (2), and stores the result in the device designated by (2).

SI		S2	(D)+1 (D)
b15b0		b15b0	b31b16 b15b0
5678 (BIN)	×	1234 (BIN)	7006652 (BIN)

(2) If \bigcirc is a bit device, designation is made from the lower bits.

Example K1..... Lower 4 bits (b0 to b3) K4..... Lower 16 bits (b0 to b15) K8...... 32 bits (b0 to b31)

- (3) Values for \mathfrak{S} and \mathfrak{S} can be designated between -32768 and 32767 (BIN, 16 bits).
- (4) Judgments whether (s), (s2), and (D) are positive or negative are made on the basis of the most significant bit (b15 for (s), and (s2), for (D) and b31).
 - 0: Positive
 - 1: Negative

(Error code: 4100)

(1) Divides BIN 16-bit data designated by ⑤ and BIN 16-bit data designated by ⑥, and stores the result in the device designated by ⑥.

			Quotient	Remainder
(S1)		\$2	D	(D)+1
b15b0		b15b0	b15b0	b15b0
5678 (BIN)	÷	1234 (BIN)	4 (BIN)	742 (BIN)

(2) If a word device has been used, the result of the division operation is stored as 32 bits, and both the quotient and remainder are stored; if a bit device has been used, 16 bits are used and only the quotient is stored.

Quotient: Stored at the lower 16 bits. Remainder: Stored at the upper 16 bits (Stored only when using a word device).

- (3) Values for \mathfrak{S} and \mathfrak{S} can be designated between -32768 and 32767 (BIN 16 bits).
- - 0: Positive
 - 1: Negative

Operation Error

1

- (1) In the following case, an operation error occurs, the error flag (SM0) turns ON, and an error code is stored into SD0.
 - Attempt to divide <a>s by 0.

Program Example

(1) The following program multiplies "5678" by "1234" in BIN and stores the result at D3 and D4 when X5 turns ON.

[Ladder Mode]

(2) The following program multiplies BIN data at X8 to XF by BIN data at X10 to X1B, and outputs the result of the multiplication to Y30 to Y3F.

-[* K2X8 K3X10 K4Y30

Fend

[Ladder Mode]

SM402

[List Mode]

(3) The following program divides, when X3 is turned ON, the data at X8 to XF by 3.14 and outputs the operation result at Y30 to Y3F.

6.2.4 BIN 32-bit multiplication and division operations (D*(P),D/(P))

Basic Process Redundant Universal indicates an instruction symbol of D* , D/. Command D*, D/ (S1) (S2) (D)Command D*P,D/P P (S1) (S2) (s) : Data to be multiplied/divided or head number of the devices where the data to be multiplied/divided is stored (BIN 32 bits) : Data for multiplying/dividing or head number of the devices where the data for multiplying/dividing is stored \$2 (BIN 32 bits) D : Head number of the devices where the multiplication/division operation result will be stored (BIN 64 bits) Setting Internal Devices Constants 1 \ R, ZR Other U....\G.... Zn Data K. H Bit Word Word (\$1) \bigcirc \bigcirc \$2 \bigcirc \bigcirc ___ \bigcirc

☆ Function

D*

 Multiplies BIN 32-bit data designated by (s) and BIN 32-bit data designated by (s), and stores the result in the device designated by (b).

S1+1 S1		\$2+1	S2		(D)+3	(D+2	(D)+1	D
b31b16 b15b0		b31b16	b15b0		b63b48	b47-b32	b31b16	6 b15b0
567890 (BIN)	×	123456	i (BIN)	\Box		7010942	7840 (BII	N)

(2) If **D** is a bit device, only the lower 32 bits of the multiplication result will be considered, and the upper 32 bits cannot be designated.

Example	K1 Lower 4 bits (b0 to b3)
	K4 Lower 16 bits (b0 to b15)
	K8 Lower 32 bits (b0 to b31)

If the upper 32 bits of the bit device are required for the result of the multiplication operation, first temporarily store the data in a word device, then transfer the word device data to the bit device by designating (D+2) and (D+3) data.

- (3) The values for §) and 2 can be designated at between -2147483648 and 2147483647 (BIN 32 bits).
- (4) Judgments whether (s), (s2), and (b) are positive or negative are made on the basis of the most significant bit (b31 for (s) and (s2), b63 for (b)).
 - 0: Positive
 - 1: Negative

(1) Divides BIN 32-bit data designated by (s) and BIN 32-bit data designated by (s), and stores the result in the device designated by (c).

S1+1 S1		<u>\$2</u> +1	S2		(D)+1	D	(D)+3	(D)+2
b31b16b15b0		b31b16b	o15b0		b31b16	b15b0	b31b16	b15b0
567890 (BIN)	÷	123456	(BIN)	\Box	4 (B	IN)	74066	6 (BIN)

(2) With a word device, the division operation result is stored in 64 bits and both the quotient and remainder are stored. With a bit device, only the quotient is stored as the operation result in 32 bits.

Quotient : Stored at the lower 32 bits. Remainder : Stored at the upper 32 bits (Stored only when using a word device).

- (3) The values for (s) and (s) can be designated at between -2147483648 and 2147483647 (BIN 32 bits).
- (4) Judgment whether values for (s), (s₂), (b) and (b)+2 are positive or negative is made on the basis of the most significant bit (b31).

(Sign is attached to both the quotient and remainder.)

- 0: Positive
- 1: Negative

Operation Error

- (1) In any of the following cases, an operation error occurs, the error flag (SM0) is turned ON, and the corresponding error code is stored into SD0.
 - Attempt to divide so by 0.

(Error code: 4100)

Program Example

(1) The following program multiplies the BIN data at D7 and D8 by the BIN data at D18 and D19 when X5 is ON, and stores the result at D1 to D4.

[Ladder Mode]

[List Mode]

(2) The following program outputs the value resulting when the data at X8 to XF is multiplied by 3.14 to Y30 to Y3F when X3 is ON.

[Ladder Mode]

[List Mode]

6.2.5 BCD 4-digit addition and subtraction operations (B+(P),B-(P))

Basic High Process Redundant Universal 1 When two data are set $(D + S \rightarrow D, D - S \rightarrow D)$ indicates an instruction symbol of B+/B-. Command B+, B- (\mathbf{S}) ┥┝ D Command B+P, B−P_ P (\mathbf{S}) D (s) : Data for adding/subtracting or head number of the devices where the data for adding/subtracting is stored (BCD 4 digits)

(D) : Head number of the devices where the data to be added to/subtracted from is stored (BCD 4 digits)

Setting	Internal Devices		R 7R	J		U ^m \G ^m	Zn	Constants	Other
Data	Bit	Word	N, 2N	Bit Word		0: <i>:</i> \G:	_	К, Н	Other
S	0							0	—
D	0								_

Grant Function

B+

(1) Adds the BCD 4-digit data designated by ⁽) and the BCD 4-digit data designated by ⁽), and stores the result of the addition at the device designated by ⁽).

- (2) 0 to 9999 (BCD 4 digits) can be assigned to \odot and \odot .
- (3) If the result of the addition operation exceeds 9999, the higher bits are ignored. The carry flag in this case does not go ON.

B-

(1) Subtracts the BCD 4-digit data designated by \odot and the BCD 4-digit data designated by \bigcirc , and stores the result of the subtraction at the device designated by \odot .

(2) 0 to 9999 (BCD 4 digits) can be assigned to ${\scriptstyle\textcircled{(s)}}$ and ${\scriptstyle\textcircled{(c)}}$.

(3) The following will result if an underflow is generated by the subtraction operation: The carry flag in this case does not go ON.

- (1) In the following case, an operation error occurs, the error flag (SM0) turns ON, and an error code is stored into SD0.
 - The (s) or (b) BCD data is outside the 0 to 9999 range. (Error code: 4100)

Program Example

(1) The following program adds BCD data 5678 and 1234, stores it at D993, and at the same time outputs it to from Y30 to Y3F.

[Ladder Mode]

0	SM4	100 	-[MOVP	H5678	D993	3	Stores 5678 in BCD to D993.
			-[B+P	H1234	D993]	Adds 1234 in BCD to the value at D993, and stores the result to D993.
			-[MOVP	D993	K4Y30]	Outputs the data in D993 to Y30 to Y3F.
8					-[END	3	

[List Mode]

Step	Instruction	Device			
0 1 3 6	LD MOVP B+P MOVP END	SM400 H5678 H1234 D993	D993 D993 K4Y30		

(2) The following program subtracts the BCD data 4321 from 7654, stores the result at D10, and at the same time outputs it to Y30 to Y3F.
 Il adder Model

L		ej				
0	SM400	[MOVP	H7654	D10]	Stores 7654 in BCD to D10.
		[В-Р	H4321	D10]	Subtracts the value in D10 from 4321 in BCD, and stores the result to D10.
		[MOVP	D10	K4Y30]	Outputs the data in D10 to Y30 to Y3F.
8				-[END]	

[List Mode]

Step	Instruction	Device	
0 1 3 6 8	LD MOVP B-P MOVP END	SM400 H7654 D10 H4321 D10 D10 K4Y30	

2 When three data are set ($\mathfrak{S} + \mathfrak{S} \rightarrow \mathbb{D}$, $\mathfrak{S} - \mathfrak{S} \rightarrow \mathbb{D}$)

- SI : Data to be added to/subtracted from or head number of the devices where the data to be added to/subtracted from is stored (BCD 4 digits)
- Data for adding/subtracting or head number of the devices where the data for adding/subtracting is stored (BCD 4 digits)

(D) : Head number of the devices where the addition/subtraction operation result will be stored (BCD 4 digits)

Setting	Internal Devices		R 7R	J\		U ^m ig ^m	7n	Constants	Other
Data	Bit	Word	Ν, ΖΙΥ	Bit	Word	0		К, Н	Other
<u>(S1)</u>	0								—
\$2	0							0	
D	0								

Grant Function

B+

(1) Adds the BCD 4-digit data designated by (s) and the BCD 4-digit data designated by (s), and stores the result of the addition at the device designated by (b).

- (2) 0 to 9999 (BCD 4 digits) can be assigned to §), (2) and (2).
- (3) If the result of the addition operation exceeds 9999, the higher bits are ignored. The carry flag in this case does not go ON.

B-

Subtracts the BCD 4-digit data designated by S and the BCD 4-digit data designated by S and stores the result of the subtraction at the device designated by D.

(2) 0 to 9999 (BCD 4 digits) can be assigned to \mathfrak{S}_{1} , \mathfrak{S}_{2} and \mathfrak{D}_{2} .

(3) The following will result if an underflow is generated by the subtraction operation: The carry flag in this case does not go ON.

- (1) In the following case, an operation error occurs, the error flag (SM0) turns ON, and an error code is stored into SD0.
 - The so, so or BCD data is outside the 0 to 9999 range. (Error code: 4100)

Program Example

(1) The following program adds the D3 BCD data and the Z1 BCD data when X20 goes ON, and outputs the result to Y8 to Y17.

(2) The following program subtracts the BCD data at D20 from the BCD data at D10 when X20 goes ON, and stores the result at R10.

6.2.6 BCD 8-digit addition and subtraction operations (DB+(P),DB-(P))

Basic High Process Redundant Universal

 $1 When two data are set ((D+1,D)+(S+1,S)) \rightarrow (D+1,D), (D+1,D)-(S+1,S)) \rightarrow (D+1,D))$

DB+, DB-		Command
DB+P. DB-P		Command P S D
	(s)	Data for adding/subtracting or head number of the devices where the data for adding/subtracting is stored (BCD 8 digits)
	D :H	Head number of the devices where the data to be added to/subtracted from is stored (BCD 8 digits)

Setting	Internal I	Devices	R 7R	ZR J J			Zn	Constants	Other
Data	Bit	Word	Ν, ΖΙΧ	Bit	Word	0:;\G:;	2.1	К, Н	Other
S				0				0	—
D	0								

DB+

- (2) 0 to 99999999 (BCD 8 digits) can be assigned to \odot and \odot .
- (3) If the result of the addition operation exceeds 99999999, the upper bits will be ignored. The carry flag in this case does not go ON.

9900000 + 01654321 > 00654321

DB-

(1) Subtracts the BCD 8-digit data designated by D and the BCD 8-digit data designated by (S), and stores the result of the subtraction at the device designated by D.

<u>D</u> +1	D	<u>(S</u> +1	Ś	<u>D</u> +1	D
(Upper 4 digits)	(Lower 4 digits)	(Upper 4 digits)	(Lower 4 digits)	(Upper 4 digits)	(Lower 4 digits)
0987	1068 —	0032	3456	> 0 9 5 4	7 6 1 2
		► Digi of di	ts exceeding f igits are assur	the designat med to be 0.	ed number

- (2) 0 to 99999999 (BCD 8 digits) can be assigned to s and D.
- (3) The following will result if an underflow is generated by the subtraction operation: The carry flag in this case does not go ON.

 $12345678 - 12345679 \Longrightarrow 999999999$

Coperation Error

- (1) In the following case, an operation error occurs, the error flag (SM0) turns ON, and an error code is stored into SD0.
 - The (s) or (b) BCD data is outside the 0 to 99999999 range. (Error code: 4100)

// Program Example

(1) The following program adds the BCD data 12345600 and 34567000, stores the result at D887 and D888, and at the same time outputs them to from Y30 to Y4F.

0	SM400	[DM0'	P H123456	00	D887	}	Stores 12345600 in BCD to D887 and D888.
		[DB+	H345670	00	D887	}	Adds 34567000 in BCD to the value in D887 and D888, and stores the result to D887 and D888.
			[DMOVP	D887	K8Y30	}	Outputs the data in D887 and D888 to Y30 to Y4F.
11					-[END	}	

[List Mode]

[Ladder Mode]

Step	Instruction	Device	
0 1 4 8 11	LD DMOVP DB+P DMOVP END	SM400 H12345600 H34567000 D887 K8Y30	D887 D887

(2) The following program subtracts the BCD data 98765432 from 12345678, stores the result at D100 and D101, and at the same time outputs it from Y30 to Y4F.

[List Mode]

Step	Instruction	Device	
0 1 4 8 11	LD DMOVP DB-P DMOVP END	SM400 H98765432 H12345678 D100 K8X30	D100 D100

2 When three data are set ((((1, 1), (1, 1),

		indicates an instruction symbol of DB+/DB
DB+, DB-	Command	- <u>(3)</u> (3) (0) - (1) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3
DB+P, DB-P _	Command	P (\$1) (\$2) (D

- S) : Data to be added to/subtracted from or head number of the devices where the data to be added to/subtracted from is stored (BCD 8 digits)
- I Data for adding/subtracting or head number of the devices where the data for adding/subtracting is stored (BCD 8 digits)

D : Head number of the devices where the addition/subtraction operation result is stored (BCD 8 digits)

Setting	Internal Devices		R 7R	J		u ^m ig ^m	Zn	Constants	Other
Data	Bit	Word	N, 2N	Bit	Word	0:!\G:!	20	К, Н	Othor
<u>(S1)</u>				0				0	_
<u>\$2</u>				0				0	_
D				0				_	

☆ Function

DB+

(1) Adds the BCD 8-digit data designated by (s) and the BCD 8-digit data designated by (s), and stores the result of the addition at the device designated by (b).

- (2) 0 to 99999999 (BCD 8 digits) can be assigned to \mathfrak{G} , \mathfrak{D} and \mathfrak{D} .
- (3) If the result of the addition operation exceeds 99999999, the upper bits will be ignored. The carry flag in this case does not go ON.

 $99000000 + 01654321 \implies 00654321$

R10

DB-

Subtracts the BCD 8-digit data designated by S and the BCD 8-digit data designated by S , and stores the result of the subtraction at the device designated by D.

- (2) 0 to 99999999 (BCD 8 digits) can be assigned to \mathfrak{S}_{1} , \mathfrak{S}_{2} and \mathfrak{D} .
- (3) The following will result if an underflow is generated by the subtraction operation: The carry flag in this case does not go ON.

12345678 - 12345679

- In the following case, an operation error occurs, the error flag (SM0) turns ON, and an error code is stored into SD0.
 - The S1, S2 D or BCD data is outside the 0 to 99999999 range. (Error code: 4100)

Program Example

(1) The following program adds the BCD data at D3 and D4 to the BCD data at Z1 and Z2 when X20 goes ON, and stores the result at R10 and R11.
Note: The store is the result of the store is the store is

[Ladder Mode]			[LIST MODE]					
0 X20	 Z1	R10 7	Step	Instruction	[Device		
5			0	LD DB+P	X20 D3	Z1		
5		ר מאיז	5	END				

6.2.7 BCD 4-digit multiplication and division operations $(B^{*}(P),B/(P))$

(2) 0 to 9999 (BCD 4 digits) can be assigned to \mathfrak{S}_{1} and \mathfrak{S}_{2} .

B/

(1) Divides BCD data designated by ⑤ and BCD data designated by ⑥, and stores the result in the device designated by ⑥.

- Uses 32 bits to store the result of the division as quotient and remainder Quotient (BCD 4 digits) :Stored at the lower 16 bits.
 Remainder (BCD 4 digits) :Stored at the upper 16 bits.
- (3) If D has been designated as a bit device, the remainder of the operation will not be stored.

✓ Operation Error

- (1) In any of the following cases, an operation error occurs, the error flag (SM0) turns ON, and an error code is stored into SD0.
 - The si or si BCD data is outside the 0 to 9999 range. (Error code: 4100)

Program Example

(1) The following program multiplies, when X20 is turned ON, the BCD data at X0 to XF by the BCD data at D8 and stores the operation result at D0 to D1.

 [Ladder Mode]
 [List Mode]

 0
 X20
 [B*P K4X0 D8 D0]]
 Step
 Instruction
 Device

 5
 [END]
 1
 B*P
 K4X0 D8 D0
 1

[Operation]

(2) The following program divides 5678 by the BCD data 1234, stores the result at D502 and D503, and at the same time outputs the quotient to Y30 to Y3F.

[Operation]

6.2.8 BCD 8-digit multiplication and division operations $(DB^{*}(P), DB/(P))$

		indicates an instruction symbol of DB*	,DB/.				
DB * , DB/	Command		-				
DB * P, DB/P _	Command	——————————————————————————————————————					
	 S : Data to be multiplied/divided or head number of the devices where the data to be multiplied/divided (BCD 8 digits) Data for multiplying/dividing or head number of the devices where the data for multiplying/dividing (BCD 8 digits) Head number of the devices where the multiplication/division operation result will be stored (BCD 						
Setting Data	Internal Devices Bit Word	J∭\∭ Bit Word U∭\G∭ Zn Constants K, H	Other				
<u>(S1)</u>	0	0					
62	0	0					
D	0	_	_				

Basic

Process Redundant Universal

DB*

(1) Multiplies the BCD 8-digit data designated by (s) and the BCD 8-digit data designated by (s), and stores the product at the device designated by (c).

(2) If (2) has designated a bit device, the lower 8 digits (lower 32 bits) will be used for the product, and the higher 8 digits (upper 32 bits) cannot be designated.

K1Lower 1 digit (b0 to 3), K4Lower 4 digits (b0 to 15), K8.....Lower 8 digits (b0 to 31)

(3) 0 to 99999999 (BCD 8 digits) can be assigned to ${\rm sp}$ and ${\rm sp}$.

DB/

(1) Divides 8-digit BCD data designated by ⑤ and 8-digit BCD data designated by ⑥, and stores the result in the device designated by ⑦.

		••••		
S1)+1	S1	S2+1	S2	
5 6 7 8	9 1 2 3	/ 0 1 2	3 4 5 6 7	
		→ Digits ex are assu	ceeding the designated nu med to be 0	umber of digits
	(D)+1	D	(D)+3	(D+2
Quotient	(Upper 4 digits)	(Lower 4 digits) Re	emainder (Upper 4 digits)	(Lower 4 digits)
	$ \longrightarrow $			
$\Box \!$	0 0 0 0	0 0 4 5	0 1 2 3	3 6 0 8

(Error code: 4100)

(2) 64 bits are used for the result of the division operation, and stored as quotient and remainder.

Quotient (BCD 8 digits):Stored at the lower 32 bits.Remainder (BCD 8 digits):Stored at the upper 32 bits.

(3) If D has been designated as a bit device, the remainder of the operation will not be stored.

Operation Error

- (1) In any of the following cases, an operation error occurs, the error flag (SM0) turns ON, and an error code is stored into SD0.
 - The \mathfrak{S} or \mathfrak{S} BCD data is outside the 0 to 99999999 range. (Error code: 4100)
 - Attempt to divide
 s2 by 0.

Program Example

 The following program multiplies the BCD data 67347125 and 573682, stores the result from D502 to D505, and at the same time outputs the upper 8 digits to Y30 to Y4F.

(2) The following program divides the BCD data from X20 to X3F by the BCD data at D8 and D9 when X0B goes ON, and stores the result from D765 to D768.

6.2.9 Addition and subtraction of floating decimal point data (Single precision) (E+(P),E-(P))

Basic model QCPU: The upper five digits of the serial No. are "04122" or larger.

 $1 When two data are set ((\underline{0}+1,\underline{0})+(\underline{S}+1,\underline{S})\rightarrow (\underline{0}+1,\underline{0}), (\underline{0}+1,\underline{0})-(\underline{S}+1,\underline{S})\rightarrow (\underline{0}+1,\underline{0}))$

(s) : Data for adding/subtracting or head number of the devices where the data for adding/subtracting is stored (real number)

(D) : Head number of the devices where the data to be added to/subtracted from is stored (real number)

Setting	Internal Devices		R 7R	J	\	U ^E GE	7n	Constants	Other
Data	Bit	Word	нх, 2 нх	Bit	Word	0:!\G:!	2.1	E	Othor
S		()	_		0	—	0	—
D		(\supset			0		_	

*1: Available only in multiple Universal model QCPU

Grant Function

E+

(2) Values which can be designated at (s) and (p) and which can be stored, are as follows:

0, $2^{-126} \leq$ | Designated value (stored value) | < 2^{128}

E-

(Error code: 4141)

(2) Values which can be designated at (s) and (d) and which can be stored, are as follows:

0, $2^{-126} \leq |$ Designated value (stored value) $| < 2^{128}$

Operation Error

- (1) In any of the following cases, an operation error occurs, the error flag (SM0) turns ON, and an error code is stored into SD0.
 - The contents of the designated device or the result of the addition are not "0", or not within the following range: (Error code: 4100)

 $0, 2^{-126} \leq |$ Contents of designated device $| < 2^{128}$ (For the Basic model QCPU, High Performance model QCPU, Process CPU, Redundant CPU) (Error code: 4100)

- The value of the specified device is -0.^{*2} (For the Basic model QCPU, High Performance model QCPU, Process CPU, Redundant CPU) (Error code: 4100)
- *2: There are CPU modules that will not result in an operation error if -0 is specified. Refer to Section 3.2.4 for details.
- The result of addition and subtraction exceeds the following range. (The overflow occurs.) (For the Universal model QCPU only)
 - $2^{128} \leq |\text{Result of addition and subtraction}|$
- The value of the specified device is -0, unnormalized number, nonnumeric, and ±∞. (For the Universal model QCPU only) (Error code: 4140)

Program Example

(1) The following program adds the 32-bit floating decimal point type real numbers at D3 and D4 and the 32-bit floating decimal point type real numbers at D10 and D11 when X20 goes ON, and stores the result at D3 and D4.

[Ladder Mode]

[Operation]

D4	D3		D11	D10		D4	D3
5961	1.437	+	1200	3.200]	1796	4.637

(2) The following program subtracts the 32-bit floating decimal point type real number at D10 and D11 from the 32-bit floating decimal point type real numbers at D20 and D21, and stores the result of the subtraction at D20 and D21.

D20

FND

[Operation]

2 When three data are set ((((1, 1), (1, 1),

- SI : Data to be added to/subtracted from or head number of the devices where the data to be added to/subtracted from is stored (real number)
- I Data for adding/subtracting or head number of the devices where the data for adding/subtracting is stored (real number)

(D) : Head number of the devices where the addition/subtraction operation result is stored (real number)

Setting	Internal	Devices	R 7R	J\			7n	Constants	Other
Data	Bit	Word	N, 2N	Bit	Word	0::\G:!	20	E	Othor
<u>(S1)</u>		(\supset	—		0	—	0	—
S2		()			0		0	
D)			0	_	_	

*1:Available only in multiple Universal model QCPU

E+

(1) Adds the 32-bit floating decimal point type real number designated at ⑤ and the 32-bit floating decimal point type real number designated at ⑥, and stores the sum in the device designated at ⑥.

(2) Values which can be designated at (s), (s) and (b) and which can be stored, are as follows:

0, $2^{-126} \leq$ | Designated value (stored value) | < 2^{128}

E-

(1) Subtracts a 32-bit floating decimal point type real number designated by (s) and a 32-bit floating decimal point type real number designated by (s), and stores the result at a device designated by (p).

(2) Values which can be designated at (3) and (2) and (2) which can be stored, are as follows:

0, $2^{-126} \leq |$ Designated value (stored value) $| < 2^{128}$

✓ Operation Error

- (1) In any of the following cases, an operation error occurs, the error flag (SM0) turns ON, and an error code is stored into SD0.
 - The contents of the designated device or the result of the addition are not "0", or not within the following range:

 $0, 2^{-126} \leq |$ Contents of designated device $| < 2^{128}$

(For the Basic model QCPU, High Performance model QCPU, Process CPU, Redundant CPU) (Error code: 4100)

- The value of the specified device is -0.2^{*2} (For the Basic model QCPU, High Performance model QCPU, Process CPU, Redundant CPU) (Error code: 4100)
 - *2: There are CPU modules that will not result in an operation error if -0 is specified. Refer to Section 3.2.4 for details.
- The result of addition and subtraction exceeds the following range. (The overflow occurs.) (For the Universal model QCPU only)
 - $2^{128} \leq |$ Result of addition and subtraction | (Error code: 4141)
- The value of the specified device is -0, unnormalized number, nonnumeric, and ±∞. (For the Universal model QCPU only) (Error code: 4140)

Program Example

(1) The following program adds the 32-bit floating decimal point type real numbers at D3 and D4 and the 32-bit floating decimal point type real numbers at D10 and D11 when X20 goes ON, and outputs the result to R0 and R1.

[Ladder Mode]

[Operation]

(2) The following programs subtracts the 32-bit floating decimal point type real numbers at D20 and D21 from the 32-bit floating decimal point type real numbers at D11 and D10, and stores the result at D30 and D31.

[Operation]

6.2.10 Addition and subtraction of floating decimal point data (Double precision) (ED+(P),ED-(P))

ED+, ED- ED+P, ED-P		Command		indicates	an instruction	symbol of E	:D+/ED] →] →
	(s) : C (r (b) : F	ata for adding/subtractiv real number) Head number of the devi	ng or head number of the	e devices where e added to/subtr	e the data for ad	lding/subtractii	ng is stored
Setting Data	Internal Bit	Devices Word R, ZR	J⊞∖⊞ Bit Word	U\G	Zn	Constants E	Other
S		0				0	
D		0				_	

Grant Function

ED+

(2) Values which can be designated at \odot and \odot and which can be stored, are as follows:

0, $2^{-1022} \leq$ | Designated value (stored value) | < 2^{1024}

ED-

(1) Subtracts a 64-bit floating decimal point type real number designated by (b) and a 64-bit floating decimal point type real number designated by (s), and stores the result at a device designated by (D).

(2) Values which can be designated at (s) and (d) and which can be stored, are as follows:

0, $2^{-1022} \leq |$ Designated value (stored value) | < 2^{1024}

Operation Error

- (1) In any of the following cases, an operation error occurs, the error flag (SM0) turns ON, and an error code is stored into SD0.
 - The contents of the designated device or the result of the addition are not "0", or not within the following range: (Error code: 4140)

0, $2^{-1022} \leq |$ Contents of designated device $| < 2^{1024}$

- The value of the designated device is -0.
- · The result of addition/subtraction exceeds the following range (Operation results in an overflow):
 - $2^{1024} \leq |$ Result of operation |

5961.437

(Error code: 4141)

(Error code: 4140)

Program Example

(1) The following program adds the 64-bit floating decimal point type real numbers at D3 to D6 and the 64-bit floating decimal point type real numbers at D10 to D13 when X20 goes ON, and stores the result at D3 to D6.

12003.200 17964.637 (2) The following program subtracts the 64-bit floating decimal point type real number at D10 to D13 from the 64-bit floating decimal point type real numbers at D20 to D23, and stores the

 $(\textcircled{3}+3,\textcircled{3}+2,\textcircled{3}+1,\textcircled{3})-(\textcircled{2}+3,\textcircled{2}+2,\textcircled{2}+1,\textcircled{3}) \rightarrow (\textcircled{D}+3,\textcircled{D}+2,\textcircled{D}+1,\textcircled{D}))$

	indicates an instruction symbol of ED+/ED						
ED+, ED-	Command						
ED+P, ED-P	Command P S1 S2 D						
	(s) : Data to be added to/subtracted from or head number of the devices where the data to be added to/subtracted from is stored (real number)						
	Set : Data for adding/subtracting or head number of the devices where the data for adding/subtracting is stored (real number)						
	\bigcirc : Head number of the devices where the addition/subtraction operation result is stored (real number)						

Setting Data	Internal Devices		R 7R	J		umom	Zn	Constants	Other
	Bit	Word	N, 2N	Bit	Word	0::\G::	2.11	E	Othor
<u>(S1)</u>	_	0		—				0	
S2		0		_			0		
D		0		—			_		

ED+

(1) Adds the 64-bit floating decimal point type real number designated at (s) and the 64-bit floating decimal point type real number designated at (s), and stores the sum in the device designated at (c).

- (2) Values which can be designated at \mathfrak{S} , \mathfrak{S} and \mathfrak{D} and which can be stored, are as follows:
 - 0, $2^{-1022} \leq$ | Designated value (stored value) | < 2^{1024}

ED-

(1) Subtracts a 64-bit floating decimal point type real number designated by (s) and a 64-bit floating decimal point type real number designated by (s), and stores the result at a device designated by (c).

- (2) Values which can be designated at \mathfrak{S} and \mathfrak{S} and \mathfrak{D} which can be stored, are as follows:
 - 0, $2^{-1022} \leq |$ Designated value (stored value) $| < 2^{1024}$
(Error code: 4140)

(Error code: 4141)

Operation Error

- (1) In any of the following cases, an operation error occurs, the error flag (SM0) turns ON, and an error code is stored into SD0.
 - The contents of the designated device or the result of the addition are not "0", or not within the following range: (Error code: 4140)
 - 0, $2^{-1022} \leq$ | Contents of designated device | < 2^{1024}
 - The value of the specified device is -0.
 - The result of addition/subtraction exceeds the following range (Operation results in an overflow):
 - $2^{1024} \leq$ | Result of operation |

Program Example

(1) The following program adds the 64-bit floating decimal point type real numbers at D3 to D6 and the 64-bit floating decimal point type real numbers at D10 to D13 when X20 goes ON, and outputs the result at R0 to R3.

[Operation]

D6 D5 D4 D3	D13 D12 D11 D10		R3	R2	R1	R0
5961.437	+ 12003.200	\Rightarrow	1	1796	4.637	

(2) The following programs subtracts the 64-bit floating decimal point type real numbers at D20 to D23 from the 64-bit floating decimal point type real numbers at D10 to D13, and stores the result at D30 to D33.

[Operation]

6.2.11 Multiplication and division of floating decimal point data (Single precision) (E*(P),E/(P))

E*

(1) Multiplies the 32-bit floating decimal point real number designated by S by the 32-bit floating decimal point real number designated by 2 and stores the operation result at the device designated by D.

(2) Values which can be designated at \mathfrak{S} , \mathfrak{S} and \mathfrak{D} and which can be stored, are as follows:

0, $2^{-126} \leq$ | Designated value (stored value) | < 2^{128}

E/

(2) Values which can be designated at $\mathfrak{S}_{1}, \mathfrak{S}_{2}$ and \mathfrak{D} and which can be stored, are as follows:

0, $2^{-126} \leq |$ Designated value (stored value) $| < 2^{128}$

Operation Error

- (1) In any of the following cases, an operation error occurs, the error flag (SM0) turns ON, and an error code is stored into SD0.
 - The value of the specified device or the result of multiplication is not within the following range:

 $0, 2^{-126} \leq |$ Contents of designated device $| < 2^{128}$

(For the Basic model QCPU, High Performance model QCPU, Process CPU, Redundant CPU) (Error code: 4100)

- The value of the designated device is -0.^{*2} (For the Basic model QCPU, High Performance model QCPU, Process CPU, Redundant CPU)
 (Error code: 4100)
- *2: There are CPU modules that will not result in an operation error if -0 is specified. Refer to Section 3.2.4 for details.
- The result of multiplication and division exceeds the following range. (The overflow occurs.)(For the Universal model QCPU only)
 - $2^{128} \leq |$ Result of addition and subtraction | (Error code: 4141)
- The value of the specified device is -0, unnormalized number, nonnumeric, and $\pm \infty$. (For the Universal model QCPU only) (Error code: 4140)

Program Example

(1) The following program multiplies the 32-bit floating decimal point real numbers at D3 and D4 and the 32-bit floating decimal point real numbers at D10 and D11, and stores the result at R0 and R1.

[Operation]

(2) The following program divides the 32-bit floating decimal point real numbers at D10 and D11 by the 32-bit floating decimal point real numbers at D20 and D21, and stores the result at D30 and D31.

[Operation]

D11	D10		D21	D20		D31	D30
5217	1.39] ÷ [9.73	3521] <>	5359	9.041

6.2.12 Multiplication and division of floating decimal point data (Double precision) (ED*(P),ED/(P))

Basic High

ED*, ED/		-	Command	indi	cates an instr	S2	ol of ED*, ED	Ι.
ED* P, E	D/P_f	-	Command	P	<u>(9</u>)	<u>\$2</u> (
		(§) : ⊑ ((§2 : ⊑ (Data to be multiplied/divic real number) Data for multiplying/dividi real number)	led or head number of the	e devices where devices where	e the data to be the data for m	e multiplied/divi nultiplying/divid	ded is stor
		© :H	lead number of the devi	ces where the multiplication	on/division ope	ration result wi	II be stored (re	al numbe
	Setting Data	Internal Bit	Devices R, ZR	J∰\∰ Bit Word	U∭\G∭	Zn	Constants E	Other
	S1		0				0	
	\$2		0		_		0	
			\cap				_	

Grant Function

ED*

Multiplies the 64-bit floating decimal point real number designated by
 Image: Signate of the second se

(2) Values which can be designated at §), §2 and \bigcirc and which can be stored, are as follows:

0, $2^{-1022} \leq$ | Designated value (stored value) | < 2^{1024}

(3) When the operation results in -0 or an underflow, the result is processed as 0.

ED/

(2) Values which can be designated at \mathfrak{S} , \mathfrak{D} and \mathfrak{D} and which can be stored, are as follows:

0, $2^{-1022} \leq |$ Designated value (stored value) $| < 2^{1024}$

(3) When the operation results in -0 or an underflow, the result is processed as 0.

Operation Error

- (1) In any of the following cases, an operation error occurs, the error flag (SM0) turns ON, and an error code is stored into SD0.
 - The value of the specified device or the result of multiplication is not within the following range:
 (Error code: 4140)
 - 0, $2^{-1022} \leq$ | Contents of designated device | < 2^{1024}
 - The value of the designated device is -0. (Error code: 4140)

 - The result of multiplication/division exceeds the following range (Operation results in an overflow):
 - $2^{1024} \leq |$ Result of operation |

(Error code: 4141)

(Error code: 4100)

Program Example

(1) The following program multiplies the 64-bit floating decimal point real numbers at D3 to D6 and the 64-bit floating decimal point real numbers at D10 to D13, and stores the result at R0 to R3.

(2) The following program divides the 64-bit floating decimal point real numbers at D10 to D13 by the 64-bit floating decimal point real numbers at D20 to D23, and stores the result at D30 to D33.

6.2.13 Block addition and subtraction (BK+(P),BK-(P))

Basic High Process Redundant Universal

			indicates an	instruction sy	mbol of BK+,	BK
BK+, BK-		Command	(\$1)	\$2	D n	
BK+P, BK-P		Command	P (S2	<u></u>	D n	
	© : Da (B) © : He n : Nu	ata for additing/subtracti IN 16 bits) ad number of the devic umber of addition/subtra	ng or head number of the devices when es where the operation result will be st ction data blocks (BIN 16 bits)	re the data for a	additing/subtrac ts)	ting is s
Setting Data	Internal Bit	Devices Word R, ZR	J\ Bit Word U	Zn	Constants \$	Oth
(51)		0				
\$2		0			0	
D	—	0	_			

Grant Function

BK+

(1) Adds n points of BIN data from the device designated by (s) and n-points of BIN data from the device designated by (s) and stores the result from the device designated by (c) onward.

- (2) Block addition is performed in 16-bit units.
- (3) The constant designated by \odot can be between -32768 and 32767 (BIN 16-bit data).

(4) The following will happen when an underflow or overflow is generated in an operation result: The carry flag in this case does not go ON.

```
· K32767 +K2 → K-32767
(7FFFH) (0002H) (8001H)
· K-32767+K-2 → K32767
(8001H) (FFFEH) (7FFFH)
```

BK-

- (2) Block subtraction is performed in 16-bit units.
- (3) The constant designated by \Im can be between -32768 and 32767 (BIN 16-bit data).

(4) The following will happen when an underflow or overflow is generated in an operation result: The carry flag in this case does not go ON.

· K-32768	-K2	→	<32766
(8000н)	(0002н)	(7FFEH)
1/00707			00707

· K32767	-K-2	→-32767
(7FFFH)	(FFFEH)	(8001н)

Operation Error

- (1) In any of the following cases, an operation error occurs, the error flag (SM0) turns ON, and an error code is stored into SD0.
 - The n-bit range from the (s), (s) or (b) device exceeds the range of that device.

(Error code: 4101)

- The device ranges of (and (b)) overlap. (Except when the same device is assigned to (s))
 (Error code: 4101)
- The device ranges of (2) and (b) overlap. (Except when the same device is assigned to (2) and (b))
 (Error code: 4101)

Program Example

(1) The following program adds, when X20 is turned ON, the data stored at D100 to D103 to the data stored at R0 to R3 and stores the operation result into the area starting from D200.

(2) The following program subtracts, when X1C is turned ON, the constant 8765 from the data at D100 to D102 and stores the operation result into the area starting from R0.

X1C [BK-P D100 K8765 R0 K3 Step Instruction Device 0 LD X1C 0 LD X1C 0					odej	[List Mo						adder Mode]	[L
		ce	Devi		Instruction	Step	кз Т	RO	K8765	D100	–Гвк-р	X1C	0
6	0 K3	RO	K8765	X1C D100	LD BK-P END	0 1 6	-FEND]				L		6

[Operation]

6.2.14 BIN 32-bit data block addition and subtraction operations (DBK+(P),DBK-(P))

QnU(D)(H)CPU: The serial number (first five digits) is "10102" or later. QnUDE(H)CPU: The serial number (first five digits) is "10102" or later.

		indicates	s an instru	ction symb	ol of DBK	+, DBK
DBK+,DBK-	Command	- []	S1)	S2)	D	
DBKP+, DBK-P	Command	P	<u>(S1)</u>	S2	D	n

(b): Head number of the devices where the data to be added and subtracted are stored (BIN 32 bits)

Set : Addition and subtraction data or head number of the devices where the addition and subtraction data are stored (BIN 32 bits)

(D): Head number of the devices where the addition and subtraction operation result will be stored (BIN 32 bits) n: Number of addition and subtraction data blocks (BIN 16 bits)

Setting	Internal Devices		R 7R			7n	Constants	Other		
Data	Bit	Word		Bit	Word	0	20	K,H	Other	
<u>(S1)</u>		C	\supset	_				—	—	
\$2		0				0	_			
D		C	\supset			_				
n		(\supset			0		0	_	

☆ Function

DBK+

(1) This instruction adds BIN 32-bit data stored in n-point devices starting from the device specified by (s) to BIN 32-bit data stored in n-point devices starting from the device specified by (s) or a constant. and then stores the operation result into the nth device specified by (D) and up,

When a device is specified for (s2)

When a constant is specified for §2

- (2) Block addition is executed in 32-bit units.
- (3) The constant in the device specified by ⊚ can be between -2147483648 to 2147483647 (BIN 32-bit data).
- (4) If the value specified by n is 0, the instruction will be not processed.
- (5) The following will happen if an overflow occurs in an operation result: The carry flag in this case is not turned on.

· K2147483647+K2 → K-2147483647 (7FFFFFFH) (0000002н) (8000001н)

 К—2147483647+К —2 → К2147483647 (80000001н) (FFFFFFEн) (7FFFFFFн)

DBK-

When a device is specified for so

When a constant is specified for
⁶²

- (2) Block subtraction is executed in 32-bit units.
- (3) The constant in the device specified by $_{\odot}$ can be between -2147483648 to 2147483647 (BIN 32-bit data).
- (4) If the value specified by n is 0, the instruction will be not processed.

However, and can specify the same device.

- (6) The following will happen if an overflow occurs in an operation result: The carry flag in this case is not turned on.
 - · K2147483647 -K-2 → K-2147483647 (7FFFFFF)(0000002н) (8000001н)
 - · K—2147483647 —К2 → К2147483647 (80000001н) (FFFFFFEн) (7FFFFFFн)

Operation Error

- (1) In any of the following cases, an operation error occurs, the error flag (SM0) turns on, and an error code is stored into SD0.
 - A negative value is specified for n. (Error code: 4100)
 - The range of the n-point devices starting from the device specified by (s), (s₂), or (b) exceeds the specified device range. (Error code: 4101)
 - The range of the n-point devices starting from the device specified by (s) overlaps with the range of the n-point devices starting from the device specified by (D). (Exclude the case that (s) and (D) specify the same device. (Error code: 4101)
- (1) The following program adds the value data stored at R0 to R5 to the constant, and then stores the operation result into D30 to D35, when M0 is turned on.

[Operation]

(2) The following program subtracts the value data stored at D50 to D59 from the value data stored at D100 to D109, and then stores the operation result into R100 to R109, when M0 is turned on.

[Operation]

b	31 k	0 b3	31 I	b0 b3	<u>31 b</u> 0
D101,D100	12345	D51,D50	11111	R101,R100	1234
D103,D102	54321	D53,D52	-11111	R103,R102	65432
D105,D104	-12345	— D55,D54	22222	R105,R104	-34567
D107,D106	-54321	D57,D56	-22222	R107,R106	-32099
D109,D108	99999	D58,D58	33333	R109,R108	66666

Universal

6.2.15 Linking character strings (\$+(P))

Basic High

Process

Redundant

(s) : Data for linking or head number of the devices where the data for linking is stored (character string)

 $\textcircled{D}_{}$: Head number of the devices where the data to be linked is stored (character string)

Setting	Internal	Devices	R 7R	J			uillice 7n		Other	
Data	Bit	Word	N, 2N	Bit	Word	0: (G:)	20	\$	Other	
S		C	\supset					0	—	
D		($\mathbf{)}$							

Grant Function

(1) Links the character string data designated by (s) after the character string data designated by (b) and stores the result into the area starting with the device number designated by (b). The object of character string data is that character string data stored from device numbers designated at (c) and (s) to that stored at "00H".

(2) When character strings are linked, the "00H", which indicates the end of character string data designated at D, is ignored, and the character string designated at S is appended to the last character of the D string.

Operation Error

- (1) In any of the following cases, an operation error occurs, the error flag (SM0) turns ON, and an error code is stored into SD0.
 - The entire character string linked from the device number designated by (b) to the final device number of the relevant device cannot be stored. (Error code: 4101)
 - The storage device numbers for the character strings designated by (s) and (b) overlap. (Error code: 4101)
 - The character string of (s) and (p) exceeds 16383 characters. (Error code: 4101)

Program Example

(1) The following program links the character string stored from D10 to D12 to the character string "ABCD" when X0 is ON.

[Ladder Mode]		[List Mo	ode]		
		Step	Instruction	Device]
6	[END]	0 1 6	LD \$+P END	XO "ABCD" D10	-
[Operation]					

[Operation]

Automatically stores "00H". ---

2 When three data are set ($\mathfrak{G} + \mathfrak{B} \rightarrow \mathfrak{D}$)

(5) : Data for linking or head number of the devices where the data for linking is stored (character string)

 \circledast : Data to be linked or head number of the devices where the data to be linked is stored (character string)

 $\textcircled{D}_{}$: Head number of the devices where the linking result will be stored (character string)

Setting	Internal	Devices	R 7R	J			7n	Constants	Other
Data	Bit	Word	Bit Word		0		\$	Other	
S1	_	(\supset			_		0	—
\$2	_	()			_		0	—
D		()	—				_	
			-						<u> </u>

Grant Function

(2) When character strings are linked, the "00H" which indicates the end of character string data indicated by (S), is ignored, and the character string indicated by (S) is appended to the last character of the (S) string.

Operation Error

- (1) In any of the following cases, an operation error occurs, the error flag (SM0) turns ON, and an error code is stored into SD0.
 - The entire character string linked from the device number designated by (1) to the final device number of the relevant device cannot be stored. (Error code: 4101)
 - The storage device numbers for the character strings designated by (s) and (a) overlap. (Error code: 4101)
 - The storage device numbers for the character strings designated by (so and) overlap. (Error code: 4101)
 - The character string of (s), (2) and (b) exceeds 16383 characters. (Error code: 4101)

Program Example

(1) The following program links the character string stored from D10 to D12 with the character string "ABCD" when X0 is ON, and stores them in D100 onwards.

[Ladder Mode]

[List Mode]

00н

D104

Automatically stores "00H".

44н (D)

	X0 [\$+P	D10	"ABCD"	D100	٦	Step	Instruction		Device	
7-				-[END	}	0 1 7	LD \$+P END	X0 D10	"ABCD"	D100

[Operation]

l	o15 b8	b7 b0				ł	o15 b8	b7 b0
D10	62н (b)	61н (a)				D100	62н (b)	61н (a)
D11	64н (d)	63н (с)	+	"ABCD"	\Box	D101	64н (d)	63н (с)
D12	00н	65н(е)				D102	41н (A)	65н (e)
						D103	43н (C)	42н (B)

6.2.16 Incrementing and decrementing 16-bit BIN data (INC(P),DEC(P))

Basic High performance Process Redundant Universal
indicates an instruction symbol of INC/DEC.
Internal Devices R, ZR J□ U□ Zn Constants Other Data Bit Word R, ZR Bit Word Constants Other
Function
INC
(1) Adds 1 to the device designated by \bigcirc (16-bit data).
D b15b0 5678 (BIN) +1 □ +1 □ 5679 (BIN)
(2) When INC/INCP operation is executed for the device designated by \bigcirc , whose content is 32767, the value -32768 is stored at the device designated by \bigcirc
DEC
(1) Subtracts 1 from the device designated by (a) (16-bit data). $ \begin{array}{c} $
(2) When DEC/DECP operation is executed for the device designated by $_{\bigcirc}$, whose content is -32768 , the value 32767 is stored at the device designated by $_{\bigcirc}$.
Operation Error
(1) There are no operation errors associated with the INC(P)/DEC(P) instruction.

6.2 Arithmetic Operation Instructions 6.2.16 Incrementing and decrementing 16-bit BIN data (INC(P),DEC(P))

Program Example

 The following program outputs the present value at the counter C0 to C20 to the area Y30 to Y3F in BCD, every time X8 is turned ON. (When present value is less than 9999)
 [Ladder Mode]

[List Mode]

(2) The following is a down counter program.

[List Mode]

Step	Instruction	Device
0 1 3	LD MOVP LD	X7 K100 D8 X8
4 5 7 10 11	AN I DECP LD= OUT END	M38 D8 K0 D8 M38

6.2.17 Incrementing and decrementing 32-bit BIN data (DINC(P),DDEC(P))

	Basic High performance Process Redundant Universal
	DINC, DDEC Command DINCP, DDECP
	Internal Devices R, ZR J J Zn Constants Other Data Bit Word Constants Constants Other D Constants Constants Constants Constants Constants
ी F	unction
	DINC
	(1) Adds 1 to the device designated by \bigcirc (32-bit data).
	$ \begin{array}{c} $
	(2) When DINC/DINCP operation is executed for the device designated by \bigcirc , whose content is 2147483647, the value -2147483648 is stored at the device designated by \bigcirc .
	DDEC
	(1) Subtracts -1 from the device designated by (a) (32-bit data). $ \begin{array}{c} \bigcirc +1 & \bigcirc \\ \underline{b31-b16 \ b15-b0} \\ \hline 73500 \ (BIN) \\ \hline \end{array} -1 \qquad \bigcirc \qquad \begin{array}{c} \bigcirc +1 & \bigcirc \\ \underline{b31-b16 \ b15-b0} \\ \hline 73499 \ (BIN) \\ \hline \end{array} $
	(2) When DDEC/DDECP operation is executed for the device designated by [●] , whose content is 0, the value -1 is stored at the device designated by [●] .
$ $	peration Error
	(1) There are no operation errors associated with the DINC(P) or DDEC(P).

Program Example

(1) The following program adds 1 to the data at D0 and D1 when X0 is ON.[Ladder Mode][List Mode]

 X0
 [DINCP D0]
 Step
 LD

 4
 [END]
 4
 END

- StepInstructionDevice0LDX01DINCPD04ENDD0
- (2) The following program adds 1 to the data set at X10 to X27 when X0 goes ON, and stores the result at D3 and D4.

(3) The following program subtracts 1 from the data at D0 and D1 when X0 goes ON.[Ladder Mode][List Mode]

0	XO TDDECP	DO	Step	Instruction	Device
4		[END	0 1 } 4	LD DDECP END	XO DO

(4) The following program subtracts 1 from the data set at X10 to X27 when X0 goes ON, and stores the result at D3 and D4.

[List Mode]

Process Redundant Universal

Basic

6.3 Data conversion instructions

6.3.1 Conversion from BIN data to 4-digit and 8-digit BCD (BCD(P),DBCD(P))

	indicates an instruction sym	bol of BCD	/DBCE
BCD, DBCD		D	
BCDP, DBCDP	Command P S	D	-
	 (§) : BIN data or head number of the devices where the BIN data is stored (BIN 16/32 (b) : Head number of the devices where BCD data will be stored (BCD 4/8 digits) 	bits)	
Setting Data	Internal Devices R, ZR JⅢ\Ⅲ Bit Word R, ZR Bit Word	Constants K, H	Oth
S	0	0	_
D	0		-

BCD

Converts BIN data (0 to 9999) at the device designated by ${\rm (s)}$ to BCD data, and stores it at the device designated by ${\rm (b)}$.

DBCD

Converts BIN data (0 to 99999999) at the device designated by \odot to BCD data, and stores it at the device designated by \odot .

Operation Error

- (1) In any of the following cases, an operation error occurs, the error flag (SM0) turns ON, and an error code is stored into SD0.
 - The data of (s) is other than 0 to 9999 at BCD instruction. (Error code: 4100)
 - The data of (s) or (s) +1 is other than 0 to 99999999 at DBCD instruction.

(Error code: 4100)

Program Example

(1) The following program outputs the present value of C4 from Y20 to Y2F to the BCD display device.

(2) The following program outputs 32-bit data from D0 to D1 to Y40 to Y67.

Redundant Universal

Process

6.3.2 Conversion from BCD 4-digit and 8-digit data to BIN data (BIN(P),DBIN(P))

Basic

			indicates an	instruction sy	ymbol of BIN	I/DBIN.
BIN, DBIN	Command		-	S	D -	-
BINP, DBINP	Command		P	<u>(</u> §		-
	(s) : BCD data or head nu	mber of the devices where	the BCD data is	stored (BCD 4/	8 digits)	
	① : Head number of the c	levices where BIN data will	be stored (BIN 1	16/32 bits)		
Setting Data	Internal Devices Bit Word	Bit Word	UI.G	Zn	Constants K, H	Other
S		0			0	—
D		0				_

BIN

Converts BCD data (0 to 9999) at device designated by S to BIN data, and stores at the device designated by D.

DBIN

Converts BCD data (0 to 99999999) at device designated by S to BIN data, and stores at the device designated by D.

Operation Error

- (1) In the following case, an operation error occurs, the error flag (SM0) turns ON, and an error code is stored into SD0.
 - When values other than 0 to 9 are designated to any digits of \circledast

(Error code: 4100)

When the QCPU is used, the error above can be suppressed by turning ON SM722. However, the instruction is not executed regardless of whether SM722 is turned ON or OFF if the designated value is out of the available range.

For the BINP/DBINP instruction, the next operation will not be performed until the command (execution condition) is turned from OFF to ON regardless of the presence/absence of an error.

Program Example

 The following program converts the BCD data at X10 to X1B to BIN when X8 is ON, and stores it at D8.

(2) The following program converts the BCD data at X10 to X37 to BIN when X8 is ON, and stores it at D0 and D1.

(Addition of the BIN data converted from BCD at X20 to X37 and the BIN data converted from BCD at X10 to X1F)

If the data set at X10 to X37 is a BCD value which exceeds 2147483647, the value at D0 and D1 will be a negative value, because it exceeds the range of numerical values that can be handled by a 32-bit device.

6.3.3 Conversion from BIN 16 and 32-bit data to floating decimal point (Single precision) (FLT(P),DFLT(P))

					Ver. Basic	High performance Process Redundant	Universal
			Basic n	nodel QCP	U: The upper five digits	of the serial No. are "0412	22" or larger.
					indicates an ir	nstruction symbol of FLT/[OFLT.
	FLT, DFLT		Command			\$D]
	FLTP, DFLTP		Command			P S D	
		(s) : li ir (n) : H (n)	nteger data to be conver nteger data is stored (BI lead number of the devi real number)	ted to 32-bit N 16/32 bits ces where tl	floating decimal point data	or head number of the device decimal point data will be stor	es where the
	Setting Data	Internal Bit	Devices Word R, ZR	J Bit	VIII VIII \GIII	Zn Constants K, H	Other
	S	0	0	0	0	0	
	D		0		0	○*1	—
	*1:Availa	ble only in	multiple Universal m	odel QCPI	J		
ी F	unction						

FLT

(1) Converts 16-bit BIN data designated by (s) to 32-bit floating decimal point type real number, and stores at device number designated by (b).

(2) BIN values between -32768 to 32767 can be designated by \circledast .

DFLT

(1) Converts 32-bit BIN data designated by (s) to 32-bit floating decimal point type real number, and stores at device number designated by (s).

(2) BIN values between -2147483648 to 2147483647 can be designated by ± 1 and \pm .

(3) Due to the fact that 32-bit floating decimal point type real numbers are processed by simple 32-bit processing, the number of significant digits is 24 bits if the display is binary and approximately 7 digits if the display is decimal.

For this reason, if the integer exceeds the range of -16777216 to 16777215 (24-bit BIN value), errors can be generated in the conversion value.

As for the conversion result, the 25th bit from the upper bit of the integer is always filled with 1 and 26th bit and later bits are truncated.

Operation Error

- (1) In the following case, an operation error occurs, the error flag (SM0) turns ON, and an error code is stored into SD0.
 - The result exceeds the following range (The overflow occurs.) (For the Universal model QCPU only)

 $2^{128} \leq$ | Operation result |

(Error code: 4141)

Program Example

(1) The following program converts the BIN 16-bit data at D20 to a 32-bit floating decimal point type real number and stores the result at D0 and D1.

(2) The following program converts the BIN 32-bit data at D20 and D21 to a 32-bit floating decimal point type real number, and stores the result at D0 and D1.

[Operation]

6.3.4 Conversion from BIN 16 and 32-bit data to floating decimal point (Double precision) (FLTD(P),DFLTD(P))

Setting	Internal	Devices	R 7R	J		J[]]\[]]		7n	Constants	Other
Data	Bit	Word	Ν, ΖΝ	Bit	Word	0::\G::	20	К, Н	Other	
S	-)	—			\bigcirc			
D		(\supset					-	_	

Grunction

FLTD

(1) Converts 16-bit BIN data designated by (s) to 64-bit floating decimal point type real number, and stores at device number designated by (p).

(2) BIN values between -32768 to 32767 can be designated by \circledast .

DFLTD

(1) Converts 32-bit BIN data designated by (s) to 64-bit floating decimal point type real number, and stores at device number designated by (b).

(2) BIN values between -2147483648 to 2147483647 can be designated by ± 1 and \pm .

Coperation Error

- (1) In the following case, an operation error occurs, the error flag (SM0) turns ON, and an error code is stored into SD0.
 - The result exceeds the following range (Operation results in an overflow): $2^{1024} \leq |$ Operation result | (Error code: 4141)

Program Example

(1) The following program converts the BIN 16-bit data at D20 to a 64-bit floating decimal point type real number and stores the result at D0 to D3.

64-bit floating-point

real number

(2) The following program converts the BIN 32-bit data at D20 and D21 to a 64-bit floating decimal point type real number, and stores the result at D0 to D3.

[Ladder Mode]	[List Mode]			
0 [DFLTDP D20		Step	Instruction DFLTDP	Device SM400 D20 D0
		4	END	

[Operation]

15923

BIN value

6.3.5 Conversion from floating decimal point data to BIN16- and 32-bit data (Single precision) (INT(P),DINT(P))

				Ver. Basic	High performance Pro	cess Redundant	Universal
		Basic n	nodel QCP	U: The upper five digits	of the serial	No. are "0412	2" or larger.
				indicates a	in instruction	symbol of IN	T/DINT.
INT, DIN	╸╻	Command			Ś		-
INTP, DI	NTP_	Command			> (\$		+
	⑤ :3 fi ① :⊦	2-bit floating decimal po oating decimal point dat lead number of the devi	int data to b a is stored (ces where tl	e converted to BIN value or real number) ne converted BIN value will	head number be stored (BIN	of the devices v 16/32 bits)	vhere the
S	Setting Internal Data Bit	Devices Word R, ZR	J Bit	VIII VIII /GIII	Zn	Constants E	Other
	s –	0		0	()*1	0	
	0 0	0	0	0	0		
*.	1:Available only in	multiple Universal m	odel QCPI	J			

INT

(1) Converts the 32-bit floating decimal point real number designated at (s) into BIN 16-bit data and stores it at the device number designated at (b).

- (2) The range of 32-bit floating decimal point type real numbers that can be designated at (s) +1 or (s) is from -32768 to 32767.
- (3) Stores integer values stored at \bigcirc as BIN 16-bit values.
- (4) After conversion, the first digit after the decimal point of the real number is rounded off.

DINT

(1) Converts 32-bit floating decimal point type real number designated by (s) to BIN 32-bit data, and stores the result at the device number designated by (D).

(2) The range of 32-bit floating decimal point type real numbers that can be designated at s + 1 or s is from -2147483648 to 2147483647.

- (3) The integer value stored at (D) +1 and (D) is stored as BIN 32 bits.
- (4) After conversion, the first digit after the decimal point of the real number is rounded off.

Operation Error

- (1) In any of the following cases, an operation error occurs, the error flag (SM0) turns ON, and an error code is stored into SD0.
 - The contents of the designated device or the result of the addition are not "0", or not within the following range(For the Universal model QCPU only):

 $0, 2^{-126} \leq |$ Contents of designated device $| < 2^{128}$ (Error code: 4140)

- The value of the specified device is -0, unnormalized number, nonnumeric, and ±∞. (For the Universal model QCPU only)
 (Error code: 4140)
- The 32-bit floating decimal point type data designated by

 when the INT instruction was used was outside the -31768 to 32767 range.
 (Error code: 4100)
- The 32-bit floating decimal point type data designated by (s) when the DINT instruction was used was outside the -2147483648 to 2147483647 range. (Error code: 4100)

Program Example

(1) The following program converts the 32-bit floating decimal point type real number at D20 and D21 to BIN 16-bit data, and stores the result at D0.

(2) The following program converts the 32-bit floating decimal point type real number at D20 and D21 to BIN 32-bit data and stores the result at D0 and D1.

6.3.6 Conversion from floating decimal point data to BIN16- and 32-bit data (Double precision) (INTD(P),DINTD(P))

Setting	Internal Devices		R 7R	J			Zn	Constants	Other
Data	Bit	Word	, <u></u>	Bit	Word	0::\G::	2.1	E	Other
S)		_		—	0	—
D		(\supset		_		0	_	_

Grant Function

INTD

(1) Converts the 64-bit floating decimal point real number designated at (s) into BIN 16-bit data and stores it at the device number designated at (p).

- (2) The range of 64-bit floating decimal point type real numbers that can be designated at (s+3,s+2,s+1 or s) is from -32768 to 32767.
- (3) Stores integer values stored at D as BIN 16-bit values.
- (4) The converted data is the value rounded 64-bit floating-point real number to the first digit after the decimal point.

DINTD

(1) Converts 64-bit floating decimal point type real number designated by (s) to BIN 32-bit data, and stores the result at the device number designated by (b).

- (2) The range of 64-bit floating decimal point type real numbers that can be designated at (s)+3,(s)+2,(s)+1 or (s) is from -2147483648 to 2147483647.
- (3) The integer value stored at (D) +1 and (D) is stored as BIN 32 bits.
- (4) The converted data is the value rounded 64-bit floating-point real number to the first digit after the decimal point.

Coperation Error

- (1) In any of the following cases, an operation error occurs, the error flag (SM0) turns ON, and an error code is stored into SD0.
 - The value of the specified device is not in the following range: (Error code: 4140) 0, $2^{-1022} \le |$ value of specified device $| \le 2^{1024}$
 - The value of the designated device is -0. (Error code: 4140)
 - The 64-bit floating decimal point type data designated by s when the INTD instruction was used was outside the -31768 to 32767 range. (Error code: 4100)
 - The 64-bit floating decimal point type data designated by s when the DINTD instruction was used was outside the -2147483648 to 2147483647 range. (Error code: 4100)

Program Example

 The following program converts the 64-bit floating decimal point type real number at D20 to D23 with BIN 16-bit data, and stores the result at D0.

[List Mode]

[Ladder Mode]

[Operation]

D23 D22 D21 D20 Conversion to integer	D0
25915.6796	25916
64-bit floating-point real number	BIN value

D23 D22 D21 D20 Conversion to integer

-33562.3211 An operation erroe occurs because the specified data is larger than -32768. 64-bit floating-point real number

(2) The following program converts the 64-bit floating decimal point type real number at D20 to D23 with BIN 32-bit data and stores the result at D0 and D1.

6.3.7 Conversion from BIN 16-bit to BIN 32-bit data (DBL(P))

	Basic High Process Redundant University of the Process Redundant Process Redundant University of the Process Redundant	rsal
	DBL Command DBL S D Command DBLP Command DBLP S D	
	 (s) : BIN 16-bit data or head number of the devices where the BIN 16-bit data is stored (BIN 16 bits) (d) : Head number of the devices where the converted BIN 32-bit data will be stored (BIN 32 bits) 	
	Setting Data Internal Devices R, ZR JIIIII UIIIGIII Zn Constants K, H Oth S	her
	• • • • • •	_
्रे F	unction	
	Converts BIN 16-bit data at device designated by ${ m (s)}$ to BIN 32-bit data with sign, and stores	the
	result at a device designated by \bigcirc .	
	(S) BIN 16-bit data (D)+1 (D) Upper 16 bits Lower 16 bits BIN 32-bit data	
\mathcal{S} c	peration Error	
	(1) There are no errors associated with the DBL(P) instruction.	
∠ F	rogram Example	
	(1) The following program converts the BIN 16-bit data stored at D100 to BIN 32-bit data w	hen

X20 is ON, and stores at R100 and R101. [List Mode]

[Ladder Mode]

0	X20 	.P D100	R100]	Step	Instruction	Device
4			—[END	}	0 1 4	LD DBLP END	X20 D100 R100

[Operation]

D100		R101	R100
FB2EH	\square	FFFF	-B2Eн
(—1234)		(—1	234)
Redundant Universal

6.3.8 Conversion from BIN 32-bit to BIN 16-bit data (WORD(P))

Basic High

Process

WORD	_		Com	nmand) <u>(</u>		-
WORDP	—	5	Com	nmand		WORD	P S		-
		s D	: BIN 32-bit da : Head numbe	ata or head r er of the devi	number of the devices v	where the BIN 32 ed BIN 16-bit data	-bit data is store a will be stored	ed (BIN 32 bits)	5)
	Setting Data	Inter Bit	nal Devices Word	R, ZR	J Bit Word	U[]]\G[]]	Zn	Constants K, H	Other
Ī	S				0			0	_
1	D				0				—

Grant Function

Converts BIN 32-bit data at device designated by s to BIN 16-bit data with sign, and stores the result at a device designated by s.

Devices can be designated in the range from -32768 to 32767.

Operation Error

- (1) In the following case, an operation error occurs, the error flag (SM0) turns ON, and an error code is stored into SD0.
 - The contents of the data designated by $_{\odot}$ +1 and $_{\odot}$ are outside the range of -32768 to 32767. (Error code: 4100)

Program Example

(1) The following program converts the BIN 32-bit data at R100 and R101 to BIN 16-bit data when X20 is ON, and stores it at D100.

[Ladder Mode]			[List Mo	ode]		
0 X20		D100 7	Step	Instruction	Devic	е
4		[END]	0 1 4	LD Wordp END	X20 R100 D10	00
[Operation]						
R101 R100 FFFF8253н (-32173)	D100 8253н (-32173)					

6.3.9 Conversion from BIN 16 and 32-bit data to Gray code (GRY(P),DGRY(P))

Basic High

Process Redundant Universal

GRY, DGRY	Command Command Command	n instruction symbol of GR	
⑤ ∶ BIN da ① ∶ Head n	ta or head number of the devices where the BIN data number of the devices where the converted Gray code	is stored (BIN 16/32 bits) e will be stored (BIN 16/32 bits)	
Setting Internal Devic Data Bit Wo	es JV. ord R, ZR Bit Word U\G.	Zn Constant K, H	S Other
D	0	—	
Function			
GRY			

Converts BIN 16-bit data at the device designated by S to Gray code, and stores result at device designated by D.

DGRY

Converts BIN 32-bit data at the device designated by S to Gray code, and stores result at device designated by D.

Operation Error

- (1) In the following case, an operation error occurs, the error flag (SM0) turns ON, and an error code is stored into SD0.
 - The data at (s) is a negative number.

(Error code: 4100)

Device

D200

Program Example

(1) The following program converts the BIN data at D100 to Gray code when X10 is ON, and stores result at D200.

(2) The following program converts the BIN data at D10 and D11 to Gray code when X1C is ON, and stores it at D100 and D101.

6.3.10 Conversion of Gray code to BIN 16 and 32-bit data (GBIN(P),DGBIN(P))

	indicates an instruction s	ymbol of GBIN	DGBIN.
GBIN, DGBIN	Command	S D	
GBINP, DGBIN	IPCommand	S D	
	 (s) : Gray code data or head number of the devices where the Gray code data is s (b) : Head number of the devices where the converted BIN data will be stored (BII) 	stored (BIN 16/32 N 16/32 bits)	bits)
Setting Data	Internal Devices R, ZR JIII/III UIII/GIII Zn Bit Word Bit Word Zn	Constants K, H	Other
S	0	0	
D	0	_	

Basic High Process Redundant Universal

GBIN

Converts Gray code data at device designated by S to BIN 16-bit data and stores at device designated by D.

DGBIN

Converts Gray code data at device designated by ${}_{\textcircled{S}}$ to BIN 32-bit data and stores at device designated by ${}_{\textcircled{D}}$.

✓ Operation Error

- (1) In any of the following cases, an operation error occurs, the error flag (SM0) turns ON, and an error code is stored into SD0.
 - Data at (s) when the GBIN instruction was issued is outside the 0 to 32767 range.

(Error code: 4100)

- Data at ${}_{\textcircled{S}}$ when the DGBIN instruction was issued is outside the 0 to 2147483647 range. (Error code: 4100)

Program Example

(1) The following program converts the Gray code data at D100 when X10 is ON to BIN data, and stores the result at D200.

(2) The following program converts the Gray code data at D10 and D11 to BIN data when X1C is ON, and stores the result at D0 and D1.

6.3.11 Complement of 2 of BIN 16- and 32-bit data (sign reversal) (NEG(P),DNEG(P))

				Basic	High performance Proc	ess Redundant	Universal
			[] ir	ndicates an in	struction sym	bol of NEG/D	NEG.
NEG, DNEG		ommand			-	D	-
NEGP, DNEGP		ommand			P	D	-
	(D) : Head numbe (BIN 16/32 bi	r of the devices ts)	where the data for w	hich compleme	ent of 2 is perfor	med is stored	
Setting Data	Internal Devices Bit Word	R, ZR	J∷∷∖∷∷ Bit Word	U\G	Zn	Constants	Other
D			0				-
Function	_						

NEG

(1) Reverses the sign of the 16-bit device designated by $_{\bigcirc}$ and stores at the device designated by $_{\bigcirc}$.

	16 bit
	b15 b0
Before execution (D)	1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
Sign conversion	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Sign conversion	$- \left(\begin{array}{cccccccccccccccccccccccccccccccccccc$
	 Ţ
	b15b0
After execution D	0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

(2) Used when reversing positive and negative signs.

DNEG

(1) Reverses the sign of the 32-bit device designated by (D) and stores at the device designated by (D).

(2) Used when reversing positive and negative signs.

Operation Error

(1) There are no operation errors associated with the NEG(P) or DNEG(P) instruction.

Program Example

 The following program calculates a total for the data at D10 through D20 when XA goes ON, and seeks an absolute value if the result is negative.
 [Ladder Mode]

6.3.12 Floating-point sign invertion (Single precision) (ENEG(P))

Ver. Basic Process Universal Redundant Basic model QCPU: The upper five digits of the serial No. are "04122" or larger. Command **ENEG** ENEG \bigcirc Command **ENEGP** ENEGP (D)(D) : Head number of the devices where the 32-bit floating decimal point data whose sign is to be reversed is stored (real number) Internal Devices Setting J....\.... R, ZR U...\G.... Zn Constants Other Data Bit Word Bit \bigcirc ○*1 C *1:Available only in multiple Universal model QCPU

Grant Function

- (2) Used when reversing positive and negative signs.

Operation Error

- (1) In any of the following cases, an operation error occurs, the error flag (SM0) turns ON, and an error code is stored into SD0.
 - The contents of the designated device or the result of the addition are not "0", or not within the following range(For the Universal model QCPU only):
 - 0, $2^{-126} \leq |$ Contents of designated device $| < 2^{128}$
 - The value of the specified device is −0, unnormalized number, nonnumeric, and ±∞. (For the Universal model QCPU only)
 (Error code: 4140)

(Error code: 4140)

Program Example

(1) The following program inverts the sign of the 32-bit floating decimal point type real number data at D100 and D101 when X20 goes ON, and stores result at D100 and D101.

6.3.13 Floating-point sign invertion (Double precision) (EDNEG(P))

\overleftrightarrow Function

- Reverses the sign of the 64-bit floating decimal point type real number data designated by
 and stores at the device designated by
- (2) Used when reversing positive and negative signs.

Operation Error

- (1) In any of the following cases, an operation error occurs, the error flag (SM0) turns ON, and an error code is stored into SD0.
 - The value of the specified device is not in the following range: (Error code: 4140) $0, 2^{-1022} \leq |$ value of specified device $| < 2^{1024}$
 - The value of the designated device is -0. (Error code: 4140)

Program Example

(1) The following program inverts the sign of the 64-bit floating decimal point type real number data at D100 to D103 when X20 goes ON, and stores result at D100 to D103.

6.3 Data conversion instructions6.3.13 Floating-point sign invertion (Double precision) (EDNEG(P))

6.3.14 Conversion from block BIN 16-bit data to BCD 4-digit data (BKBCD(P))

Basic High performance Process Redundant Universal

BKBCD _		Command	ВКЕ	BCD (S)	D	n	-
BKBCDP _	<u>f</u>	Command	BKE	SCDP (S)	D	n	-
	©s∶He D∶He n∶Nu	ead number of the devic ead number of the devic umber of variable data b	es where BIN data is s es where the converted locks (BIN 16 bits)	tored (BIN 16 bits I BCD data will b	s) e stored (BCD 4	4 digits)	
Setting Data	Internal Bit	Devices Word R, ZR	J∭\∭ Bit Word	U∭\G∭	Zn	Constants K, H	Other
S		0					_
D	-	0					
n	0	0		0			_

Grant Function

(1) Converts BIN data (0 to 9999) n points from device designated by (s) to BCD, and stores result following the device designated by (p).

Must alwa	ays be "0".	▲842476248668424 ▲6001762408 00040762408 00840088 00844
S	BIN 1234	00000100110010010
(S) +1	BIN 5678	0 0 0 1 0 1 1 0 0 0 1 0 1 1 1 0
(S) +2	BIN 1545	000000110000010001 n
i i	i I	\
(S) +(n−2	2) BIN 4321	000010001100001
(S) +(n−1) BIN 5555	0001010110110011
		BCD conversion
		8476847684768476 000000000000 00000000000000000000000
D	BCD 1234	0001001001000
(D) +1	BCD 5678	0 1 0 1 0 1 1 0 0 1 1 1 0 0 0
(D) +2	BCD 1545	00010101010101000101
U) +2	BCD 1545	0,0,0,1,0,1,0,1,0,0,0,1,0,1,0,1,0,1,0,1
D +2	BCD 1545	0:0:0:10:10:10:10:00:01:01 0:10:00:01:10:01:00:01:01

Operation Error

- (1) In any of the following cases, an operation error occurs, the error flag (SM0) turns ON, and an error code is stored into SD0.
 - The range of the device n points from a device designated by (s), (b) or exceeds the relevant device. (Error code: 4101)
 - The data n points from the device designated by ${\scriptstyle(s)}$ is outside the 0 to 9999 range.

(Error code: 4100)

• The (s) and (d) devices overlap.

(Error code: 4101)

Program Example

(1) The following program converts, when X20 is turned ON, the BIN data stored at D100 to D102 to BCD and stores the operation result into the area starting from D200.

[Ladder Mode]						[List Mode]							
0	X20	-Гвквсор	D100	D200	DO		Step	Instruction		Device				
5					-[END]	0 1 5	LD BKBCDP END	X20 D100	D200	DO			

[Operation]

	842-720-827-842- 60900-02-02-02-02-02-02-02-02-02-02-02-02-0
D100 BIN 5432	000101010010000
D101 BIN 4444	0001000100010101000
D102 BIN 3210	000111000101000
	BCD D0 3
	842-842-842-842- 000000000000000000000000000000000000
D200 BCD 5432	0 10 10 10 10 0 0 0 1 10 0 10
D201 BCD 4444	0 10 0 0 10 0 0 10 0 0 0 10 0
D202 BCD 3210	0001110001100000000000

6.3.15 Conversion from block BCD 4-digit data to block BIN 16-bit data (BKBIN(P))

						Dasic	peřformance PTC	Redundant	Univers
BKBIN	1 _	╶╴╞	Command		BKBIN	S	D		-
BKBIN	IP _				BKBINF	• <u>\$</u>	D	n	-
		⑤ :He ◎ :He n :Nu	ead number of the device ead number of the device umber of variable data b	es where BCI es where the ocks (BIN 16	D data is store converted BIN bits)	d (BCD 4 di data will be	gits) e stored (BIN 1	6 bits)	
	Setting Data	Internal Bit	Devices Word R, ZR	J∭∖ Bit	Word	J\G	Zn	Constants K, H	Oth
	S		0						
	D		0						
	n	0	0			0			
Eurotion									

(1) Converts BCD data (0 to 9999) n points from device designated by (s) to BIN, and stores result following the device designated by (p).

				20	8	8	8	0	0	0	0					
		<u>84</u>	25	- œ	4	2	÷	$\widetilde{\mathbf{\omega}}$	4	2	÷	ω	4	2	~	
D	BCD 1234	00	0 1	0	0	1	0	0	0	1	1	0	1	0	0	
(D)+1	BCD 5678	0 1	0 1	0	1	1	0	0	1	1	1	1	0	0	0	
(D)+2	BCD 1545	00	0 1	0	1	0	1	0	1	0	0	0	1	0	1	2
1	1						()								
(D+(n−2)	BCD 4321	0 1	0 0	0	0	1	1	0	0	1	0	0	0	0	1	
(D+(n−1)	BCD 5555	0 1	01	0	1	0	1	0	1	0	1	0	1	0	1	•
							Г	٦								
							ł	ļ	E	311	10	col	nv	er	sio	on
			8192 4096	2048	1024	512	256 2	128	64 E	418 33	16 1 (00	4 NV	er ∾	sio	on
S	BIN 1234	0 0	0 8192 0 4096	0 2048	1024	0 512	o 256	128	E 10	418 33 0	9 1	8	0 4		sio	on T
(S) (S)+1	BIN 1234 BIN 5678	00	-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0	0 0 2048	1024	1 0 512	0 256	0 128	0 1 64 E	31 33 0 1	9 1 1 0	0 0	1 0 1		sio 0	on T
\$ \$+1 \$+2	BIN 1234 BIN 5678 BIN 1545		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 2048	1 1 1024	1 0 512	00256	0 0 128	0 0 1 04	31 28 0 1 0	0 0 0	0 0 0 1	1 0 4 0		sic 0 1	on T
(\$) (\$)+1 (\$)+2	BIN 1234 BIN 5678 BIN 1545		0 0 0 0 0 0 0 0 0 0	0 0 0 2048	1 1024	1 0 512	000256		1 0 0	31 2 0 1 0	9 1 0 0	0 0	0 0 1		c i i i i i i i i i i i i i i i i i i i	n n
(\$) (\$)+1 (\$)+2 (\$)+(n−2)	BIN 1234 BIN 5678 BIN 1545		10 10 10 10 10 10 10 10 10 10 10 10 10 1	0 0 0 2048	0 1 1024	0 512	0 0 0 0 256		E 10 0 1	3IF 8 0 1 0	9 1 0 0		0 1 0 0		sid 0 1	on A n

Operation Error

- (1) In any of the following cases, an operation error occurs, the error flag (SM0) turns ON, and an error code is stored into SD0.
 - The n-bit range from the (s), (b), or device exceeds the range of that device.

(Error code: 4101)

• The data n points at the (s) device is outside the 0 to 9999 range.

(Error code: 4100) (Error code: 4101)

• The (s) and (d) devices overlap.

Program Example

(1) The following program converts, when X20 is turned ON, the BCD data stored at D100 to D102 to BIN and stores the operation result into the area starting from D200.

[[Ladder Mode]					[List Mo	ode]			
0	X20		D200	DO	1	Step	Instruction		Device	
5	11	L			1	0 1 5	LD BKBINP END	X20 D100	D200	DO
Ŭ				Leno	1	Ū	LIND			

[Operation]

	8421-8421-8421-8421-8421- 000000000000000000000000000000000000
D100 BCD 8080	1100000000000000000
D101 BCD 7654	0 0 1 1 1 0 1 1 0 0 1 0 1 0 1 0
D102 BCD 9999	1001110011100111001110011
	BIN conversion (when D0=3)
	8421-251-251-251-251-251-251-251-251-251-2
D200 BIN 8080	0 0 0 1 1 1 1 1 1 0 0 1 0 0 0 0
D201 BIN 7654	0 0 0 1 1 1 1 0 1 1 1 1 0 0 1 1 0
D202 BIN 9999	0 0 1 0 0 1 1 1 1 0 0 0 0 1 1 1 1

6.3.16 Single precision to Double precision conversion (ECON(P))

ECONP Command ECONP Image: Conversion source data, or head number of the device where conversion source data is stored (Real number (single precision)) Image: Conversion source data, or head number of the device where conversion source data is stored (Real number (single precision)) Image: Conversion source data, or head number of the device where conversion source data is stored (Real number (double precision)) Image: Conversion source data, or head number of the device where the converted data is stored (Real number (double precision)) Image: Conversion source data is stored (Real number (double precision)) Image: Conversion source data is stored (Real number (double precision)) Image: Conversion source data is stored (Real number (double precision)) Image: Conversion source data is stored (Real number (double precision)) Image: Conversion source data is stored (Real number (double precision)) Image: Conversion source data is stored (Real number (double precision)) Image: Conversion source data is stored (Real number (double precision)) Image: Conversion source data is stored (Real number (double precision)) Image: Conversion source data is stored (Real number (double precision)) Image: Conversion source data is stored (Real number (double precision)) Image: Conversion source data is stored (Real number (double precision)) Image: Conversion source data is stored (Real number (double precision)) <t< th=""><th>ECON</th><th></th><th>Command</th><th></th><th>- ECON</th><th>S</th><th>D</th><th>-</th></t<>	ECON		Command		- ECON	S	D	-
 S : Conversion source data, or head number of the device where conversion source data is stored (Real number (single precision)) B : Head number of the device where the converted data is stored (Real number (double precision)) S : Head number of the device where the converted data is stored (Real number (double precision)) S : Head number of the device where the converted data is stored (Real number (double precision)) S : Head number of the device where the converted data is stored (Real number (double precision)) S : Head number of the device where the converted data is stored (Real number (double precision)) S : Head number of the device where the converted data is stored (Real number (double precision)) S : Head number of the device where the converted data is stored (Real number (double precision)) S : Head number of the device where the converted data is stored (Real number (double precision)) S : Head number of the device where the converted data is stored (Real number (double precision)) S : Head number of the device where the converted data is stored (Real number (double precision)) S : Head number of the device where the converted data is stored (Real number (double precision)) S : Head number of the device where the converted data is stored (Real number (double precision)) S : Head number of the device where the converted data is stored (Real number (double precision)) S : Head number of the device where the converted data is stored (Real number (double precision)) S : Head number of the device where the converted data is stored (Real number (double precision)) S : Head number of the device where the converted data is stored (Real number (double precision)) 	ECONP				ECONF	> (\$)	D	-
Setting Data Internal Devices R, ZR JIIIII UIII\GIII Zn Constants E Other S		(§) : C (F (D) : H	conversion source data, Real number (single pre lead number of the devi	or head number of the d cision)) ce where the converted	levice where cor data is stored (F	nversion source Real number (de	e data is stored)))
	Catting	g Internal	Devices Word R, ZR	J∭∖∭ Bit Word	U\G	Zn	Constants E	Other
	Data	DIL					1	
● - ○	Setting Data		0				0	

Converts 32-bit floating-point real number specified for S into 64-bit floating-point real number, and stores the conversion result to the device specified for D.


```
64-bit floating-point real number
```

Operation Error

- (1) In any of the following cases, an operation error occurs, the error flag (SM0) turns ON, and an error code is stored into SD0.
 - The value of the specified device is not in the following range: (Error code: 4140) $0.2^{-126} \le |$ value of specified device $| \le 2^{128}$
 - The value of the specified device is -0, unnormalized number, nonnumeric, and $\pm\infty$.

(Error code: 4140)

Basic High Defformance Process Redundant Universal

Program Example

(1) The program which converts 32-bit floating-point real number of the devices, D10 to D11, into 64-bit floating-point real number when X0 turns ON, and outputs the conversion result to the devices, D0 to D3.

[Ladder	Mode]
---------	-------

[List Mode]

	D10	DÛ	٦	Step	Instruction	Device
4	510	[END]	0 1 4	LD ECON END	X0 D10 D0

6.3.17 Double precision to Single precision conversion (EDCON(P))

Basic High Process Redundant Universal

	EDCON Command	
	 S : Conversion source data, or head number of the device where conversion s (Real number (double precision)) D : Head number of the device where the converted data is stored (Real number) 	source data is stored
	Setting Data Internal Devices R, ZR JIIIVIII UIIIVGIII Zn	Constants E Other
		<u> </u>
	Function Converts 64-bit floating-point real number specified for (s) into 32-bit number, and stores the conversion result to the device specified for (s) (s)+3 (s)+2 (s)+1 (s) (D)+1 (D) (d)-bit floating-point real number (d)-bit floating-point real number	t floating-point real
6	Operation Error	
	 In any of the following cases, an operation error occurs, the error flag an error code is stored into SD0. 	g (SM0) turns ON, and
	• The value of the specified device is not in the following range: $0,2^{-1022} \leq $ value of specified device $ < 2^{1024}$	(Error code: 4140)
	 The value of the designated device is -0. 	(Error code: 4140)
	 The result exceeds the following range (Conversion results in an or ¹²⁸	overflow):
	$2^{} \ge $ Conversion result	(Error code: 4141)

Program Example

(1) The program which converts 64-bit floating-point real number of the devices, D10 to D13, into 32-bit floating-point real number when X0 turns ON, and outputs the conversion result to the devices, D0 to D1.

6.4 Data Transfer Instructions

6.4.1 16-bit and 32-bit data transfers (MOV(P),DMOV(P))

					Basic High performan	nce Process Redundar	nt Universal
				[indicates an instructi	ion symbol of MOV	/DMOV.
	MOV,		Command			S D	
	MOVP	, DMOVP_	Command		P	S D	
		ର୍ତ୍ତି: Dat D: Nu	a to be transferred or th mber of the device wher	e number of the devic e the data will be tran	e where the data to be to sferred (BIN 16/32 bits)	ransferred is stored (E	3IN 16/32 bits)
		Setting Internal Data Bit	Devices R, ZR Word	Jiii\iii Bit Word	– ∪∭\G∭ 2	Zn Constants K, H	Other
		0		0		_	<u> </u>
्रे F	unctio	n					
	МС	V					
	(1)	Transfers the 16-b	oit data from the o	device designat	ted by	levice designat	ed by D.
		Before transfer (S) 1	5	0 0 0 1 1	b0 1 0 0 1 0		
		After transfer ① 1	5	0 0 0 1 1	er b0 1 1 0 0 1 0		
	DN	10V					
	(1)	Transfers 32-bit d	ata at the device	designated by	s to the device	designated by (D.
		Ţ.	<u>(\$)+1</u>		Ś		
		Before transfer (S)		1 0 0 0	1 1 5 1 0 0) 1 0	

Before transfer (S)	1	0	1	1	SL	0	1	0	0	0	1	1	_\[1	0	0	1	0
				D	+1				ł	Ът	rans	fer		D				
	b15								b0	b15								b0
After transfer (D)	1	0	1	1	SП	0	1	0	0	0	1	1	30	1	0	0	1	0
Operation Error																		

(1) There are no operation errors associated with the MOV(P) or DMOV(P) instruction.

Program Example

(1) The following program stores input data from X0 to XB at D8.

(2) The following program stores the constant K155 at D8 when X8 goes ON.[Ladder Mode][List Mode]

(3) The following program stores the data from D0 and D1 at D7 and D8.[Ladder Mode][List Mode]

0	SM400		DO	D7	1	Step	Instruction	D	evice
4		-		-END]	0 1 4	LD DMOVP END	SM400 D0	D7

(4) The following program stores the data from X0 to X1F at D0 and D1.

6.4.2 Floating-point data transfer (Single precision) (EMOV(P))

Basic model QCPU: The upper five digits of the serial No. are "04122" or larger.

(S) : Data to be transferred or number of the device to which the data to be transferred is stored (real number)

(D) : The number of the device to which the transferred data will be stored (real number)

Setting	Internal Devices		R 7R	J	J\		7n	Constants	Other	
Data	Bit	Word	,	Bit	Word	0:		E	Culor	
S			\supset	—		0	()*1	0	—	
D		()	_	0		()*1	_	_	

*1:Available only in multiple Universal model QCPU

Grant Function

Transfers 32-bit floating decimal point type real number data being stored at the device designated by \odot to a device designated by \odot .

Coperation Error

(1) There are no operation errors associated with the EMOV(P) instruction.

Program Example

(1) The following program stores the real numbers at D10 and D11 at D0 and D1.

[Operation]

(2) The following program stores the real number -1.23 at D10 and D11 when X8 is ON.
 [Ladder Mode]
 [List Mode]

0	X8 	E-1. 23	D10)	Step	Instruction	Device
4	-		END]	0 1 4	LD EMOVP END	X8 E-1. 23 D10

[Operation]

6.4.3 Floating-point data transfer (Double precision) (EDMOV(P))

	EDMOV	Command		EDMOV	(S) 2 (S)		+
	Ć	 Data to be transferred or The number of the device 	r number of the device to the to which the transferred	which the data to d data will be sto	be transferre	d is stored (rea er)	al number)
	Setting Int Data B	ernal Devices it Word R, ZR	J∰\∭ Bit Word	U∭\G∭	Zn	Constants E	Other
	(S) –	- 0				0	
	D –	- 0				—	
∰ F	unction						
	Transfers 64- designated by	bit floating decimal \mathfrak{g} s to a device des	ooint type real nur ignated by ⊚.	nber data be	eing store	d at the de	evice

Operation Error

(1) There are no operation errors associated with the EDMOV(P) instruction.

Program Example

(1) The following program stores the 64-bit floating decimal point type real number at D10 to D13 at D0 to D3.

[Operation]

	D13 D12 D11 D10
 $ \longrightarrow $	

6.4.4 Character string transfers (\$MOV(P))

Command \$MOV \$MOV $\overline{\mathbb{S}}$ ┥┝ Command \$MOVP \$MOVP (\mathbf{S}) (S) : Character string to be transferred (maximum string length: 32 characters) or head number of the devices where the character string to be transferred is stored (character string) (D) : Head number of the devices where the transferred character string will be stored (character string) Internal Devices Setting J 🗂 \ 🗂 Constants R. ZR U...\G.... Zn Other Data \$ Word Bit S \bigcirc Ο Ο

Basic High perfo

Process Redundant

Universal

\overleftrightarrow Function

(1) Transfers the character string data designated by (s) to the devices from the device designated by (p) and onward.

The character string data enclosed in " (double quotes) or devices from the number specified by \odot to the device number storing "00_H" are transferred all at once.

(2) Processing will be performed without error even in cases where the range for the devices storing the character data to be transferred (s to s+n) overlaps with the range of the devices which will store the character string data after it has been transferred (b to +n). The following occurs when the character string data that had been stored from D10 to D13 is transferred to D11 to D14:

ł	b15 b8	b7 b0	_	<u>b15 b8</u>	b7 b0	
D10	32н (2)	31н (1)		32н (2)	31н (1)	Character string before
D11	34н (4)	33н (3)	D11	32н (2)	31н (1)	transfer is remained.
D12	36н (6)	35н (5)	🖵 → D12	34н (4)	33н (3)	
D13	3 00н		D13	36н (6)	35н (5)	
D14				00	Он	

(3) If the "00_H" code is being stored at lower bytes of $\textcircled{}{}_{\text{(S)}}$ +n, "00_H" will be stored at both the

higher bytes and the lower bytes of \bigcirc +n.

Operation Error

- (1) In any of the following cases, an operation error occurs, the error flag (SM0) turns ON, and an error code is stored into SD0.
 - There is no "00H" code stored between the device number designated by (s) and the relevant device. (Error code: 4101)
 - The entire character string linked from the device number designated by <a>D to the final device number of the relevant device cannot be stored. (Error code: 4101)
 - The character string of (s) exceeds 16383 characters. (Error code: 4101)

Program Example

 The character string data stored in D10 to D12 is transferred to D20 to D22 when X0 goes ON.

[Operation]

(2) When X is turned ON, the character string "ABCD" is transferred to D20 and D21.[Ladder Mode][List Mode]

6.4.5 16-bit and 32-bit negation transfers (CML(P),DCML(P))

Basic High

Process

Redundant

Universal

indicates an instruction symbol of CML, DCML. Command CML, DCML ┥┝ (\mathbb{S}) Command CMLP, DCMLP _ Р (\mathbb{S}) (D)(S) : Data to be reversed or the number of the device where data to be reversed is stored (BIN 16/32 bits) (D) : Number of the device where the reversing result will be stored (BIN 16/32 bits) Setting Internal Devices Constants J....\... Other R, ZR U....\G.... Zn К, Н Data Word Bit Word \bigcirc \bigcirc 0 Grant Function CML (1) Inverts 16-bit data designated by (s) bit by bit, and transfers the result to the device designated by D. b0 Before execution (S) 1 0 1 1 0 1 0 0 0 1 1 0 0 1 1 0 Inversion b15 b0 After execution (D) 0 1 0 0 1 0 1 1 1 0 0 0 1 1 0 1

DCML

(1) Inverts 32-bit data designated by \odot bit by bit, and transfers the result to the device designated by \odot .

Operation Error

(1) There are no operation errors associated with the CML(P) or DCML(P) instruction.

Program Example

(1) The following program inverts the data from X0 to X7, and transfers result to D0.[Ladder Mode][List Mode]

[Operation]

If "Number of bits of (S) < Number of bits of (D)"

(2) The following program inverts the data at M16 to M23, and transfers the result to Y40 to Y47.

[Operation]

(3) The following program inverts the data at D0 when X3 is ON, and stores the result at D16.[Ladder Mode][List Mode]

[Operation]

If "Number of bits of S < Number of bits of D "

(6) Inverts the data at D0 and D1 when X3 is ON, and stores the result at D16 and D17.[Ladder Mode][List Mode]

Universal

6.4.6 Block 16-bit data transfers (BMOV(P))

Command BMOV BMOV (\mathbf{S}) (D)n Command BMOVP BMOVP (\mathbf{S}) n $\circledast\,$: Head number of the devices where the data to be transferred is stored (BIN 16 bits) D : Head number of the devices of transfer destination (BIN 16 bits) n : Number of transfers (when using an intelligent function module device (U []\G[]): 1 to 6144 (QnA only)) (BIN 16 bits) Setting Internal Devices Constants R, ZR U....\G.... Other Zn Data K, H Bit Word Bi 0 0 n \bigcirc \bigcirc

Basic

Process

Redundant

Grant Function

Transfers in batch 16-bit data of n points from the device designated by (s) to location n points from the device designated by (p).

(2) Transfers can be accomplished even in cases where there is an overlap between the source and destination device.
 In the case of transmission to the smaller device number, transmission is from (s); for

transmission to the larger device number, transmission is from (s) + (n-1). However, as shown in the example below, when transferring data from R to ZR, or from ZR to R, the range to be transferred (source) and the range of destination must not overlap. Transfer from R to R, or from ZR to ZR can be performed without any problem.

- ZR transfer range ((specified head No. of ZR) to (specified head No. of ZR + the number of transfers -1))
- R transfer range ((specified head No. of R + file register block No. × 32768) to (specified head No. of R + file register block No. × 32768 + the number of transfers -1))

Example

Transfer ranges of ZR and R overlap when transferring 10000 blocks of data from ZR30000 (source) to R10 (block No.1 of the destination).

- + ZR transfer range \rightarrow (30000) to (30000+10000-1) \rightarrow (30000) to (39999)
- R transfer range \rightarrow (10+(1 × 32768)) to (10+(1 × 32768)+10000-1)

 \rightarrow (32778) to (42777)

(3) When (s) is a word device and (b) is a bit device, the object for the word device will be the number of bits designated by the bit device digit designation.

If K1Y30 has been designated by $_{\odot}$, the lower four bits of the word device designated by $_{\odot}$ will become the object.

- (4) If bit device has been designated for (s) and (b), then (s) and (b) should always have the same number of digits.
- (5) When using a link direct device and an intelligent function module device for (s) and (p), only either of (s) or (p) can be used.
- (6) Selection whether to check a device range

Whether to check a device range during execution of the BMOV instruction can be selected with the device range check inhibit flag (SM237) (only when the conditions for subset processing are established).

While SM237 is ON, whether (s) to (s) + (n) -1 and (b) to (b) + (n) - 1 are within the device range or not are not checked.

For details of SM237, refer to Appendix 3 SPECIAL RELAY LIST.

SM237 can be used only for the Universal model QCPU whose first 5 digits of serial number is 10012 or later.

✓ Operation Error

- (1) In any of the following cases, an operation error occurs, the error flag (SM0) turns ON, and an error code is stored into SD0.
 - The device range of n points from (s) or (b) exceeds the corresponding device range.

(Error code: 4101)

Program Example

(1) The following program outputs the lower 4 bits of data at D66 to D69 to Y30 to Y3F in 4-point units.

[Operation]

(2) The following program outputs the data at X20 to X2F to D100 to D103 in 4-point units. [Ladder Mode] [List Mode]

Function

6.4.7 Identical 16-bit data block transfers (FMOV(P))

			Basic	High performance Process Re	edundant Univ
FMOV		Command	- FMOV (S)	D n	
FMOVP		Command	- FMOVP (S)	D n	
	\$:	Data to be transferred or the head num (BIN 16 bits) Head number of the devices of transfer Number of transfers (BIN 16 bits)	ber of the devices where destination (BIN 16 bits)	the data to be transferre	d is stored
	Setting Interna Data Bit	al Devices R, ZR Jiii \ Word Bit	∭ Word U∭\G∭	Zn Cons K,	tants H
	S	0		0	
-	©	<u> </u>		0 —	

(1) Transfers 16-bit data at the device designated by (s) to n points of devices starting from the one designated by (b).

(2) In cases where s designates a word device and a bit device, the number of bits designated by digit designation for the bit device will be the object bits for the word device.
If K1Y30 has been designated by , the lower 4 bits of the word device designated by
will become the object.

(3) If bit device has been designated for (s) and (b), then (s) and (b) should always have the same number of digits.

(4) Selection whether to check a device range

Whether to check a device range during execution of the FMOV instruction can be selected with the device range check inhibit flag (SM237) (only when the conditions for subset processing are established).

While SM237 is ON, whether $_{\textcircled{D}}$ to $_{\textcircled{D}}$ + (n) - 1 is within the device range or not is not checked.

For details of SM237, refer to Appendix 3 SPECIAL RELAY LIST.

SM237 can be used only for the Universal model QCPU whose first 5 digits of serial number is 10012 or later.

Operation Error

- (1) In any of the following cases, an operation error occurs, the error flag (SM0) turns ON, and an error code is stored into SD0.
 - The device range of n points from **()** or exceeds the corresponding device range.

(Error code: 4101)

Κ5

6

Program Example

 The following program outputs the lower 4 bits of D0 when XA goes ON to Y10 to Y23 in 4-bit units.

[Ladder Mode]

[List Mode]

[Operation]

(2) The following program outputs the data at X20 through X23 to D100 through D103 when XA goes ON.

6.4.8 Identical 32-bit data block transfers (DFMOV(P))

QnU(D)(H)CPU: The serial number (first five digits) is "10102" or later. QnUDE(H)CPU: The serial number (first five digits) is "10102" or later.

Grant Function

(1) This instruction transfers 32-bit data of the device specified by (s) to the n-point devices starting from the device specified by (d).

(2) If \odot specifies data of a device with digit specification, the amount of data to be transferred will be the amount of the data specified digit.

If K5Y0 is specified by $_{\odot}$, the lower 20 bits (five digits) of the word device specified by $_{\odot}$ will be the object.

(3) If D specifies data of a device with digit specification, the amount of data stored in the device specified by D will be transferred.

If K5Y0 is specified by ${}_{\textcircled{O}}$, the lower 20 bits of the word device specified by ${}_{\textcircled{O}}$ will be the object.

If both \odot and \bigcirc specify data of a device with digit specification, the amount of data specified by \bigcirc will be transferred regardless of the number of digits.

- (4) If the value specified by n is 0, the instruction will be not processed.
- (5) Whether to check a device range during the execution of the FMOV instruction can be selected with the device range check inhibit flag (SM237). (Only when the conditions of the subset processing are established)

Coperation Error

- (1) In any of the following cases, an operation error occurs, the error flag (SM0) turns on, and an error code is stored into SD0.
 - The value specified by n is negative.
 (Error code: 4100)
 - The range of n-point devices, to be transferred, exceeds the range of devices specified by
 (Error code: 4101)

Program Example

 The following program stores the value data stored at Y0 to Y13(20 bits) into D10 to D17,when M0 is turned on,

[Ladder Mode]

[List Mode]

6.4 Data Transfer Instructions6.4.8 Identical 32-bit data block transfers (DFMOV(P))

6.4.9 16-bit and 32-bit data exchanges (XCH(P),DXCH(P))

			Basic High perform	ance Process Redundant Universal
XCH, E	охсн	Command	indicates an inst	truction symbol of XCH, DXCH.
XCHP,	DXCHP_	Command	P	0 0
	Ø), ØSetting DataInternal BitØ1Ø2	: Head number of the devices wher Devices R, ZR J Word Bit O	e the data to be exchanged is sto	Zn Constants Other
☆ Functio	n			
XC	СН			
(1)	Conducts 16-bit d Before execution $\begin{bmatrix} b_{15} \\ 0 \\ 1 \end{bmatrix}$ After execution $\begin{bmatrix} b_{15} \\ 0 \\ 1 \end{bmatrix}$	ata exchange between D b8b7b0 111000000000001111 D b8b7b0 111000001111100000	and	b0 0:0:0:0 0:1:11
D	КСН			
(1)	Conducts 32-bit d Before execution $\begin{bmatrix} 531-\\1&1 \end{bmatrix}$ After execution $\begin{bmatrix} 531-\\0&0 \end{bmatrix}$	ata exchange between $\begin{bmatrix} 0 \\ 1 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ -$	(1, 0) and (2) +1, (2) . (2) +1 (2)	$\frac{2}{1 + 1 + 1 + 1}$
✓ Operation Error

(1) There are no errors associated with the XCH (P) and DXCH (P) instruction.

Program Example

(1) The following program exchanges the present value of T0 with the contents of D0 when X8 goes ON.

(2) The following program exchanges the contents of D0 with the data from M16 to M31 when X10 goes ON.

(3) The following program exchanges the contents of D0 and D1 with the data at M16 to M47 when X10 goes ON.

(4) The following program exchanges the contents of D0 and D1 with those of D9 and D10 when M0 goes ON.

6.4.10 Block 16-bit data exchanges (BXCH(P))

Command **BXCH** ┥┝ BXCH (D1) (D2) n Command **BXCHP BXCHP** (D1) (D2) n), 12 : Head number of the devices where the data to be exchanged is stored (BIN 16 bits) : Number of exchanges (BIN 16 bits) n Setting Internal Devices Constants R. ZR Other U....\G.... 7n К, Н Data Bit (D1) \bigcirc 02 \bigcirc ____ ____ n Ο Ο Ο Grant Function

Basic High

Process Redundant Universal

Exchanges 16-bit data of n points from device designated by _D and 16-bit data of n points from device designated by _D.

✓ Operation Error

- (1) In any of the following cases, an operation error occurs, the error flag (SM0) turns ON, and an error code is stored into SD0.
 - The range of the device of n points from a device designated by (D), (D) or exceeds the relevant device. (Error code: 4101)
 - The 🛯 and 🖾 devices overlap.

(Error code: 4101)

Program Example

(1) The following program exchanges 16-bit data for 3 points from D200 for 16-bit data for 3 points from R0 when X1C goes ON.

[Ladder Mode]

[List Mode]

[Operation]

6

6.4.11 Upper and lower byte exchanges (SWAP(P))

		Basi	ic High performance Process Redundant Universal
	SWAPCom SWAPP	imand 	SWAP D SWAPP D
	(b) : Head number ofSettingInternal DevicesDataBitWord(b)	f the devices where the data is stored (BIN 16 R, ZR J Bit Word U O	bits) J Zn Constants Other
🗘 Fur	nction		
	 (1) Exchanges the higher and D 01 D 01 D 15 - D 15 - 	lower 8 bits of the device design -b12b11 b8b7 b4b3 b0 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0 -b12b11 b8b7 b4b3 b0 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1	ated by ⊚.
8 Ope	eration Error		
	(1) There are no operation err	ors associated with the SWAP(P) instruction.
Pro	gram Example		
	 The following program exc ON. 	hanges the higher 8 bits and low	ver 8 bits of R10 when X10 goes
	[Ladder Mode]	[List Mode] [SWAPP R10] Step Instru 0 LD 1 SWAPP END] 3 END	X10 R10
	[Operation] B15 - b12b11 - b8b7 - b4b3 - B10 [0:0:0:0:0:0:0] 1:11111111111111111111111	- 60 <u>1</u> 1	

6.5 Program Branch Instructions

6.5.1 Pointer branch instructions (CJ,SCJ,JMP)

	Basic High performance Process Redundant Universal
	CJ CJ P** SCJ P** JMP P** Command CJ P** CJ P** SCJ P** JMP P** Command JMP P**
	P** : Pointer number of jump destination (Device name) Setting Data Internal Devices Bit R, ZR JINT Bit UINGE Zn Constants Other P P
ी F	unction
	CJ
	(1) Executes the program specified by the pointer number within the same program file, when the execution command is ON
	(2) When the execution command is OFF, the program at the next step is executed.
	CJ CJ Executed at each scan
	SC.I
	 (1) Executes the program specified by the pointer number within the same program file starting with the scan immediately after OFF→ON of the execution command.
	(2) When the execution command is OFF or turned ON→OFF, the program at the next step is executed.
	ON Execution command OFF
	1 scan Executed at each scan

6.5 Program Branch Instructions 6.5.1 Pointer branch instructions (CJ,SCJ,JMP)

JMP

(1) Unconditionally executes program of designated pointer number <u>within the same program</u> <u>file</u>.

Note the following points when using the jump instruction.

- After the timer coil has gone ON, accurate measurements cannot be made if there is an attempt to jump the timer of a coil that has been turned ON using the CJ, SCJ or JMP instructions.
- Scan time is shortened if the CJ, SCJ or JMP instruction is used to force a jump to the OUT instruction.
- Scan time is shortened if the CJ, SCJ or JMP instruction is used to force a jump to the rear.
- 4. The CJ, SCJ, and JMP instructions can be used to jump to a step prior to the step currently being executed. However, it is necessary to consider methods to get out of the loop so that the watchdog timer does not time out in the process.

5. The device to which a jump has been made with the CJ, SCJ or JMP does not change.

Jumps to label P19 when XB turns ON. Y43 and Y49 remain unchanged regardless of whether XB and XC are turned ON/OFF during the execution of CJ instruction.

6. The label (P*) occupies step 1.

- 7. The jump instructions can be used only for pointer numbers within the same program file.
- 8. If a jump is made to a pointer number inside the skip range during a skip operation, program execution will be taken up following the pointer number of the jump destination.

✓ Operation Error

- (1) In any of the following cases, an operation error occurs, the error flag (SM0) turns ON, and an error code is stored into SD0.
 - The pointer number designated does not come prior to the END instruction.

(Error code: 4210)

(Error code: 4210)

- A pointer number which is not in use as a label in the same program has been designated. (Error code: 4210)
- A common pointer has been designated.

Program Example

(2) The following program jumps to P3 from the next scan after XC goes ON. [Ladder Mode] [List Mode]

 When using the Universal model QCPU with the SCJ instruction, inserting "AND SM400" (or the NOP instruction) in immediately before the SCJ instruction is required. [Program example1]

[List Mode]

[List Mo	de]	
Step	Instruction	Device
0	LD	MO
1	AND	SM400
2	SCJ	P0
		2

[Program example2] [Ladder Mode]

6.5.2 Jump to END (GOEND)

		Basic High performance Proc	ess Redundant Universal
	GOENE	Command	GOEND
		Setting Internal Devices R, ZR JIIII ZIIIII Zn Data Bit Word Bit Word Zn	Constants Other
☆ F	unctio	1	
	(1)	Jumps to the FEND or END instruction in the same program file.	
\mathcal{I}	Operation	n Error	
	(1)	In any of the following cases, an operation error occurs, the error flag (Sl an error code is stored into SD0.	M0) turns ON, and
		• The GOEND instruction has been executed after the execution of the instruction, and prior to the execution of the RET instruction.	CALL, ECALL (Error code: 4211)
		• The GOEND instruction has been executed after the execution of the and prior to the execution of the NEXT instruction.	FOR instruction, (Error code: 4200)
		 The GOEND instruction has been executed during an interrupt progra execution of the IRET instruction. 	m but prior to the (Error code: 4221)
		• The COEND instruction was executed between the CHKCID and CHK	END instruction

- The GOEND instruction was executed between the CHKCIR and CHKEND instruction block. (Error code: 4230)
- The GOEND instruction was executed between the IX and IXEND instruction block.

(Error code: 4231)

Program Example

(1) The following program jumps to the END instruction if D0 holds a negative number.[Ladder Mode][List Mode]

6.6 Program Execution Control Instructions

6.6.1 Interrupt disable/enable instructions, interrupt program mask (DI,EI,IMASK)

1 When the Basic model QCPU is used

(s) : Interrupt mask data or head number of the devices where the interrupt mask data is stored (BIN 16 bits)

Settir	ıg	Internal	Devices	R 7R	J		umici	7n	Constants	Other
Data	a	Bit	Word	нх, 2 нх	Bit	Word	0:	2.11	Conotanto	Other
S)						

Function

DI

- (1) Disables the execution of an interrupt program until the EI instruction has been executed, even if a start cause for the interrupt program occurs.
- (2) A DI state is entered when power is turned ON or when the CPU module is reset.

ΕI

The EI instruction is used to clear the interrupt disable state resulting from the execution of the DI instruction, and to create a state in which the interrupt program designated by the interrupt pointer number certified by the IMASK instruction can be executed. When the IMASK instruction is not executed, I32 to I47 are disabled.

Even if a cause of interrupt occurs during the execution of the sequence program between the DI and EI instructions, execution of the interrupt program is suspended until the processing of the sequence program is completed.

IMASK

- (1) Enables/disables the execution of the interrupt program marked by the designated interrupt pointer by using the bit pattern of 8 points from the device designated by (s).
 - 1(ON)..... Interrupt program execution enabled
 - 0(OFF)....Interrupt program execution disabled
- (2) The interrupt pointer numbers corresponding to the individual bits are as shown below:

	b15	b14	b13	b12	b11	b10	b9	b8	b7	b6	b5	b4	b3	b2	b1	b0
S	I15	114	113	112	111	I10	19	18	17	16	15	14	13	12	11	10
(S)+ 1	131	130	129	128	127	126	125	124	123	122	121	120	119	I18	117	I16
(S)+ 2	147	I46	145	144	143	142	l41	I40	139	138	137	136	135	134	133	132
S +3	163	l62	161	160	159	158	157	156	155	154	153	152	151	150	149	I48
S +4	179	178	177	176	175	174	173	172	171	170	169	168	167	166	165	164
S +5	195	194	193	192	191	190	189	188	187	186	185	184	183	182	181	180
S +6	1111	1110	1109	1108	1107	1106	1105	1104	1103	1102	1101	1100	199	198	197	196
(S)+ 7	1127	1126	1125	1124	1123	1122	1121	1120	1119	1118	1117	1116	1115	1114	1113	1112

- (3) When the power is turned ON or when the CPU module has been reset, the execution of interrupt programs I0 to I31,I48 to I127 is enabled, and the execution of interrupt programs I32 to I47 is disabled.
- (4) The statuses of devices (s), (s)+1, (s)+2, and (s)+3 to (s)+7 are stored in SD715 to SD717 and SD781 to SD785 (storage area for the IMASK instruction mask pattern).
- (5) Although the special registers are separated as SD715 to SD717 and SD781 to SD785, device numbers should be designated as (s) to (s) +7 successively.

1. An interrupt pointer occupies 1 step.

- 2. For the information on interrupt conditions, link direct devices, refer to the QnUCPU User's Manual(Function Explanation, Program Fundamentals) or Qn(H)/QnPH/QnPRHCPU User's Manuall(Function Explanation, Program Fundamentals)
- The DI state (interrupt disabled) is active during the execution of an interrupt program. Do not insert the EI instructions in interrupt programs to attempt the execution of multiple interrupts, with interrupt programs running inside interrupt programs.
- If there are the EI and DI instructions within a master control, these instructions will be executed regardless of the execution/non-execution status of the MC instruction.

Operation Error

(1) There are no operation errors associated with the DI, EI or IMASK instruction.

Program Example

(1) The following program is designed to enable the execution of only the interrupt programs having the interrupt pointer numbers I1 and I3 while X0 is ON.

2 When the High Performance model QCPU/Process CPU/Redundant CPU/Universal model QCPU is used

$\circledast\,$: Head number of the devices where the interrupt mask data is stored (BIN 16 bits)

Setting	Internal	Devices	R 7R	JIII\III			7n	Constants	Other
Data	Bit	Word	N, 2N	Bit	Word	0::\G::	2.11	Conotanto	O LI IOI
S		(\supset						

Grant Function

DI

- (1) Disables the execution of an interrupt program until the EI instruction has been executed, even if a start cause for the interrupt program occurs.
- (2) A DI state is entered when power is turned ON or when the CPU module is reset.

ΕI

The EI instruction is used to clear the interrupt disable state resulting from the execution of the DI instruction, and to create a state in which the interrupt program designated by the interrupt pointer number enabled by the IMASK instruction and the fixed cycle execution type program can be executed.

When the IMASK instruction is not executed, I32 to I47 are disabled.

Even if a cause of interrupt occurs during the execution of the sequence program between the DI and EI instructions, execution of the interrupt program is suspended until the processing of the sequence program is completed.

IMASK

- (1) Enables/disables the execution of the interrupt program marked by the designated interrupt pointer by using the bit pattern of 16 points from the device designated by (s).
 - 1(ON)..... Interrupt program execution enabled
 - 0(OFF).... Interrupt program execution disabled
- (2) The interrupt pointer numbers corresponding to the individual bits are as shown below:

- (3) When the power is turned ON or when the CPU module has been reset, the execution of interrupt programs I0 to I31,I48 to I255 is enabled, and the execution of interrupt programs I32 to I47 is disabled.
- (4) The status of devices (s), (s)+1, (s)+2, and (s)+3 to (s)+15 are stored in SD715 to SD717 and SD781 to SD793 (storage area for the IMASK instruction mask pattern).
- (5) Although the special registers are separated as SD715 to SD717 and SD781 to SD793, device numbers should be designated as (s) to (s) +15 successively.

- For the information on interrupt conditions, link direct devices, refer to the QnUCPU User's Manual(Function Explanation, Program Fundamentals) or Qn(H)/QnPH/QnPRHCPU User's Manuall(Function Explanation, Program Fundamentals)
- The DI state (interrupt disabled) is active during the execution of an interrupt program. Do not insert the EI instructions in interrupt programs to attempt the execution of multiple interrupts, with interrupt programs running inside interrupt programs.
- If there are the EI and DI instructions within a master control, these instructions will be executed regardless of the execution/non-execution status of the MC instruction.

Operation Error

- (1) In the following case, an operation error occurs, the error flag (SM0) turns ON, and an error code is stored into SD0.
 - The device specified by (s) exceeds the range of the corresponding device. (For the Universal model QCPU only.) (Error code: 4101)

Program Example

(1) The following program creates an execution enabled state for the interrupt program marked by the interrupt pointer number when X0 is ON.

6.6.2 Recovery from interrupt programs (IRET)

6

Program Example

(1) The following program adds 1 to D0 if M0 is ON when the number 3 interrupt is generated.[Ladder Mode][List Mode]

6.7 I/O Refresh Instructions

6.7.1 I/O refresh (RFS(P))

S : Head number of the devices to be refreshed (bits)

	n :Nu	n : Number of refreshes (BIN 16 bits)							
Setting	Internal	Devices	R 7R	J	\		7n	Constants	Other
Data	Bit	Word	N, 2N	Bit	Word	0:;\G:;	20	К, Н	Other
S	O (Only X, Y)								—
n	0				0				_

Basic

Process

Redundant

Universal

Grant Function

- (1) 1. Refreshes only the device being scanned during a scan, and functions to fetch input from external sources or to output data to an output module.
- (2) Fetching of input from or sending output to an external source is conducted in batch only after the execution of the END instruction, so it is not possible to output a pulse signal to an outside source during the execution of a scan. When the I/O refresh instruction is executed, the inputs (X) or outputs (Y) of the corresponding device numbers are refreshed forcibly midway through program execution. Therefore, a pulse signal can be output to an external source during a scan.
- (3) Use direct access inputs (DX) or direct access outputs (DY) to refresh inputs (X) or outputs (Y) in 1-point units.

6

Operation Error

- (1) In the following case, an operation error occurs, the error flag (SM0) turns ON, and an error code is stored into SD0.
 - The range n points from the device designated by (s) exceeds the proximate I/O range.

(Error code: 4101)

Program Example

(1) The following program refreshes X100 to X11F and Y200 to Y23F when M0 goes ON.[Ladder Mode][List Mode]

6.8 Other Convenient Instructions

6.8.1 Counter 1-phase input up or down (UDCNT1)

(the number of accessible points to actual I/O modules). *2: Local devices and the file registers set for individual programs cannot be used.

Grant Function

- (1) When the input designated at (s) goes from OFF to ON, the present value of the counter designated at (b) will be updated.
- (2) The direction of the count is determined by the ON/OFF status of the input designated by (3)+1.
 - OFF : Count up (counts by adding to the present value)
 - ON : Count down (counts by subtracting from the present value)
- (3) Count processing is conducted as described below:
 - When the count is going up, the counter contact designated at ^(D) goes ON when the present value becomes identical with the setting value designated by n. However, the present value count will continue even when the contact of the counter designated at ^(D) goes ON. (See Program Example (1))
 - When the count is going down, the counter for the contact designated at

 goes OFF when the present value reaches the set value 1. (See Program Example (1))

• The counter designated at
[●] is a ring counter. If it is counting up when the present value is 32767, the present value will become −32768. Further, if it is counting down when the present value is −32768, the present value will become 32767. The count processing performed on the present value is as shown below:

- (4) The UDCNT1 instruction triggers counting when the execution command is turned OFF→ON and suspends counting when the execution command is turned ON→OFF. When the execution command is turned OFF→ON again, the counting resumes from the suspended value.
 - (5) The RST instruction clears the present value of the counter designated at (D) and turns the contact OFF.

 With the UDCNT1 instruction, the argument device data is registered in the work area of the CPU module and counting operation is processed as a system interrupt. (The device data registered in the work area is cleared by turning the execution command OFF, or turning the STOP/RUN switch STOP→RUN.) For this reason, the pulses that can be counted must have longer ON and OFF times than the interrupt interval of the CPU module. The interrupt interval of individual modules is shown below:

CPU Module Type Name	Interrupt Interval
High Performance model QCPU, Process CPU,	1 mc
Universal model QCPU	1 1115

- 2. The set value cannot be changed during counting directed by the UDCNT1 instruction (while the execution command is ON). To change the set value, turn OFF the execution command.
- 3. Counters which have been designated by the UDCNT1 instruction cannot be used by other instructions. If they are used by other instructions, they will not be capable of returning an accurate count.
- 4. The UDCNT1 instruction can be used as many as 6 times within all the programs being executed. The seventh and the subsequent UDCNT1 instructions are not processed.

✓ Operation Error

- (1) In the following case, an operation error occurs, the error flag (SM0) turns ON, and an error code is stored into SD0.
 - The device specified by $\underline{\$}$ exceeds the range of the corresponding device.

(Error code: 4101)

Program Example

(1) This program uses C0 (Up/Down counter) to count the number of times X0 goes from OFF to ON after X20 has gone ON.

6.8.2 Counter 2-phase input up or down (UDCNT2)

					Basic	High performance Proc	cess Redundant	Universal
UDCNT2		Com	mand	UDCN	T2 (S)	D	n	+
	\$:\$ \$ D :Nu n :Va	+ 0: Input n + 1: Input n Imber of the lue to set (E	number for c number for c counter to l BIN 16 bits)	ount input (A phase puls count input (B phase puls be enabled to start coun	ee) (bits) se) (bits) ting with the UE	OCNT2 instruction	on (Device nan	ne)
Setting Data	Internal Bit	Devices Word	R, ZR	J∷:∖:∷ Bit Word	U\G	Zn	Constants K, H	Other
S	(Only X)*1	—						
D		O*1(Only C)						
n	<u>∆</u> *2	∆ *2	∆ *2		0			
	*1: Only the	X device ca	in be used f	or \textcircled{S} . However, the X de	evice can be us (the number	ed only in the ra	ange of numbe oints to actual	r of I/O point I/O modules

*2: Local devices and the file registers set for individual programs cannot be used.

Grant Function

- (2) Direction of the count is determined in the following manner:
 - When (s) is ON, if (s)+1 goes from OFF to ON, count up operation is performed (values are added to the present value of the counter).
 - When (s) is ON, if (s)+1 goes from ON to OFF, count down operation is performed (values are subtracted from the present value of the counter).
 - No count operation is performed if (s) is OFF.
- (3) Count processing is conducted as described below:
 - When the count is going up, the counter contact designated at ^(D) goes ON when the present value becomes identical with the setting value designated by n. However, the present value count will continue even when the contact of the counter designated at ^(D) goes ON. (See Program Example (1))

• The counter designated at ^(D) is a ring counter. If it is counting up when the present value is 32767, the present value will become −32768. Further, if it is counting down when the present value is −32768, the present value will become 32767. The count processing performed on the present value is as shown below:

- (4) Count processing conducted according to the UDCNT2 instruction begins when the count command goes from OFF to ON, and is suspended when it goes from ON to OFF. When the execution command is turned OFF to ON again, the counting resumes from the suspended value.
- (5) The RST instruction clears the present value of the counter designated at D and turns the contact OFF.

 With the UDCNT2 instruction, the argument device data is registered in the work area of the CPU module and counting operation is processed as a system interrupt. (The device data registered in the work area is cleared by turning the execution command OFF, or turning the STOP/RUN switch STOP→RUN.) For this reason, the pulses that can be counted must have longer ON and OFF times than the interrupt interval of the CPU module. The interrupt interval of individual modules is shown below:

CPU Module Type Name	Interrupt Interval
High Performance model QCPU, Process CPU,	1 mc
Universal model QCPU	1 1115

- 2. The set value cannot be changed during counting directed by the UDCNT2 instruction (while the execution command is ON). To change the set value, turn OFF the execution command.
- 3. Counters designated by the UDCNT2 instruction cannot be used by any other instruction. If they are used by other instructions, they will not be capable of returning an accurate count.
- The UDCNT2 instruction can be used as many as 5 times within all the programs being executed. The sixth and the subsequent UDCNT2 instructions are not processed.

Operation Error

- (1) In the following case, an operation error occurs, the error flag (SM0) turns ON, and an error code is stored into SD0.
 - The device specified by \circledast exceeds the range of the corresponding device.

(Error code: 4101)

Program Example

(1) The following program performs a count operation as instructed by C0 (count up or down) on the status of X0 and X1 after X20 has gone ON.

Universa

Proces

6.8.3 Teaching timer (TTMR)

Command TTMR TTMR n (D) : (D) + 0: The device where measurement value is stored (BIN 16 bit) D + 1: For CPU module system use (BIN 16 bit) n : Measurement value multiplier (BIN 16 bits) Setting Internal Devices Constants J \ R, ZR U....\G.... Zn Other Data К, Н Word Bit Word \bigcirc n 0 0

Grant Function

- Measures the time while the execution command is ON in units of seconds, and stores the multiplied value of the measured time by the multiplier specified by n at the device designated by ^(D).
- (2) Clears the device designated by O+0 or O+1 when the execution command is turned OFF \rightarrow ON.
- (3) The multipliers that can be designated by n are as shown below:

n	Multiplier
0	1
1	10
2	100

POINT

- 1. Time measurements are conducted when the TTMR instruction is executed. Using the JMP or similar instruction to jump the TTMR instruction will make it impossible to get an accurate measurement.
- 2. Do not change the multiplier designated by n while the TTMR instruction is being executed. Changing this multiplier will result in an inaccurate value being returned.
- 3. The TTMR instruction can also be used in low speed execution type programs.
- 4. The device designated by D+1 is used by the system of the CPU module, so users should not change its value. If users do change this value, the value stored in the device designated by D will no longer be accurate.
- (4) No processing is performed when the value specified by "n" is other than 0 to 2.

Operation Error

- (1) In the following case, an operation error occurs, the error flag (SM0) turns ON, and an error code is stored into SD0.
 - The device specified by
 exceeds the range of the corresponding device. (For the Universal model QCPU only.) (Error code: 4101)

Program Example

(1) The following program stores the amount of time that X0 is ON at D0.

6.8.4 Special function timer (STMR)

STMR		Cor	mmand	S ⁻ S	IMR (S) n	D	_	
								ļ	
	(§) : Timer number (word)								
	n :Va	alue to set (E	BIN 16 bits).						
	D + 1: One shot timer output after OFF (bits)								
	D + 2: One shot timer output after ON (bits)								
	 D + 3: ON delay and Off delay timer output (bits) 								
Setting	Internal	Devices	Devices	J[]]\[]]		Zn	Constants	Othor	
Data	Bit	Word	Ν, ΖΝ	Bit Word	Ui)\Gi)	211	К, Н	Other	
S	-	∆ *1							
n	0	0	0		0				
D	0								
						*1:Can b	e used only by	timer (T) data	

Function

- (1) The STMR instruction uses the 4 points from the device designated by $_{\bigcirc}$ to perform four types of timer output.
 - OFF delay timer output (()+0) Goes ON at the leading edge of the command for the STMR instruction, and after the trailing edge of the command, goes OFF when the amount of time designated by n has passed.
 - One shot timer output after OFF (D+1) Goes ON at the trailing edge of the command for the STMR instruction, and goes OFF when the amount of time designated by n has passed.
 - One shot timer output after ON (D+2) Goes ON at the leading edge of the command for the STMR instruction, and goes OFF either when the amount of time designated by n has passed, or when the command for the STMR instruction goes OFF.
 - ON delay timer output (^(D)+3) Goes ON at the trailing edge of the timer coil, and after the trailing edge of the command for the STMR instruction, goes OFF when the amount of time designated by n has passed.
- (2) The timer coil designated by (s) turns ON at the leading edge and trailing edge of the command for the STMR instruction, and starts measurement of the present value.
 - The timer coil measures to the point where the value reaches the set value designated by n, then enters a time up state and goes OFF.
 - If the command for the STMR instruction goes OFF before the timer coil reaches the time up state, it will remain ON. Timer measurement is continued at this time. When the STRM instruction command goes ON once again, the present value will be cleared to 0 and measurement will begin once again.

6

- (4) Measurement of the present value of the timer specified by the STMR instruction is executed regardless of the command ON/OFF status of the STMR instruction. If the STMR instruction is jumped with the JMP or similar instruction, it will not be possible to get accurate measurement.
- (5) Measurement unit for the timer designated by (1) is identical to the low speed timer.
- (6) A value between 0 to 32767 can be set for n. No operation if n is other than 0 to 32767.
- (7) The timer designated by (s) cannot be used by the OUT instruction. If the STMR instruction and the OUT instruction use the same timer number, accurate operation will not be conducted.

Coperation Error

- (1) In the following case, an operation error occurs, the error flag (SM0) turns ON, and an error code is stored into SD0.
 - The device specified by
 exceeds the range of the corresponding device.
 (For the Universal model QCPU only.)
 (Error code: 4101)

Device

K10

MO

Program Example

(1) The following program turns Y0 and Y1 ON and OFF once each second (flicker) when X20 is ON.

(Uses 100 ms timer)

6

6.8.5 Rotary table shortest direction control (ROTC)

ROTC _	Γŀ	Command	ROTC	S n1	n2		-
	s:s	+ 0 : Measures the nu	umber of table rotations	(for system use)	(BIN 16 bits)		
	S	+ 1 : Call station num	ber (BIN 16 bits)				
	s	+ 2 : Call item numbe	r (BIN 16 bits)				
	n1 : Nu	mber of divisions of tabl	e (2 to 32767) (BIN 16	bits)			
	n2 : Nu	mber of low-speed section	ions (value from 0 to les	ss than n1) (BIN 1	6 bits)		
	D : D	+ 0 : A phase input si	gnal (bits)				
	D	+ 1 : B phase input si	gnal (bits)				
(b) + 2 : 0 point detection input signal (bits)							
(b) + 3 : High speed forward rotation output signal (for system use) (bits)							
(b) + 4 : Low speed forward rotation output signal (for system use) (bits)							
	D	+ 5 : Stop output sign	al (for system use) (bits	5)			
	D	+ 6 : Low speed reve	rse rotation output signa	al (for system use) (bits)		
	D	+ 7 : High speed reve	rse rotation output sign	al (for system use	e) (bits)		
Setting Data	Internal I Bit	Devices Word R, ZR	J∷∷∖∷∷ Bit Word	U∭\G∭	Zn	Constants K, H	Other
S		0					
n1	0	0		0			
n2	0	0		0			
D	0						

Basic High neformance Process Redundant Universal

Grant Function

- (1) This control functions to enable shortest direction control of the rotary table to the position of the station number designated by (s)+1 in order to remove or deposit an item whose number has been designated by (s)+2 on a rotary table with equal divisions of the value designated by n1.
- (2) The item number and station number are controlled as items allocated by counterclockwise rotation.
- (3) The system uses (s)+0 as a counter to instruct it as to what item is at which number counting from station number 0. Do not rewrite the sequence program data.

Accurate controls will not be possible in cases where users have rewritten the data.

- (4) The value of n2 should be less than the number of table divisions specified by n1.
- (5) (D)+0 and (D)+1 are A and B phase input signals that are used to detect whether the direction of the rotary table rotation is forward or reverse.

The direction of rotation is judged by whether the B phase pulse is at its leading or trailing edge when the A phase pulse is ON:

- When the B phase is at the leading edge: Forward rotation (clockwise rotation)
- When the B phase is at the trailing edge: Reverse rotation (counterclockwise rotation)

(6) (0)+2 is the 0 point detection output signal that goes ON when item number 0 has arrived at the No. 0 station.

When the device designated by (D)+2 goes ON while the ROTC instruction is being executed, (S)+0 is cleared.

It is best to perform this clear operation first, then to begin shortest direction control with the ROTC instruction.

(7) The data from (D+3 to (D)+7 consists of output signals needed to control the table's operation.

The output signal of one of the devices from D+3 to D+7 will go ON in response to the execution results of the ROTC instruction.

- (8) If the command for the ROTC instruction is OFF, clears all D+3 to D+7 without performing shortest direction control.
- (9) The ROTC instruction can be used only one time in all programs where it is executed. Attempts to use it more than one time will result in inaccurate operations.
- (10) No processing is performed when the value of \$+0 to \$+2, or the value of n2 is greater than n1.

Operation Error

- (1) In the following case, an operation error occurs, the error flag (SM0) turns ON, and an error code is stored into SD0.
 - The device specified by (s) or (b) exceeds the range of the corresponding device. (For the Universal model QCPU only.) (Error code: 4101)

6

/Program Example

(1) The following program deposits the item at section D2 on a 10-division rotary table at the station at section D1, and the two sections ahead and behind this determine the rotation direction and control speed of the motor when the table is being rotated at low speed.

9

3

X000

X001

0

Detection

switch

2

1

Station No. 1

8

Part

AL.

7

Forward

rotation

4

6

Rotary table

5

Universal

Proces

6.8.6 Ramp signal (RAMP)

RAMP _	r. -	Command RAMP n1 n2 0 n3	<u></u>	-
	n1 : Initia n2 : Fina () : () + () + n3 : Nun () : () - () - () - () - () -	 I value (BIN 16 bits) I value (BIN 16 bits) 0 : Present value (BIN 16 bits) 1 : Number of executions (BIN 16 bits) nber of shifts (BIN 16 bits) • 0 : Completion device (bits) • 1 : Bit for selecting data retaining at completion (bit) 		
Setting Data	Internal D Bit	evices R, ZR J ZN Zn J Zn Zn Zn	Constants K, H	Other
n1	\bigcirc	0	\bigcirc	_
n2	0	0	0	_
D	\bigcirc	0		_
n3	0	0	0	_
02	0	—		_

Grant Function

- (1) When the execution command is ON, the following processing is executed.
 - Shifts from the value specified by n1 to the value specified by n2 in the number of times specified by n3.
 - For n3, designate the number of scans (number of shifts) required for shift from n1 to n2. No operation if other than 0<n3<32768.
 - The system uses 1 to store the number of times the instruction has been executed.
 - The value of one variation (one scan) is obtained by the expression below:

When the calculated one variation is indivisible, compensation is made to achieve the value specified in n2 by the number of shifts specified in n3. Hence, a linear ramp may not be made.

6.8 Other Convenient Instructions 6.8.6 Ramp signal (RAMP) (2) If the scan is performed for the number of moves specified by n3, the complete device specified by (2) +0 is turned ON.

The ON/OFF status of the completion device and the contents of (D)+0 are determined by the ON/OFF status of the device designated by (D)+1.

- When 1 is OFF, +0 will go OFF at the next scan, and the RAMP instruction will begin a new move operation from the value currently at 2+0.
- When 2+1 is ON, 2+0 will remain ON, and the contents of +0 will not change.
- (3) When the command is turned OFF during the execution of this instruction, the contents of ⁽¹⁾+0 will not change following this. When the command goes ON again, the RAMP instruction will begin a new move from the present value at +0.
- (4) Do not change the specified values in n1 and n2 before the completion device specified in ¹/₁ +0 turns ON.

Since the same expression is used every scan to calculate the value stored in 0+1, changing n1/n2 may cause a sudden variation.

Coperation Error

- (1) In the following case, an operation error occurs, the error flag (SM0) turns ON, and an error code is stored into SD0.
 - The device specified by 1 or 2 exceeds the range of the corresponding device. (For the Universal model QCPU only.) (Error code: 4101)

Caution

- (1) When the digit specification of bit device is made to (1), the digit specification of bit device can only be used when the following condition is met.
 - Specification of digits: K8

Program Example

(1) The following program changes the contents of D0 from 10 to 100 in a total of 6 scans, and saves the contents of D0 when the move has been completed.

6.8.7 Pulse density measurement (SPD)

SPD		Command	SPD (\$ n (D)					
	 (§) : Pulse input (bits) n : Measurement time (unit: ms) (BIN 16 bits) (b) : Head number of the devices where the measurement result will be stored (BIN 16 bits) 							
Setting Data	Internal Bit	Devices Word R, ZR	J∐\[] U[]]\G[] Zn Constants K, H Other					
S	(Only X)	—						
n	△ *1	△ *1	0 -					
D		<u></u> ∆ *1						
			*1: Local devices and the file registers set for individual programs cannot be use					

Basic

Process Red

Universal

Grant Function

(1) The number of turning OFF→ON input of the device specified by (s) is counted for just the amount of time specified by n, and the count results are stored in the device specified by (b).

(2) When measurement directed by the SPD instruction has been completed, measurement is done again from 0.

Turn OFF the execution command to stop the measurement directed by the SPD instruction.

 With the SPD instruction, the argument device data is registered in the work area of the CPU module and counting operation is processed as a system interrupt. (The device data registered in the work area is cleared by turning the execution command OFF, or turning the STOP/RUN switch STOP→RUN.) For this reason, the pulses that can be counted must have longer ON and OFF times than the interrupt interval of the CPU module. The interrupt interval of individual modules is shown below:

CPU Module Type Name	Interrupt Interval
High Performance model QCPU, Process CPU,	1 ma
Universal model QCPU	1 1115

- When the High Performance model QCPU or Process CPU is used: The instruction is not processed when n = 0.
- 3. The SPD instruction can be used as many as 6 times within all the programs being executed. The seventh and the subsequent SPD instructions are not processed.
- 4. While the measurement is in execution (while the command input is ON) by the SPD instruction, the setting value cannot be changed. Turn OFF the command input before changing the setting value.

Operation Error

- (1) In the following case, an operation error occurs, the error flag (SM0) turns ON, and an error code is stored into SD0.
 - The device specified by (s) exceeds the range of the corresponding device. (For the Universal model QCPU only.) (Error code: 4101)

Program Example

(1) The following program measures the pulses input to X0 for a period of 500 ms when X10 goes ON, and stores the result at D0.

[Ladder Mode]

[List Mode]

6

6.8.8 Fixed cycle pulse output (PLSY)

PLSY		Command	PI	LSY n1	n2		-			
 n1 : Frequency or the number of the device where frequency is stored (BIN 16 bits) n2 : Outputs count or the number of the device where the outputs count is stored (BIN 16 bits) ① : Number of the device to which pulses are output (bits) 										
s	etting Internal Data Bit	Devices R, ZR	J∷:∖∷: Bit Word	U∭\G∭	Zn	Constants K, H	Other			
	n1 ()			0						
	n2 🔿			0						
	D △*1									
		·			*1:0	Only output (Y)	can be used			

Basic High Process Redundar

Universal

Grant Function

- (1) Outputs a pulse at a frequency designated by n1 the number of times designated by n2, to the output module with the output signal (Y) designated by ^(D).
- (2) Frequencies between 1 to 100 Hz can be designated by n1. If n1 is other than 1 to 100 Hz, the PLSY instruction will not be executed.
- (3) The number of outputs that can be designated by n2 is between 1 to 65535 (0000_H to ${\sf FFFF}_{\sf H}$).

If n2 is set to "0", pulses are continuously output.

- (4) Only an output number corresponding to the output module can be designated for pulse output at ^(D).
- (5) Pulse output commences with the command leading edge of the PLSY instruction. Pulse output is suspended when the PLSY instruction command goes OFF.

 With the PLSY instruction, the argument device data is registered in the work area of the CPU module and counting operation is processed as a system interrupt. (The device data registered in the work area is cleared by turning the execution command OFF, or turning the STOP/RUN switch STOP→RUN.) For this reason, the pulses that can be output must have longer ON and OFF times than the interrupt interval of the CPU module. The interrupt interval of individual modules is shown below:

CPU Module Type Name	Interrupt Interval
High Performance model QCPU, Process CPU,	1 mo
Universal model QCPU	11115

- 2. Do not change the argument for the PLSY instruction during pulse output directed by the PLSY instruction (while the execution command is ON). To change the argument, turn OFF the execution command.
- 3. The PLSY instruction can be used only once in all programs executed by the CPU module. The second and the subsequent PLSY instructions are not processed.

Operation Error

- (1) In the following case, an operation error occurs, the error flag (SM0) turns ON, and an error code is stored into SD0.
 - The device specified by D exceeds the range of the corresponding device. (For the Universal model QCPU only.) (Error code: 4101)

Program Example

(1) The following program outputs a 10 Hz pulse 5 times to Y20 when X0 is ON.[Ladder Mode][List Mode]

6

6.8.9 Pulse width modulation (PWM)

				Basic	High Deerformance	ocess Redundant	Universal
PWM		Command	PWI	/ n1	n2		-
	n1 :ON time o n2 :Frequenc ① :Number o	or the number of the e sy or the number of th of the device to which	device where the ON le device where the f l pulses are output (b	time is stored (requency is stor its)	BIN 16 bits) red (BIN 16 b	pits)	
Setting Data	Internal Device Bit Wor	s R, ZR	J\ Bit Word	U\G	Zn	Constants K, H	Other
n1	0		0				_
n2	0		0				
D	△ *1						_
					*1:	: Only output (Y)	can be used

(1) Outputs the pulse of the cycle set by n2, for the amount of time ON designated by n1, to the output module designated by ^(D).

(2) The setting ranges for n1 and n2 are shown below:

CPU Module Type Name	Setting Range for n1 and n2 [ms] *2
High Performance model QCPU, Process CPU, Universal model QCPU	1 to 65535 (0001 _H to FFFF _H)

*2: The value specified by n1 should be less than the value specified by n2.

 With the PWM instruction, the argument device data is registered in the work area of the CPU module and counting operation is processed as a system interrupt. (The device data registered in the work area is cleared by turning the execution command OFF, or turning the STOP/RUN switch STOP→RUN.) The interrupt interval of individual modules is shown below:

CPU Module Type Name	Interrupt Interval of n1, n2
High Performance model QCPU, Process CPU, Universal model QCPU	1 ms

For this reason, the PWM instruction can be used only once within all the programs being executed by the CPU module.

- 2. The instruction is not processed in the following cases:
 - When both n1 and n2 are 0
 - When $n1 \ge n2$
 - When the PWM instruction is executed twice or more.
- 3. Do not change the argument for the PWM instruction during pulse output directed by the PWM instruction (while the execution command is ON). To change the argument, turn OFF the execution command.

Operation Error

- (1) In the following case, an operation error occurs, the error flag (SM0) turns ON, and an error code is stored into SD0.
 - The device specified by D exceeds the range of the corresponding device. (For the Universal model QCPU only.) (Error code: 4101)

Program Example

(1) The following program outputs a 100 ms pulse once each second to Y20 when X0 is ON.[Ladder Mode][List Mode]

6

6.8.10 Matrix input (MTR)

	MTR _	лŀ	Commar	nd	- MTR	. (<u>s</u> (0	02	n	-
 (s) : Head input device (bits) (p) : Head output device (bits) (p) : Head number of the devices where matrix input data will be stored (bits) n : Number of input rows (BIN 16 bit) 											
	Setting Data	Internal Bit	Devices Word	R, ZR	J Bit	\ Word	U\G		Zn	Constants K, H	Other
	S	(Only X)									_
	01	(Only Y)									
	D2	0									
	n	0				0					

Process

Universal

Function

- (1) It reads the input from 16 points \times n-rows starting from the input number designated by (S), then stores fetched input data from the device designated by (D) onward.
- (2) One row (16 points) can be fetched in 1 scan.
- (3) Fetching from the first to the n th row is repeated.
- (4) The first through the 16th points store the first row of data and the next 16 points store the second row of data at the devices following the device designated by 2.
 For this reason, the space of 16 × n points from the device designated by 2 are occupied by the MTR instruction.
- (5) If is the output needed to select the row which will be fetched, and the system automatically turns it ON and OFF.
 It uses the n points from the device designated by If.

- (6) Only device numbers divisible by 16 can be designated for (s), (b) and (b).
- (7) For n, a value in the range from 2 to 8 can be assigned.
- (8) No processing is performed in the following cases.
 - The device number designated by (S), (D), or (D) is not divisible by 16.
 - The device designated by \circledast is outside the actual input range.
 - The device designated by 🗊 is outside the actual output range.
 - The space 16 \times n points following the device designated by 0 exceeds the relevant device range.
 - The value for n is not between 2 and 8.

Operation Error

- (1) In any of the following cases, an operation error occurs, the error flag (SM0) turns ON, and an error code is stored into SD0.
 - The device other than the input (X) was specified at (S). (Error code: 4101)
 - The device other than the output (Y) was specified at D. (Error code: 4101)

Program Example

(1) The following program fetches, when X0 is turned ON, the 16 points \times 3 matrix starting from X10, and stores the matrix into the area starting from M0.

[Operation]

Caution

(1) Note that the MTR instruction directly operates on actual input and output.

The output 🗐 that had been turned ON by the MTR instruction does not turn OFF when the MTR command turns OFF.

Turn OFF the specified output 0 in the sequence program.

(2) The MTR instruction execution interval must be longer than the total of response time of input and output modules.

If the set interval is shorter than the value indicated above, an input cannot be read correctly. If the scan time in a sequence program is short, select the constant scan and set the scan time longer than the total of response time.

MEMO

APPLICATION INSTRUCTIONS

Category	ategory Processing Details				
Logical operation instructions	Logical operations such as logical sum, logical product, etc.	Section 7.1			
Rotation instruction	Rotation of designated data	Section 7.2			
Shift instruction	Shift of designated data	Section 7.3			
Bit processing instructions	Sets and resets bit data; bit extraction	Section 7.4			
Data processing instructions	Data processing including data searching, sorting, decoding and encoding	Section 7.5			
Structure creation instructions	Repeated operation, subroutine program calls, index modification in ladder units	Section 7.6			
Data Table Operation Instructions	Data table read/write	Section 7.7			
Buffer memory access instruction	Read/write from/to the buffer memory of intelligent function modules	Section 7.8			
Display instructions	Character code outputs to external devices and displays on indicators	Section 7.9			
Debugging and failure diagnosis instructions	Check, status latch, sampling trace, program trace	Section 7.10			
Character string processing instructions	Character string (ASCII code data) processing	Section 7.11			
Special function instructions	BCD real number and floating point real number processing	Section 7.12			
Data control instructions	Output value controls based on input data range checks	Section 7.13			
File register switching instructions	Sets file registers; switches block numbers	Section 7.14			
Clock instructions	Reading, writing, addition, subtraction, and conversion of clock values; comparison between the clock values; and comparison between the date values	Section 7.15			
Expansion clock instruction	Reading, addition, and subtraction of clock values up to millisecond	Section 7.16			
Program control instructions	Instructions to switch program execution conditions	Section 7.17			
Other instructions	Instructions that do not fit in the above categories, such as watchdog timer reset instructions and timing clock instructions	Section 7.18			

7.1 Logical operation instructions

(1) The logical operation instructions perform logical sum, logical product or other logical operations in 1-bit units.

Category	Processing Details	Formula for	Example			
Category		Operation	А	В	Y	
			0	0	0	
Logical product	Becomes 1 only when both input A and		0	1	0	
(AND)	input B are 1; otherwise, is 0	Y—А·В	1	0	0	
			1	1	1	
			0	0	0	
Logical sum (OR)	Becomes 0 only when both input A and input B are 0; otherwise, is 1	Y≡A+B	0	1	1	
			1	0	1	
			1	1	1	
			0	0	0	
Exclusive OR	Becomes 0 if input A and input B are		0	1	1	
(XOR)	equal; otherwise, is 1	$Y = \overline{A} \cdot B + A \cdot \overline{B}$	1	0	1	
			1	1	0	
			0	0	1	
NON exclusive	Becomes 1 if input A and input B are		0	1	0	
(XNR)	equal; otherwise, is 0	$Y = (\overline{A} + B)(A + \overline{B})$	1	0	0	
			1	1	1	

7.1.1 Logical products with 16-bit and 32-bit data (WAND(P),DAND(P))

Basic High Process Redundant Universal

1 When two data are set ($\bigcirc \land \odot \neg \bigcirc$, ($\bigcirc +1$, \bigcirc) \land ($\odot +1$, \odot) \rightarrow ($\bigcirc +1$, \bigcirc))

indicates an instruction symbol of WAND/DAND.

(S): Data for a logical product operation or the head number of the devices where the data is stored (BIN 16/32 bits)
 (D): Head number of the devices where the logical product operation result will be stored (BIN 16/32 bits)

Setting	Internal	Devices	R 7R	J			Zn	Constants	Other
Data	Bit	Word	Ν, ΖΝ	Bit	Word	0::\G::	211	К, Н	Other
S				0				0	—
D				0				_	_

WAND

(2) When bit devices are designated, the bit devices after the points designated as digits are regarded as "0" in the operation. (See Program Example (2))

DAND

(1) Conducts a logical product operation on each bit of the 32-bit data for the device designated by ⑤ and the 32-bit data for the device designated by ⑥, and stores the results at the device designated by ⑥.

(2) When bit devices are designated, the bit devices below the points designated as digits are regarded as "0" in the operation. (See Program Example (2))

Operation Error

(1) There are no operation errors associated with the WAND(P) or DAND(P) instruction.

Program Example

(1) The following program masks the digit in the 10s place of the 4-digit BCD value at D10 (second digit from the end) to 0 when XA is turned ON.

(2) The following program performs a logical product operation on the data at D99 and D100, and the 24-bit data between X30 and X47 when X8 is ON, and stores the results at D99 and D100.

7

2 When three data are set ($\mathfrak{G} \land \mathfrak{W} \to \mathfrak{D}$, ($\mathfrak{G} + 1$, \mathfrak{G}) \land ($\mathfrak{W} + 1$, \mathfrak{W}) \rightarrow ($\mathfrak{D} + 1$, \mathfrak{D}))

(S), (S) : Data for a logical product operation or the head number of the devices where the data is stored (BIN 16/32 bits)

Setting	Internal	Devices	R 7R			7n	Constants	Other	
Data	Bit	Word	1 X, 2 I X	Bit	Word	0::\G::	2	К, Н	Other
<u>S1</u>				0				0	_
62	0							0	
D				0				_	

Function

WAND

(1) A logical product operation is conducted for each bit of the 16-bit data of the device designated at (s) and the 16-bit data of the device designated at (s), and the results are stored in the device designated at (n).

(2) For bit devices, the bit devices after the points designated by digit specification are regarded as "0" in the operation. (See Program Examples (1) and (2))

DAND

(1) Conducts a logical product operation on each bit of the 32-bit data for the device designated by ⑤ and the 32-bit data for the device designated by ⑥, and stores the results at the device designated by ⑤.

(2) For bit devices, the bit devices after the points designated by digit specification are regarded

as "0" in the operation. (See Program Example (3))

Coperation Error

(1) There are no operation errors associated with the WAND(P) or DAND(P) instruction.

Program Example

(1) The following program performs a logical product operation on the data from X10 to X1B and the data at D33 when XA is ON, and stores the results at D40.

[Operation]

(2) The following program performs a logical product operation on the data at D10 and at D20 when X1C is ON, and stores the results from M0 to M11. [Ladder Mode]
[List Mode]

(3) The following program masks the digit in the hundred-thousands place of the 8-digit BCD value at D10 and D11 (sixth digit from the end) to 0 when XA is ON, and outputs the results to from Y10 to Y2B.

7.1.2 Block logical products (BKAND(P))

Basic High Process Redundant Universal

BKAND Command BKAND S S D n n BKANDP Command BKANDP S O n							
 (b)*1 : Head number of the devices where data on which a logical operation will be conducted is stored (BIN 16 bits) (c)*1 : Data for a logical operation or head number of the devices where the data for the logical operation is stored (BIN 16 bits) (c)*1 : Head number of the devices where the operation result will be stored (BIN 16 bits) (c)*1 : Head number of operation data blocks (BIN 16 bits) (c)*1 : Number of operation data blocks (BIN 16 bits) (c)*1 : Number of operation data blocks (BIN 16 bits) (c)*1 : Number of operation data blocks (BIN 16 bits) (c)*1 : Number of operation data blocks (BIN 16 bits) 	BKAND BKANDP		Command	- BKAND S) S) D) D	n	
 *1 : Data for a logical operation or head number of the devices where the data for the logical operation is stored (BIN 16 bits) ①*1 : Head number of the devices where the operation result will be stored (BIN 16 bits) n : Number of operation data blocks (BIN 16 bits) Setting Data Bit Word R, ZR JUNC UNAGE Zn Constants K, H Other ③*1 -		জি*1	: Head number of the (BIN 16 bits)	devices where data on which a logical o	peration will be	conducted is	stored
Internal Devices R, ZR JIIIII UIIIIII Zn Constants K, H Other Setting Bit Word R. ZR JIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII		S2 *1	: Data for a logical ope stored (BIN 16 bits)	eration or head number of the devices w	here the data fo	or the logical o	peration is
Setting Data Internal Devices R, ZR $J \square \backslash \square$ U $\square \backslash G \square$ Zn Constants K, H Other S)*1		©*1 n	: Head number of the : Number of operation	devices where the operation result will b data blocks (BIN 16 bits)	e stored (BIN 1	6 bits)	
	Sett Da	ing Internal ta Bit	Devices Word R, ZR	J Bit Word U\G	Zn	Constants K, H	Other
	5	*1	0	—			—
	62)*1	0	_		0	
O ⁻¹ − O − − −	D	.*1	0	_			—
n O O O -	n	0	0	0		0	

*1: The same device number can be specified for $\ensuremath{\mathfrak{S}}\ensuremath{\mathfrak{I}}$ and $\ensuremath{\mathbb{D}}$ or $\ensuremath{\mathfrak{S}}\ensuremath{\mathfrak{I}}$ and $\ensuremath{\mathbb{D}}$.

Function

(1) Performs a logical product operation on the data located in the n points from the device designated by (s), and the data located in the n points from the device designated by (s), and stores the results into the area starting from the device designated by (b).

(2) The constant designated by can be between -32768 and 32767 (BIN 16-bit data).

- (1) In any of the following cases, an operation error occurs, the error flag (SM0) turns ON, and an error code is stored into SD0.
 - The n-bit range from the (s), (2), or (1) device exceeds the range of that device.

(Error code: 4101)

- The device range for n points starting from the device designated by (5) overlaps with the device range for n points starting from the device designated by (D).
 (except when the same device is specified for (5) and (D))
- The device range for n points starting from the device designated by

 overlaps with the device range for n points starting from the device designated by
 (except when the same device is specified for
 and
 (Error code: 4101)

Program Example

(1) The following program performs a logical product operation on the data stored at D100 to D102 and the data stored at R0 to R2 when X20 is turned ON, and stores the operation result into the area starting from D200.

[Ladder Mode]	[List Mode]	
	Step Instruction Device	
6 [EN	0 LD X20 1 BKANDP D100 R0 D200 I 6 END	DO
[Operation]		
b15b8b7b0 D100 111111000001111111111 D101 1111111110000000000	b15b8b7b0) 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 2 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
b15b8b7 D200 1111100000000 D201 000111110000 D202 0000000001111	D0 3 D0000 11111	

7.1.3 Logical sums of 16-bit and 32-bit data (WOR(P),DOR(P))

Basic High Process Redundant Universal

1 When two data are set ($\bigcirc \lor \odot \neg \oslash$, (\bigcirc +1, \bigcirc) \lor (\bigcirc +1, \odot)) \rightarrow (\bigcirc +1, \bigcirc))

(S): Data for a logical sum operation or head number of the devices where the data is stored (BIN 16/32 bits)
 (D): Head number of the devices where the logical sum operation result will be stored (BIN 16/32 bits)

Setting	Internal	Devices	R 7R	J[]]\[]]			Zn	Constants	Other
Data	Bit	Word	N, 2N	Bit	Word	0::\G::	20	К, Н	01101
S	0							0	—
D				0					

Granition Function

WOR

(1) Conducts a logical sum operation on each bit of the 16-bit data of the device designated by
 (D) and the 16-bit data of the device designated by (S), and stores the results at the device designated by (D).

(2) For bit devices, the bit devices after the points designated by digit specification are regarded as "0" in the operation.

DOR

(1) Conducts a logical sum operation on each bit of the 32-bit data of the device designated by
 (D) and the 32-bit data of the device designated by
 (S), and stores the results at the device designated by

(2) For bit devices, the bit devices after the points designated by digit specification are regarded as "0" in the operation.

Operation Error

(1) There are no operation errors associated with the WOR(P) or DOR(P) instructions.

Program Example

 The following program performs a logical sum operation on the data at D10 and D20 when XA is turned ON, and stores the results at D10.

[Ladder Mode]		[List Mo	ode]			
	 D20	Step	Instruction	[Device	
	 020	0 1 4	LD WORP END	X0A D20	D10	

[Operation]

	b15	b8 b7	b0
D10	1 1 0 0	1 1 0 0 1 1 1 1	0 0 0 0
		OR	
	b15	b8 b7	b0
D20	0 0 0 0	1 0 1 1 1 1 1 0 1	0 0 0 1
	b15	b8 ^V b7	b0
D10	1 1 0 0	1 1 1 1 1 1 1 1 1	0 0 0 1

(2) The following program performs a logical sum operation on the 32-bit data from X0 to X1F, and on the hexadecimal value $FF00FF00_H$ when XB is turned ON, and stores the results at D66 and D67.

7

2 When three data are set ($\mathfrak{S} \lor \mathfrak{D} \to \mathfrak{D}$, ($\mathfrak{S} + 1$, \mathfrak{S}) \lor ($\mathfrak{D} + 1$, \mathfrak{D})) \rightarrow ($\mathfrak{D} + 1$, \mathfrak{D}))

 (\mathfrak{S}) , (\mathfrak{S}) : Data for a logical sum operation or head number of the devices where the data is stored (BIN 16/32 bits)

(D) : Head number of the devices where the logical sum operation result will be stored (BIN 16/32 bits)

Setting	Internal	Devices	R 7R	J	\		7n	Constants	Other
Data	Bit	Word	N, 2N	Bit	t Word			К, Н	Culor
S1	0							0	_
<u>\$2</u>	0								_
D				0					

Grand Function

WOR

 (1) Conducts a logical sum operation on each bit of the 16-bit data of the device designated by
 ③ and the 16-bit data of the device designated by
 ⓐ, and stores the results at the device designated by
 ⓐ.

(2) For bit devices, the bit devices after the points designated by digit specification are regarded as "0" in the operation. (See Program Example (1))

DOR

 (1) Conducts a logical sum operation on each bit of the 32-bit data of the device designated by
 ③ and the 32-bit data of the device designated by
 ⓐ), and stores the results at the device designated by
 ⓐ).

(2) When bit devices are designated, the bit devices below the points designated as digits are regarded as "0" in the operation. (See Program Example (2))

Operation Error

(1) There are no operation errors associated with the WOR(P) or DOR(P) instructions.

Program Example

(1) The following program performs a logical sum operation on the data from X10 to X1B, and the data at D33, and stores the result at Y30 to Y3B when XA is ON.

[Operation]

(2) The following program performs a logical sum operation on the 32-bit data at D0 and D1, and the 24-bit data from X20 to X37, and stores the results at D23 and D24 when M8 is ON.

Redundant Universal

7.1.4 Block logical sum operations (BKOR(P))

Command **BKOR** ┨┠ S \$2 (D)BKOR n Command BKORP S \$2 \bigcirc n **BKORP** (s) *1 : Head number of the devices where data on which a logical operation will be conducted is stored (BIN 16 bits) (2)*1: Data for a logical operation or head number of the devices where the data for the logical operation is stored (BIN 16 bits) (D)*1 : Head number of the devices where the operation result will be stored (BIN 16 bits) : Number of operation data blocks (BIN 16 bits) n Internal Devices Setting Constants J....\.... R, ZR U....\G.... Other Zn Data K, H Bit Word Wor (S1)*1 \bigcirc S2*1 ____ \bigcirc \bigcirc (D)*1 ____ \bigcirc ____ n \bigcirc \bigcirc \bigcirc \bigcirc

*1: The same device number can be specified for ${\rm (S)}\,$ and ${\rm (D)}\,$ or ${\rm (S)}\,$ and ${\rm (D)}\,.$

Basic

Process

Grant Function

(1) Performs a logical sum operation on the data located in the n points from the device designated by (s), and the data located in the n points from the device designated by (s), and stores the results into the area starting from the device designated by (p).

7

(2) The constant designated by \odot can be between -32768 and 32767 (BIN 16-bit data).

Operation Error

- (1) In any of the following cases, an operation error occurs, the error flag (SM0) turns ON, and an error code is stored into SD0.
 - The n-bit range from the (s), (s), or (b) device exceeds the range of that device.

(Error code: 4101)

- The device range for n points starting from the device designated by (s) overlaps with the device range for n points starting from the device designated by (b). (except when the same device is specified for (s) and (b))
- The device range for n points starting from the device designated by

 overlaps with the device range for n points starting from the device designated by
 (except when the same device is specified for
 and
 (Error code: 4101)

Program Example

(1) The following program performs a logical sum operation on the data stored at D100 to D102 and the data stored at R0 to R2 when X20 is turned ON, and stores the operation result into the area starting from D200.

7.1.5 16-bit and 32-bit exclusive OR operations (WXOR(P),DXOR(P))

Basic High Process Redundant Universal

1 When two data are set $(\bigcirc \forall \odot \neg \bigcirc, (\bigcirc +1, \bigcirc) \forall (\odot +1, \odot) \neg (\bigcirc +1, \bigcirc))$

indicates an instruction symbol of WXOR/DXOR.
WXOR, DXOR
Command
Command
WXORP, DXOR
D
D
Command
P
S
D

 \circledast : Data for an exclusive OR operation or head number of the devices where the data is stored (BIN 16/32 bits)

(D): Head number of the devices where the exclusive OR operation result will be stored (BIN 16/32 bits)

Setting	Internal	Devices	R 7R	J	\		Zn	Constants	Other
Data	Bit	Word	Ν, ΖΝ	Bit	Word	0::\G::	Zn	К, Н	Other
S	0							0	—
D	0								

WXOR

(1) Conducts an exclusive OR operation on each bit of the 16-bit data of the device designated by D and the 16-bit data of the device designated by S, and stores the results at the device designated by D.

(2) For bit devices, the bit devices after the points designated by digit specification are regarded as "0" in the operation.

DXOR

(1) Conducts an exclusive OR operation on each bit of the 32-bit data of the device designated by (D) and the 32-bit data of the device designated by (S), and stores the results at the device designated by (D).

(2) For bit devices, the bit devices after the points designated by digit specification are regarded as "0" in the operation.

✓ Operation Error

(1) There are no operation errors associated with the WXOR(P) or DXOR(P) instructions.

Program Example

 The following program performs an exclusive OR operation on the data at D10 and D20 when XA is ON, and stores the result at D10.

[Ladder Mode]				[List M	ode]		
0 X0A	[WXORP D20	D10	3	Step	Instruction		Device
4	-	-END	}	0 1 4	LD WXORP END	XOA D20	D10
[Operation]							

U.	p	eı	a	uc	וו	IJ	

	b15 b8 b7 b0
D10	0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
	XOR
	b15 b8 b7 b0
D20	0 0 1 1 1 0 0 1 0 0
	$\overline{\Box}$
	b15b0
D10	0 1 1 0 1 1 0 0 0 1 1

(2) The following program compares the bit pattern of the 32-bit data from X20 to X3F with the bit pattern of the data at D9 and D10 when X6 is ON, and stores the number of differing bits at D16.

(s), (s) : Data for an exclusive OR operation or head number of the devices where the data is stored (BIN 16/32 bits)

(D) : Head number of the devices where the exclusive OR operation result will be stored (BIN 16/32 bits)

Internal	Devices	R 7R					Constants	Other
Bit	Word	нх, <u>2</u> нх	Bit	Word	01		К, Н	e the
0								—
0								
0								
	Internal Bit	Internal Devices Bit Word	Internal Devices R, ZR Bit Word	Internal Devices R, ZR Jiii Bit Ord	Internal Devices R, ZR J Bit Word Bit Word O O O O O O O O O O O O O O O O O O O	Internal Devices R, ZR J Bit Word Bit Word	Internal Devices R, ZR Jiii (ii) Uiii (Giii) Zn Bit Word O O O O	Internal Devices R, ZR JIII III UIII IGII Zn Constants K, H Bit Word Bit Word IIII IIII IIII IIII IIII IIII IIII II

Function

WXOR

(1) Conducts an exclusive OR operation on each bit of the 16-bit data of the device designated by (s) and the 16-bit data of the device designated by (s), and stores the results at the device designated by (b).

(2) For bit devices, the bit devices after the points designated by digit specification are regarded as "0" in the operation. (See Program Example (1))

DXOR

(1) Conducts an exclusive OR operation on each bit of the 32-bit data of the device designated by ⑤ and the 32-bit data of the device designated by ⑥, and stores the results at the device designated by ⑥.

(2) For bit devices, the bit devices after the points designated by digit specification are regarded as "0" in the operation.

Operation Error

(1) There are no operation errors associated with the WXOR(P) or DXOR(P) instructions.

Program Example

(1) The following program conducts an exclusive OR operation on the data from X10 to X1B and the data at D33 when X10 is ON, and outputs the result to Y30 to Y3B.

[Operation]

(2) The following program conducts an exclusive OR operation on the data at D20 and D21, and the data at D30 and D31 when X10 is turned ON, and stores the results at D40 and D41.

Redundant Universal

7.1.6 Block exclusive OR operations (BKXOR(P))

Command **BKXOR** (D)┥┝ BKXOR S \$2 n Command (D) BKXORP S \$2 n ┥┟ **BKXORP** (si)*1 : Head number of the devices where data on which a logical operation will be conducted is stored (BIN 16 bits) S2*1 : Data for a logical operation or head number of the devices where the data for the logical operation is stored (BIN 16 bits) (D*1 : Head number of the devices where the operation result will be stored (BIN 16 bits) : Number of operation data blocks (BIN 16 bits) n Setting Internal Devices Constants J....\.... R, ZR U....\G.... Zn Other Data K, H Bit Word (S1)*1 \bigcirc S2*1 \bigcirc \bigcirc ____ ____ (D)*1 \bigcirc ____ ____ n \bigcirc \bigcirc 0 \bigcirc

*1: The same device number can be specified for ${\rm \ensuremath{\mathfrak{S}}}$ and ${\rm\ensuremath{\mathbb{D}}}$ or ${\rm\ensuremath{\mathbb{S}}}$ and ${\rm\ensuremath{\mathbb{D}}}$.

Basic

Process

Grant Function

(1) Performs an exclusive OR operation on the data located in the n points from the device designated by (s), and the data located in the n points from the device designated by (s), and stores the results into the area starting from the device designated by (b).

(2) The constant designated by \odot can be between -32768 and 32767 (BIN 16-bit data).

Operation Error

- (1) In any of the following cases, an operation error occurs, the error flag (SM0) turns ON, and an error code is stored into SD0.
 - The n-bit range from the (s), (2), or (b) device exceeds the range of that device.

(Error code: 4101)

- The device range for n points starting from the device designated by (s) overlaps with the device range for n points starting from the device designated by (D). (except when the same device is specified for (s) and (D)) (Error code: 4101)
- The device range for n points starting from the device designated by ② overlaps with the device range for n points starting from the device designated by ③. (except when the same device is specified for ③ and ③) (Error code: 4101)

Program Example

(1) The following program performs an exclusive OR operation on the data stored at D100 to D102 and the data stored at R0 to R2 when X20 is turned ON, and stores the operation result into the area starting from D200.

7.1.7 16-bit and 32-bit data exclusive NOR operations (WXNR(P),DXNR(P))

 $\boxed{Basic} \xrightarrow{Process} \xrightarrow{Redundant} \underbrace{Universal}$ $\boxed{1} \text{ When two data are set } (\bigcirc \lor \odot \rightarrow \bigcirc, (\bigcirc +1, \bigcirc) \lor (\odot +1, \odot) \rightarrow (\bigcirc +1, \bigcirc))$ $\boxed{} \text{ indicates an instruction symbol of WXNR/DXNR.}$ $\boxed{WXNR, DXNR} \xrightarrow{Command} \xrightarrow{Command} \xrightarrow{P \odot \bigcirc}$

(S): Data for an exclusive NOR operation or head number of the devices where the data is stored (BIN 16/32 bits)
 (D): Head number of the devices where the exclusive NOR operation result will be stored (BIN 16/32 bits)

Setting	Internal	Devices	R 7R	J	\		7n	Constants	Other
Data	Bit	Word	Ν, ΖΝ	Bit	Word	0::\G::	211	К, Н	Other
S				0				0	_
D				0				_	

WXNR

(1) Conducts an exclusive NOR operation on the 16-bit data of the device designated by ^(D) and the 16-bit data of the device designated by ^(S), and stores the results at the device designated by ^(D).

(2) For bit devices, the bit devices after the points designated by digit specification are regarded as "0" in the operation.

DXNR

(1) Conducts an exclusive NOR operation on the 32-bit data of the device designated by (b) and the 32-bit data of the device designated by (s), and stores the results at the device designated by (c).

(2) For bit devices, the bit devices after the points designated by digit specification are regarded as "0" in the operation.

Operation Error

(1) There are no operation errors associated with the WXNR(P) or DXNR(P) instruction.

Program Example

(1) The following program compares the bit patterns of the 16-bit data located from X30 to X3F with the bit patterns of the 16-bit data at D99 when XC is ON, and stores the number of identical bit patterns at D7.

[Operation]

(2) The following program compares the bit patterns of the 32-bit data located from X20 to X3F with the bit patterns of the data at D16 and D17 when X6 is ON, and stores the number of identical bit patterns at D18.

 \odot , \odot : Data for an exclusive NOR operation or head number of the devices where the data is stored (BIN 16/32 bits)

(D) : Head number of the devices where the exclusive NOR operation result will be stored (BIN 16/32 bits)

Internal	Devices	R 7R	J	\ <u></u>]		7n	Constants	Other
Bit	Word	N, 2N	Bit	Word	0::\G::	2.1	К, Н	O LI IOI
			0				0	
			0				0	
			0					
	Internal Bit	Internal Devices Bit Word	Internal Devices R, ZR Bit Word	Internal Devices R, ZR Jiii Bit Word Bit O	Internal Devices R, ZR JUINT	Internal Devices R, ZR JUNG	Internal Devices R, ZR JIII (III UIII (GIII) Zn Bit Word Bit Word Zn Zn	Internal Devices R, ZR JIII II UIII GIII Zn Constants K, H Bit Word O O O O O LIII CIIII VIII CIIIII VIII CIIIIII O </td

Grant Function

WXNR

(1) Conducts an exclusive NOR operation on the 16-bit data of the device designated by S and the 16-bit data of the device designated by S , and stores the results at the device designated by D.

(2) For bit devices, the bit devices after the points designated by digit specification are regarded as "0" in the operation.

DXNR

(2) For bit devices, the bit devices after the points designated by digit specification are regarded as "0" in the operation.

Operation Error

(1) There are no operation errors associated with the WXNR(P) or DXNR(P) instructions.

Program Example

(1) The following program performs an exclusive NOR operation on the 16-bit data from X30 to X3F and the data at D99 when X0 is turned ON, and stores the results to D7.

[Operation]

(2) The following program performs an exclusive NOR operation on the 32-bit data at D20 and D21 and the data at D10 and D11 when X10 is turned ON, and stores the result to D40 and D41.

Redundant

7.1.8 Block exclusive NOR operations (BKXNR(P))

Basic Process Universal Command **BKXNR** \$2 (D)┥┝ BKXNR S n Command BKXNRP S \$2 (D) n **BKXNRP** (s) *1 : Head number of the devices where data on which a logical operation will be conducted is stored (BIN 16 bits) (2)*1 : Data for a logical operation or head number of the devices where the data for the logical operation is stored (BIN 16 bits) (D*1 : Head number of the devices where the operation result will be stored (BIN 16 bits) : Number of operation data blocks (BIN 16 bits) n Setting Internal Devices Constants J....\.... R, ZR U....\G.... Zn Other Data К, Н Word Bit Word (\$1) *1 (S2) *1 _ \bigcirc \bigcirc (D *1 \bigcirc n \bigcirc \bigcirc \bigcirc \bigcirc

*1: The same device number can be specified for \mathfrak{S} and \mathfrak{D} or \mathfrak{S} and \mathfrak{D} .

Grantion

(1) Performs an exclusive NOR operation on the data located in the n points from the device designated by (s), and the data located in the n points from the device designated by (s), and stores the results into the area starting from the device designated by (D).

7

(2) The constant designated by \bigotimes can be between -32768 and 32767 (BIN 16-bit data). b15 -----b8b7 -----b0 (\$1) 0000111111111111111 S1 + 1 0000111111111100000 \$) + 2 111001110000111000111 b15-----b8b7-----b0 XNR \$2 111110000111110000 (\$)+(n-2) 11100111001110011100 (S)+(n-1) 000011111111100000 Ŋ - b8b7 b15 --b0 (D)0000000001111100000 D + 1 000000001111111111 D + 2 1110000111001111100 (D)+(n-2) 111000001111100000111

Operation Error

- (1) In any of the following cases, an operation error occurs, the error flag (SM0) turns ON, and an error code is stored into SD0.
 - The n-bit range from the (s), (s), or (b) device exceeds the range of that device.

(Error code: 4101)

- The device range for n points starting from the device designated by (s) overlaps with the device range for n points starting from the device designated by (b). (except when the same device is specified for (s) and (b))

Program Example

(1) The following program performs an exclusive NOR operation on the data stored at D100 to D102 and the data stored at R0 to R2 when X20 is turned ON, and stores the operation result into the area starting from D200.

[Ladder Mode]		[List Mo	ode]				
		Step	Instruction		De	vice	
6	[END]	0 1 6	LD BKXNRP END	X20 D100	RO	D200	DO
[Operation]							
b15b8 b7b0 D100 10101010101010101010 D101 0101010101010101010101 D102 000000000111111111111	XNR R0 1 XNR R0 1 R1 0 R2 1	5 11111111 0000000000	b8b7 110000000 200000111 1010101010	-b0 00 11 11			
b15 D200 101010 D201 101010 D202 0101010	b8b7 0,100101010 0,1010100 1,011010101	b0 101 101 010	D0 3				

Basic High Process Redundant Universal

7.2 Rotation instruction

7.2.1 Right rotation of 16-bit data (ROR(P),RCR(P))

		indicate	s an instruction sy	mbol of ROR	RCR.
ROR, F		Command	D	n	-
RORP,		Command	P D	n	-
) n	: Head number of the devices to rotate (BIN 16 bits) : Number of rotations (0 to 15) (BIN 16 bits)			
	Setting Inter Data Bit	hal Devices R, ZR Bit Word UIIIG	🛄 Zn	Constants K, H	Other
	D	0			—
				0	

ROR

(1) Rotates 16-bit data of the device designated by
^D, not including the carry flag, n-bits to the right. The carry flag is ON or OFF depending on the status prior to the execution of the ROR instruction.

7

(2) When a bit device is designated for D, a rotation is performed within the device range specified by digit specification.

The number of bits by which a rotation is carried out is the remainder of n/(specified number of bits).

For example, when n = 15 and (specified number of bits) = 12 bits, the remainder of 15/12 = 1 is "3", and the data is rotated 3 bits.

(3) Specify any of 0 to 15 as n.

If the value specified as n is 16 or greater, the remainder of n / 16 is used for rotation. For example, when n = 18, the contents are rotated two bits to the right since the remainder of 18 / 16=1 is "2".

RCR

(1) Rotates 16-bit data of the device designated by D, including the carry flag, n-bits to the right.

The carry flag is ON or OFF depending on the status prior to the execution of the ROR instruction.

(2) When a bit device is designated for D, a rotation is performed within the device range specified by digit specification.

The number of bits by which a rotation is executed is the remainder of n/(specified number of bits).

For example, when n = 15 and (specified number of bits) = 12 bits, the remainder of 15/12 = 1 is "3", and the data is rotated 3 bits.

(3) Specify any of 0 to 15 as n.

If the value specified as n is 16 or greater, the remainder of n / 16 is used for rotation. For example, when n = 18, the contents are rotated two bits to the right since the remainder of 18 / 16 = 1 is "2".

Operation Error

(1) There are no operation errors associated with the ROR(P) or RCR(P) instructions.

Program Example

(1) The following program rotates the contents of D0, not including the carry flag, 3 bits to the right when XC is turned ON.

[Operation]

(2) The following program rotates the contents of D0, including the carry flag, 3 bits to the right when XC is turned ON.

7.2.2 Left rotation of 16-bit data (ROL(P),RCL(P))

Basic High performance Process Redundant Universal
indicates an instruction symbol of ROL/RCL.
ROL, RCL
ROLP, RCLP
 (D) : Head number of the devices to rotate (BIN 16 bits) n : Number of rotations (0 to 15) (BIN 32 bits)
Setting Internal Devices R, ZR J()) D()) Zn Constants Other Data Bit Word Bit Word U)) Cn K, H Other
•
n O —
了 Function

ROL

(1) Rotates the 16-bit data of the device designated at $_{\bigcirc}$, not including the carry flag, n-bits to the left.

The carry flag turns ON or OFF depending on its status prior to the execution of ROL instruction.

(2) When a bit device is designated for D, a rotation is performed within the device range specified by digit specification.

The number of bits by which a rotation is executed is the remainder of n/(specified number of bits).

For example, when n = 15 and (specified number of bits) = 12 bits, the remainder of 15/12 = 1 is "3", and the data is rotated 3 bits.

(3) Specify any of 0 to 15 as n.

If the value specified as n is 16 or greater, the remainder of n / 16 is used for rotation. For example, when n = 18, the data is rotated 2 bits to the left since the remainder of 18/16 = 1 is "2".

RCL

(1) Rotates the 16-bit data of the device designated by (D), including the carry flag, n-bits to the left.

The carry flag turns ON or OFF depending on its status prior to the execution of RCL instruction.

(2) When a bit device is designated for D, a rotation is performed within the device range specified by digit specification.

The number of bits by which a rotation is executed is the remainder of n/(specified number of bits).

For example, when n = 15 and (specified number of bits) = 12 bits, the remainder of 15/12 = 1 is "3", and the data is rotated 3 bits.

(3) Specify any of 0 to 15 as n.

If the value specified as n is 16 or greater, the remainder of n / 16 is used for rotation. For example, when n = 18, the data is rotated 2 bits to the left since the remainder of 18/16 = 1 is "2".

Operation Error

(1) There are no operation errors associated with the ROL(P) or RCL(P) instructions.

Program Example

(1) The following program rotates the contents of D0, not including the carry flag, 3 bits to the left when XC is turned ON.

[Operation]

(2) The following program rotates the contents of D0, including the carry flag, 3 bits to the left when XC is turned ON.

* ON/OFF status of the carry flag depends on its status before the execution of RCL.

Basic High Process Redundant I

7.2.3 Right rotation of 32-bit data (DROR(P),DRCR(P))

					performance		
			[] in	dicates an ins	struction syml	bol of DROR/	DRCR.
	DROR, DRCR	Command] D	n	_
	DRORP, DRCRP	Command]P (D)	n	-
) n	: Head number of the devi : Number of rotations (0 to	ces to rotate (BIN 32 bits 31) (BIN 16 bits)	;)			
	Setting Inter Data Bit	nal Devices R, ZR Word	J\ Bit Word	U∭\G∭	Zn	Constants K, H	Other
	D		0				_
	n		0			0	
े F	unction						
	DROR						

(1) The 32-bit data of the device designated at $_{\odot}$, not including the carry flag, is rotated n-bits to the right.

The carry flag turns ON or OFF depending on its status prior to the execution of the DROR instruction.

(2) When a bit device is designated for D, a rotation is performed within the device range specified by digit specification.

The number of bits by which a rotation is executed is the remainder of n/(specified number of bits).

For example, when n = 31 and (specified number of bits) = 24 bits, the remainder of 31/24 = 1 is "7", and the data is rotated 7 bits.

(3) Specify any of 0 to 31 as n.

If the value specified as n is 32 or greater, the remainder of n / 32 is used for rotation. For example, when n = 34, the contents are rotated two bits to the right since the remainder of 34 / 32 = 1 is "2".

DRCR

(1) Rotates 32-bit data, including carry flag, at device designated by D n bits to the right. The carry flag goes ON or OFF depending on its status prior to the execution of the DRCR instruction.

When a bit device is designated for D, a rotation is performed within the device range specified by digit specification. The number of bits by which a rotation is executed is the remainder of n /(specified number of bits).
 For example, when n = 31 and (specified number of bits) = 24 bits, the remainder of 31/24

= 1 is "7", and the data is rotated 7 bits.

(3) Specify any of 0 to 31 as n. If the value specified as n is 32 or greater, the remainder of n / 32 is used for rotation. For example, when n = 34, the contents are rotated two bits to the right since the remainder of 34 / 32 = 1 is "2".

(1) There are no operation errors associated with the DROR(P) or DRCR(P) instruction.

Program Example

(1) The following program rotates the contents of D0 and D1, not including the carry flag, 4 bits to the right when XC is ON.

[Operation]

(2) The following program rotates the contents of D0 and D1, including the carry flag, 4 bits to the right when XC is ON.

7.2.4 Left rotation of 32-bit data (DROL(P),DRCL(P))

			[] in	dicates an ins	struction symb	ool of DROL/	DRCL.
DROL, DRCL		mand			D	n	_
DROLP, DRCLP		nand		-	P D	n	-
	 E Head number of Number of rotation 	the devices to ro ons (0 to 31) (BI	otate (BIN 32 bits N 16 bits))			
Setting Data	Internal Devices Bit Word	R, ZR	J\ Word	U∭\G∭	Zn	Constants K, H	Other
D			0			—	
n			0			0	—

Basic High

DROL

(1) The 32-bit data of the device designated at
[●], not including the carry flag, is rotated n-bits to the left. The carry flag turns ON or OFF depending on its status prior to the execution of the DROL instruction.

(2) When a bit device is designated for D, a rotation is performed within the device range specified by digit specification. The number of bits by which a rotation is executed is the remainder of n /(specified number of bits).

For example, when n = 31 and (specified number of bits) = 24 bits, the remainder of 31/24 = 1 is "7", and the data is rotated 7 bits.

(3) Specify any of 0 to 31 as n. If the value specified as n is 32 or greater, the remainder of n/32 is used for rotation. For example, when n = 34, the data is rotated 2 bits to the left since the remainder of 34/32 = 1 is "2".

DRCL

(1) Rotates 32-bit data of the device designated by D, including the carry flag, n-bits to the left. The carry flag turns ON or OFF depending on its status prior to the execution of the DRCL instruction.

(2) When a bit device is designated for D, a rotation is performed within the device range specified by digit specification. The number of bits by which a rotation is executed is the remainder of n /(specified number of bits).

For example, when n = 31 and (specified number of bits) = 24 bits, the remainder of 31/24 = 1 is "7", and the data is rotated 7 bits.

(3) Specify any of 0 to 31 as n. If the value specified as n is 32 or greater, the remainder of n/32 is used for rotation. For example, when n = 34, the data is rotated 2 bits to the left since the remainder of 34/32 = 1 is "2".

Coperation Error

(1) There are no operation errors associated with the DROL(P) or DRCL(P) instructions.

Program Example

(1) The following program rotates the contents of D0 and D1, not including the carry flag, 4 bits to the left when XC is ON.

[Operation]

(2) The following program rotates the contents of D0 and D1, including the carry flag, 4 bits to the left when XC is ON.

7.3 Shift instruction

7.3.1 n-bit shift to right or left of 16-bit data (SFR(P),SFL(P))

			Basic	Proce	ess Redundant	Universal
			indicates an	instruction sy	mbol of SFR	/SFL.
	SFR, SFL	Command		D	n	
	SFRP, SFLP	Command		D	n	
	(D n	: Head number of the devices where shift d : Number of shifts (0 to 15) (BIN 16 bits)	ata is stored (BIN 16 bit	5)		
	Setting Int Data Bi	Image: Image Devices R, ZR J[]]\[] Word Bit V	Vord U	Zn	Constants K, H	Other
	D	0			-	
	n	0			0	
∯ F	Function					
	JLK					

(1) Causes a shift to the right by n bits of the 16-bit data from the device designated at \bigcirc . The n bits from the upper bit are filled with 0s.

(2) When a bit device is designated for D, a right shift is executed within the device range specified by digit specification.

The number of bits by which a shift is executed is the remainder of n/(specified number of bits).

For example, when n = 15 and (specified number of bits) = 8 bits, the remainder of 15/8 = 1 is "7", and the data is shifted 7 bits.

(3) Specify any of 0 to 15 as n. If the value specified as n is 16 or greater, the remainder of n/16 is used for a shift to the right.
 For example, when n = 18, the data is shifted 2 bits to the right since the remainder of 18/16

SFL

=1 is 2.

Shifts 16-bit data at device designated by

 n bits to the left.

 Bits starting from the lowest bit to n bit are filled with 0s.

(2) When a bit device is designated for D, a left shift is executed within the device range specified by digit specification.

The number of bits by which a shift is executed is the remainder of n/(specified number of bits). For example, when n = 15 and (specified number of bits) = 8 bits, the remainder of 15/8 = 1 is "7", and the data is shifted 7 bits.

(3) Specify any of 0 to 15 as n. If the value specified as n is 16 or greater, the remainder of n/16 is used for a shift to the left.

For example, when n = 18, the data is shifted 2 bits to the left since the remainder of 18/16 = 1 is "2".

Coperation Error

(1) There are no operation errors associated with the SFR(P) or SFL(P) instructions.

Program Example

(1) The following program shifts the data of D0 to the right by the number of bits designated by D100 when X20 is turned ON.

(2) The following program shifts the contents of X10 to X17 3 bits to the left when X1C is ON.

[Ladder Mode]	[Lis	t Mode]
	SELP K2Y10 K3 J	p Instruction Device
	Санси кодино ко ј 0 1 Гемр Ј 4	LD X1C SFLP K2Y10 K3 END

[Operation]

Filled with 0s.

Basic High Process Redundant Universal

7.3.2 1-bit shift to right or left of n-bit data (BSFR(P),BSFL(P))

				[] ii	ndicates an in	struction sym	bol of BSFR	/BSFL.
В	SFR, BSFL		Command] D	n]
В	SFRP, BSFLP	1	Command]P (D)	n]
		① :H n :N	ead number of the devi umber of devices to wh	ces to be shifted (bits) ich shift is executed (BIN	16 bits)			
	Setting Data	Internal Bit	Devices Word R, ZR	J\ Bit Word	U\G	Zn	Constants K, H	Other
	D	0		_				—
	n	\bigcirc		0				_
🗘 Fu	nction BSFR							

(1) Shifts the data in n points from the device designated by \bigcirc to the right by one bit.

(2) The device designated by $\mathbf{D} + (n - 1)$ is filled with 0.

BSFL

(1) Shifts the data in n points from the device designated by D to the left by one bit.

(2) The device designated by \bigcirc is filled with 0.

Operation Error

- (1) In the following case, an operation error occurs, the error flag (SM0) turns ON, and an error code is stored into SD0.
 - The range of the device n points from a device designated by (b), or exceeds the relevant device. (Error code: 4101)

Program Example

(1) The following program shifts the data at M668 to M676 to the right when X8F is turned ON.
 [Ladder Mode]
 [List Mode]

Filled with 0s. —

Carry flag (SM700)

1

(2) The following program shifts the data at Y60 to Y6F to the left when X4 is turned ON.[Ladder Mode][List Mode]

(6BY6AY69Y68)

1 0 0 0 0 1 0 1 0 1 1

Y6FY6EY6DY6CY

0 0

1

- Filled with 0

66Y65Y64Y63Y62Y61Y60

1 0

7.3.3 n-bit shift to right or left of n-bit data (SFTBR(P),SFTBL(P))

QnU(D)(H)CPU: The serial number (first five digits) is "10102" or later. QnUDE(H)CPU: The serial number (first five digits) is "10102" or later.

D : Head number of the devices to be shifted (bits)

- n1 : Number of bits to be shifted (BIN 16 bits)
- n2 : Number of shifts (BIN 16 bits)

Setting	Internal	Devices	R 7R	J	\		7n	Constants	Other
Data	Bit	Word	N, 2N	Bit	Word	0:		К, Н	Other
D	○*1		0						—
n1	_	0	0			0			
n2		0	0			0			

*1 : T, C, ST, and S devices are not available.

Function

SFTBR(P)

(1) This instruction shifts the n1 bits data in the devices starting from the device specified by to the right by n2 bits.

n1=10, n2=4

- (2) n1 and n2 are specified under the condition that n1 is larger than n2. If the value of n2 is equal to or larger than the value of n1, the remainder of n2 / n1 (n2 devided by n1) is used for a shift.
- (3) This instruction specifies n1 ranged from 1 to 64.
- (4) Bits starting from the highest bit to n2th bit are filled with 0s. If the value of n2 is larger than the value of n1, the remainder of n2 / n1 will be 0.
- (5) If the value specified by n1 or n2 is 0, the instruction will be not processed.

SFTBL(P)

- (1) This instruction shifts the n1 bits data in the devices starting from the device specified by to the left by n2 bits.
 - n1=10, n2=4

(2) n1 and n2 are specified under the condition that n1 is larger than n2. If the value of n2 is equal to or larger than the value of n1, the remainder of n2 / n1 (n2 devided by n1) is used for a shift.

However, if the remainder of n2 / n1 is 0, the instruction will be not processed.

- (3) This instruction specifies n1 ranged from 1 to 64.
- (4) Bits starting from the lowest bit to n2th bit are filled with 0s. If the value of n2 is larger than the value of n1, the remainder of n2 / n1 will be 0.
- (5) If the value specified by n1 or n2 is 0, the instruction will be not processed.

✓ Operation Error

- (1) In any of the following cases, an operation error occurs, the error flag (SM0) turns on, and an error code is stored into SD0.
 - The value specified by n1 is other than 0 to 64. (Error code: 4100)
 - The value data specified by n2 is negative. (Error code: 4100)
 - The range of devices specified by n1 exceeds the range of devices specified by D.

(Error code: 4101)

Program Example

(1) The following program shifts the data of Y10 to Y17 (8 bits) specified by D to the right by 2 bits (n2), when M0 is turned on.

(2) The following program shifts the data of Y21 to Y2C (12 bits) specified by D to the left by 5 bits (n2), when M0 is turned on.

[Operation]

7

7.3.4 1-word shift to right or left of n-word data (DSFR(P),DSFL(P))

Basic High

Process Redundant Universal

indicates an instruction symbol of DSFR/DSFL. Command DSFR, DSFL (D)n Command DSFRP, DSFLP_ P (D) n (D) : Head number of the devices to be shifted (BIN 16 bits) n : Number of devices to which shift is executed (BIN 16 bits) Setting Internal Devices J....\.... Constants R, ZR U...\G.... Zn Other Data К, Н Bit Word Word Bit Ο ____ n \bigcirc 0 \bigcirc

DSFR

(1) Shifts data n points from device designated by \bigcirc 1-word to the right.

(2) The device designated by D + (n - 1) is filled with 0.

DSFL

(1) Shifts data n points from device designated by \bigcirc 1-word to the left.

(2) The device designated by \bigcirc is filled with 0.

✓ Operation Error

- (1) In the following case, an operation error occurs, the error flag (SM0) turns ON, and an error code is stored into SD0.
 - The range of the device n points from a device designated by D, or exceeds the relevant device. (Error code: 4101)

Program Example

(1) The following program shifts the contents of D683 to D689 to the right when XB is turned ON.

[Operation]

(2) The following program shifts the contents of D683 to D689 to the left when XB is turned ON.[Ladder Mode][List Mode]

[Operation]

7

7.3.5 n-bit shift to right or left of n-word data (SFTWR(P),SFTWL(P))

QnU(D)(H)CPU: The serial number (first five digits) is "10102" or later. QnUDE(H)CPU: The serial number (first five digits) is "10102" or later.

(D) : Head number of the devices to be shifted (BIN 16 bits)

- n1 : Number of words to be shifted (BIN 16 bits)
- n2 : Number of shifts (BIN 16 bits)

Setting	Internal	Devices	R 7R	J	\		7n	Constants	Other
Data	Bit	Word	τι, <u>Σ</u> ιι	Bit	Word	0:1\G:1	_	К, Н	Other
D		0	0						—
n1		0	0			0			_
n2		0	0			0			

Grant Function

SFTWR(P)

n1=9, n2=4

- (2) The n2 words data in the devices starting from the highest device are filled with 0s.
- (3) If the value specified by n1 or n2 is 0, the instruction will be not processed.
- (4) If the value of n2 is equal to or larger than the value of n1, the n1 words data in the devices starting from the device specified by
 will be filled with 0s.

SFTWL(P)

(1) This instruction shifts the n1 words data in the devices starting from the device specified by
 (1) To the left by n2 words.

n1=9, n2=4

- (2) The n2 words in the devices starting from the lowest device are filled with 0s.
- (3) If the value specified by n1 or n2 is 0, the instruction will be not processed.
- (4) If the value of n2 is equal to or greater than the value of n1, the n1 words devices starting from the device specified by
 will be filled with 0s.

✓ Operation Error

- (1) In any of the following cases, an operation error occurs, the error flag (SM0) turns on, and an error code is stored into SD0.
 - n1 or n2 is negative value.

- (Error code: 4100)
- The range of devices specified by n1 exceeds the range of devices specified by D .

(Error code: 4101)

Program Example

(1) The following program shifts the 8 words (n1) data stored in the devices starting from D10 specified by

 to the right by 2 words (n2), when M0 is turned on.
 [Ladder Mode]
 [List Mode]

7

(2) The following program shifts the 12 words (n1) data in the devices starting from D21 specified by D to the left by 5 words (n2), when M0 is turned on.

7.4 Bit processing instructions

7.4.1 Bit set and reset for word devices (BSET(P),BRST(P))

			[indicates an instruc	tion sym	bol of BSET	/BRST.
BSET BRS		Command					
DOLT, DICC	′' _	l I Command					
BSETP, BR	STP			- P	D	n	-
	(D) : Nu n : Nu	Imber of the device who Imber of the bit to be se	ose bits are set/reset (et/reset (0 to 15) (BIN	BIN 16 bits) 16 bits)			
	Setting Internal Data	Devices R, ZR	J:::\:::	U\G	Zn	Constants K. H	Other
	D Bit	Word					
	n		0			0	—
Function BSET (1) Se	ts (sets "1" at) t	he nth bit in the	word device de	signated at \mathbb{D} .	f tho da	ato.	
Function BSET (1) Se (2) If r	ts (sets "1" at) t n exceeds "15",	he nth bit in the s bit set/reset is po 	word device de erformed with tl BSETP b15 ion D10 110010 b15	signated at ()). ne lower 4 bits o b6b1b0 b6b1b0	f the da	ata.	
Function BSET (1) Se (2) If r	ts (sets "1" at) t n exceeds "15",	he nth bit in the s bit set/reset is po Before execution After execution	word device de erformed with tl BSETP b15 fon D10 1110010 b15 h D10 1110010	signated at D. ne lower 4 bits o D10 K6 bits b6 b1b0 11100111110111 b6 b1b0 11101111110111 11101111	f the da	ata.	
Function BSET (1) Se (2) If r BRST	ts (sets "1" at) t n exceeds "15",	he nth bit in the s bit set/reset is po Before execution After execution	word device de erformed with tl BSETP on D10 1110010 b15 n D10 1110010	signated at D. ne lower 4 bits o D10 K6 bits b6 b1b0 1110 111 1011 1 b6 b1b0 1110 111 110 111 1110 111 1110 111	f the da	ata.	
Function BSET (1) Se (2) If r BRST (1) Re (2) If r	ts (sets "1" at) t n exceeds "15", esets the nth bit n exceeds "15",	he nth bit in the v bit set/reset is po Before execution After execution of a word devices bit set/reset is po	word device de erformed with th b15 fon D10 1110010 b15 n D10 1110010	signated at (). ne lower 4 bits o D10 K6 110011110111 K6 110011110111 1 is set () to 0. ne lower 4 bits o	f the da	ata.	
Function BSET (1) Se (2) If r BRST (1) Re (2) If r	ts (sets "1" at) t n exceeds "15", esets the nth bit n exceeds "15",	he nth bit in the v bit set/reset is po Before execution After execution of a word device bit set/reset is po	word device de erformed with th b15 ion D10 1110010 b15 b10 1110 11100110 1100110 1100110 11100110 11100110 1100110 11100110 11100110 11100110 1100110 11100110 11100110 11100110 11100110 11100110 11100110 11100110 11100110 1100110 1100110 1100110 1100110 1100110 1100110 1100110 1100110 1100110 1100110 100110 100110 100110 100110 100110 100110 100110 100110 100110 100110 100110	signated at (). ne lower 4 bits o D10 K6 b6 b1b0 1110011110111 b6 b1b0 1110111110111 b6 b1b0 1101111101111 b6 b1b0 1101111101111 b1b0 1101111101111 	f the da	ata. ata.	
Function BSET (1) Se (2) If r BRST (1) Re (2) If r	ts (sets "1" at) t n exceeds "15", esets the nth bit n exceeds "15",	he nth bit in the v bit set/reset is po Before execution After execution of a word device bit set/reset is po Before execution	word device de erformed with th BSETP b15 b15 b15 b15 b15 b15 b15 b15 b15 b15 b15	signated at (). ne lower 4 bits o D10 K6 b6 b1b0 1110011110111 b6 b1b0 1110111110111 b1b0 11101111 	f the da	ata.	

Operation Error

(1) There are no operation errors associated with the BSET(P) or BRST(P) instructions.

Program Example

(1) The following program resets the 8th bit of D8 (b8) to 0 when XB is OFF, and sets the 3rd bit of D8 (b3) to 1 when XB is ON.

[Ladder Mode]

0	XOB H	BRSTP	D8	к8]	Resets b8 of D8.
4	хов 	[BSETP	D8	кз]	Sets b3 of D8.
8				-[END]	

[List Mode]

Step	Instruction		Device
0	LD I BRSTP	XOB D8	K8
4 5 8	LD BSETP END	XOB D8	K3

[Operation]

Bit set or reset of word devices can also be conducted by bit designation of word devices.

 For the bit specification for word devices, link direct devices, refer to the QnUCPU User'fs Manual(Function Explanation, Program Fundamentals) or Qn(H)/QnPH/QnPRHCPU User's Manuall(Function Explanation, Program Fundamentals)

The processing of program example (1) would be conducted as shown below if bit designation of a word device had been used:

Redundant

Universa

Process

7.4.2 Bit tests (TEST(P),DTEST(P))

indicates an instruction symbol of TEST/DTEST.
TEST, DTEST
Command
Command
FESTP, DTESTP
D
S
D

S : Number of the device where bit data to be extracted is stored (BIN 16 bits)

S2: Location of the bit data to be extracted (0 to 15 (TEST)/0 to 31 (DTEST)) (BIN 16/32 bits)

Basic

D : Number of the bit device where the extracted data will be stored (bits)

Setting	Internal Devices		R 7R	JIII\III			Zn	Constants	Other
Data	Bit	Word	Ν, ΖΝ	Bit	Word	0:	2.1	К, Н	Other
S1	0						0		—
62	0						0	0	_
D	0								_

Grant Function

TEST

- Fetches bit data at the location designated by
 ⁽¹⁾ within the word device designated by
 ⁽¹⁾, and writes it to the bit device designated by
 ⁽¹⁾.
- (2) The bit device designated by \odot is OFF when the relevant bit is "0" and ON when it is "1".
- (3) The position designated by (2) indicates the position of an individual bit in a 1-word data block (0 to 15). When 16 or more is designated at (2), the target is the bit data at the position indicated by the remainder of n / 16. For example, when n = 18, the target is the data at b2 since the remainder of 18 / 16 = 1 is "2".

DTEST

- (2) The bit device designated by \odot is OFF when the relevant bit is "0" and ON when it is "1".

Operation Error

(1) There are no operation errors associated with the TEST(P) or DTEST(P) instructions.

Program Example

(1) The following program turns M0 ON or OFF based on the status of the 10th bit in the 1-word data block (D0).

[Operation]

(2) The following program turns Y40 ON or OFF, depending on the status of the 19th bit of the 2-word data (W0 and W1).

7.4.3 Batch reset of bit devices (BKRST(P))

Basic High Process Redundant Universal

BKRST		mmand		BKRS	T D	n	-
BKRSTP		mmand		BKRS	TP D	n	
	 (D) : Head number of the devices to be reset (bits) n : Number of the devices to be reset (BIN 16 bits) 						
Setting Data	Internal Devices Bit Word	R, ZR	J::::\:::: Bit Word	U∭\G∭	Zn	Constants K, H	Other
D	0						
n	0			0			

Grant Function

(1) Resets bit device n-points from the bit device designated by \odot .

Device	Status
Annunciator (F)	 Turns device n-points from annunciator (F) number designated by OFF. Deletes annunciator number turned OFF from SD64 to SD79 and compresses remaining data forward. Stores number of annunciators stored from SD64 to SD79 at SD63.
Timer (T) Counter (C)	• Sets the current value n-points from timer (T) or counter c designated by (C) to 0, and turns coil contact OFF.
Bit devices other than the above	• Turns OFF coil or contact n-points from the device designated by ⁽ⁱ).

(2) If the designated device is OFF, the device status will not change.

Operation Error

- (1) In the following case, an operation error occurs, the error flag (SM0) turns ON, and an error code is stored into SD0.
 - The n-bit range from the $_{\textcircled{O}}$, or device exceeds the range of that device.

(Error code: 4101)
Program Example

(1) The following program turns OFF devices from M0 to M7 when X0 is turned ON.[Ladder Mode][List Mode]

(2) The following program sets data from 2nd bit (b2) of D10 to 1st bit (b1) of D11 to 0 when X20 is turned ON.

[Operation]

7.5 Data processing instructions

7.5.1 16-bit and 32-bit data searches (SER(P),DSER(P))

				Ŀ	asic perform	mance Proce	Redundant	Universa
SER, DSER		Command		<u> </u>	<u><u></u> <u></u> <u></u> S2</u>	D	n	_
SERP, DSERP								
	ଞା : S ବୋ : S	earch data or head num	ber of the d	evices where the se	arch data is : e the data to	stored (BIN	16/32 bits) d is stored (P	IN 16 bit
	© :H n :N	lead number of the devic lumber of searches (BIN	ces where the 16 bits)	e search result will	be stored (Bl	IN 16 bits)		
Setting Data	Internal Bit	Devices Word R, ZR	J Bit	VIII Word	G	Zn	Constants K, H	Othe
(5)	0	0	0		0		0	
\$2		0					—	
D		0	_		0		_	

 \bigcirc

 \bigcirc

 \bigcirc

Grantion

SER

n

 \bigcirc

 \bigcirc

(1) Searches n points from the 16-bit data of the device designated by (2), regarding 16-bit data of the device designated by (3) as a keyword. Then, the number of matches with the keyword is stored at the device designated by (2) +1, and the first matched device number (in the relative number from (2)) is stored at the device designated by (2).

- (2) No processing is conducted if n is 0 or a negative value.
- (3) If no matches are found in the search, the devices designated at \bigcirc and \bigcirc +1 become "0".

DSER

(2) No processing is conducted if n is 0 or a negative value.

(3) If no matches are found in the search, the devices designated at (b) and (c) +1 become "0".

If the data to be searched using the SER/DSER instruction is sorted in the ascending order, searches can be accelerated by the use of the binary search method, which is activated by turning SM702 *1 ON. However, correct searche results are not obtained if SM702 is turned ON when the data to be searched is not sorted in the ascending order.

- *1: SM702 is the special relay for setting the search method.
 - SM702 OFF: Sequential search method (linear search method) (Comparison with the search data starts from the beginning of the data to be searched.)
 - SM702 ON: Binary search method (Obtains the center value of the sorted array and decides if the obtained value is larger or smaller than the search value, then, chooses the area for search between the larger and smaller value divisions. By repeating this process, the area for search is narrowed down.)

Coperation Error

- (1) In any of the following cases, an operation error occurs, the error flag (SM0) turns ON, and an error code is stored into SD0.
 - The location n-points from the device <a>style exceeds the designated device range.

(Error code: 4101)

The device specified by
 exceeds the range of the corresponding device.
 (For the Universal model QCPU only.)
 (Error code: 4101)

Program Example

(1) The following program searches D100 to D105 for the contents of D0 when X20 is ON, and stores the search results at W0 and W1.

[Operation]

(2) The following program searches D100 to D111 for the contents of D11 and D10 when X20 is ON, and stores the search results at W0 and W1.

[Ladder Mode]

[List Mode]

[Operation]

7.5.2 16-bit and 32-bit data checks (SUM(P),DSUM(P))

		Basic High performance Proc	ess Redundant	Universal
	ii	ndicates an instruction sym	bol of SUM/D	SUM.
	SUM, DSUM	- S		_
		- P (\$		
	(s): Head number of the devices where the total number(D): Head number of the devices where the total number	er of bits of "1" is counted (BIN er of the bits will be stored (BIN	16/32 bits) 16/32 bits)	
	Setting Internal Devices R, ZR JIIIII Data Bit Word Bit Word	U∭∖G∭ Zn	Constants K, H	Other
	© 0		0	
े F	Function			
	SUM			
	From the 16-bit data in the device designated by \odot), stores the total num	ber of bits	where 1
	is set, in the device designated by ${}_{igodot}$.			
	b15b8b7 b0			

Stores the total number of bits where 1 is set in BIN. (There are 8 bits where 1 is set in the example.)

DSUM

From the 32-bit data in the device designated by \mathfrak{S} , stores the total number of bits where 1 is set, in the device designated by \mathfrak{D} .

Operation Error

(1) There are no operation errors associated with the SUM(P) or DSUM(P) instructions.

Program Example

(1) The following program stores the number of bits which are ON from X8 to X17 into D0 when X10 is turned ON.

[Operation]

(2) The following program stores the number of bits which are ON in D100 and D101 into D0 when X10 is turned ON.

[Operation]

Stores the total number of bits where 1 is set into D0.

7.5.3 Decoding from 8 to 256 bits (DECO(P))

n

Basic High Process Redundant Universal

		Command	DECO	S	D	n	
DLOO			L				
		Command					1
DECOP	f I		DECOP	S	D	n	
	_						

(s) : Data to be decoded or the number of the device where the data to be decoded is stored (BIN 16 bits)

① : Head number of the devices where the decoding result will be stored (Device name)

: Valid bit length (1 to 8), 0: No processing (BIN 16 bits)

Settin	g lr	nternal	Devices	R 7R	J\		u ^m ic ^m	7n	Constants	Other
Data		Bit	Word	Ν, ΖΙΧ	Bit	Word	0:;\G:;	20	К, Н	Other
S			0				0		0	—
D			0		_					_
n			0		0				0	_

(1) Turns ON the bit position of \bigcirc , which corresponds to the binary value designated by the lower n bits at s.

- (2) The value of n can be designated between 1 and 8.
- (3) No processing is conducted if n = 0, and there are no changes in the bits 2^n from the device designated at (\mathbf{D}) .
- (4) Bit devices are treated as 1 bit, and word devices as 16 bits.

Operation Error

- (1) In any of the following cases, an operation error occurs, the error flag (SM0) turns ON, and an error code is stored into SD0.
 - The value of n is not in the 0 to 8 range. (Error code: 4100)
 - The range 2n bits from **(**) exceeds the range of the relevant device.

(Error code: 4101)

Program Example

(1) The following program decodes the 3 bits from X0 and stores the results at M10 when X20 is ON.

[Operation]

If 3 bits are designated as significant bits, 8 points are occupied.

7.5.4 Encoding from 256 to 8 bits (ENCO(P))

Basic High Process Redundant Universal

ENCO) –)P –		mmand mmand 	[ENCO	<u> </u>	D D	n	
		 S : Head number D : Number of the n : Valid bit lengt 	of the device e device wh h (1 to 8), 0	ce where the data ere the encoding : No processing (a to be encode result will be (BIN 16 bits)	ed is store stored (BI	d (Device nam N 16 bits)	e)	
	Setting Data	Internal Devices Bit Word	R, ZR	J∷:∖:∷ Bit W	U]/G[]]	Zn	Constants K, H	Other
	S	0							
	D	0			0				
	n	0			0			0	

 Stores the binary value corresponding to the bits which are "1" included in the 2ⁿ-bit data of (s) to .

- (2) The value of n can be designated at between 1 and 8.
- (3) If n = 0, there will be no operation, and the contents of \bigcirc will not change.
- (4) Bit devices are treated as 1 bit, and word devices as 16 bits.
- (5) If more than 1 bit is at 1, processing will be conducted at the upper bit location.

✓ Operation Error

- (1) In any of the following cases, an operation error occurs, the error flag (SM0) turns ON, and an error code is stored into SD0.
 - The value of n is not in the 0 to 8 range. (Error code: 4100)
 - The range 2^n bits from s exceeds the range of the relevant device.

(Error code: 4101)

(Error code: 4100)

- All data 2^n bits from \circledast is "0".

Program Example

(1) The following program encodes the 3 bits from M10 when X20 is ON, and stores the results at D8.

[Operation]

The location of the ON bit, counted from M10, is stored in BIN.

7.5.5 7-segment decode (SEG(P))

					Basic perform	mance Proce	SS Redundant	Universal
	SEG		Command		- SEG	S S		
	320	r _ ⊚:	Data to be decoded or he	ead number of the devices to	where the data to b	e decoded i	s stored (BIN	16 bits)
		Setting Inter Data Bit	nal Devices R, ZR	Bit Word		Zn	Constants K, H	Other
		D		0			—	_
्रे F	unctior	1						
	(1)	Decodes the data	ata from 0 to F des	ignated by the lowe	er 4 bits of _⑤	to 7-seg	ment disp	lay data,
	(2)	If \bigcirc is a bit de data; if it is a w	vice, indicates the ord device, indica	head number of the tes the number of the	e devices stor he device stor	ring the 7 ring the 0	7-segmen data.	it display
		Be Bit device SE	G K7 K2Y48	After execution Y4FY48 $\bigcirc 0 0 1 0 0 1 1 1$ 8 points				
		Word device SI	EG K7 D8	D8 b15 b8b7 00000000000000000000000000000000000	b0 0 1 0 1 1 1 7-segment disp stored in lower	olay data is 8 bits.		

Poperation Error

(1) There are no operation errors associated with the SEG(P) instruction.

	9	Conf	figuration of 7	٥									
Hexa- decimal	Bit Pattern	<u> </u>	Segments	B7	B6	B5	B4	B3	B2	B1	B0	Display Data	
0	0000			0	0	1	1	1	1	1	1	0	
1	0001			0	0	0	0	0	1	1	0	ł	
2	0010			0	1	0	1	1	0	1	1	2	
3	0011			0	1	0	0	1	1	1	1	3	
4	0100			0	1	1	0	0	1	1	0	Ч	
5	0101		B0	0	1	1	0	1	1	0	1	U)	
6	0110			0	1	1	1	1	1	0	1	8	
7	0111	В5		0	0	1	0	0	1	1	1	Ē	
8	1000	В4	B2	0	1	1	1	1	1	1	1	8	
9	1001		_	0	1	1	0	1	1	1	1	9	
А	1010		B3	0	1	1	1	0	1	1	1	8	
В	1011			0	1	1	1	1	1	0	0	Ь	
С	1100			0	0	1	1	1	0	0	1		
D	1101			0	1	0	1	1	1	1	0	6	
E	1110			0	1	1	1	1	0	0	1	8	
F	1111			0	1	1	1	0	0	0	1	Ę	

7-segment decode display

Head number of bit device Lowest bit of word device

Program Example

(1) The following program converts the data from XC to XF to 7-segment display data and outputs it to Y38 to Y3F when X0 is turned ON.

7.5.6 4-bit dissociation of 16-bit data (DIS(P))

							Basic	Pro performance	cess Redundant	Universal
DIS	1		Com	mand mand 			DIS (§ IISP (§	 D D 	n	
		⑤ :H ⅅ :H n :N	lead number o lead number o lumber of disso	f the devie f the devie ociations (ces where data t ces where the di (1 to 4), 0: No pr	o be dis ssociate ocessin	sociated is sto ed data will be s g (BIN 16 bits)	red (BIN 16 bits stored (BIN 16 b	i) bits)	
	Setting Data	Internal Bit	Devices Word	R, ZR	J⊡∖⊡ Bit V	Vord	U\G	Zn	Constants K, H	Other
	S	0	0				0			
	D	_	0							
	n	0	0				0			—
∧ ✓ Functior										

(1) Stores the lower n-digits (1 digit is 4 bits) of the 16-bit data designated by (s) at the lower 4 bits n-points from the device designated by (p).

- (2) The upper 12 bits n-points from the device designated by s become 0.
- (3) The value of n can be designated at between 1 and 4.
- (4) If n = 0, there will be no processing, and the contents n-points from \bigcirc will not change.

Operation Error

- (1) In any of the following cases, an operation error occurs, the error flag (SM0) turns ON, and an error code is stored into SD0.

 - The value of n is outside the 0 to 4 range. (Error code: 4100)

Program Example

(1) The following program dissociates the 16-bit data from D0 into 4-bit groups, and stores from D10 to D13 when X0 is ON.

7.5.7 4-bit linking of 16-bit data (UNI(P))

UNI		<u></u>	Command		UNI	S D	n	\vdash
UNIP			Command	{	UNIP	S D	n	
		⑤ :H ⑦ :H n :N	ead number of the devi ead number of the devi umber of links (1 to 4),	ces where data to ces where the lin 0: No processing	o be linked is stored ked data will be stor (BIN 16 bits)	(BIN 16 bits) red (BIN 16 bits)		
	Setting Data	Internal Bit	Devices Word R, ZR	J∭∖∭ Bit V	Vord U\G	Zn	Constants K, H	Oth
	S	—	0	· · · · · ·				
	D	0	0		0			_
	n	0	0		0		0	_

- (2) The bits of the upper (4 n) digits of the device designated by \bigcirc become 0.
- (3) The value of n can be designated at between 1 and 4.
- (4) If n = 0, there will be no processing, and the contents of device \bigcirc will not change.

Operation Error

- (1) In any of the following cases, an operation error occurs, the error flag (SM0) turns ON, and an error code is stored into SD0.
 - The range n-points from (s) exceeds the relevant device. (Error code: 4101)
 - The value of n is outside the 0 to 4 range. (Error code: 4100)

Program Example

(1) The following program links the lower 4 bits of D0 to D2 when X0 is ON, and stores them at D10.

[Operation]

Redundant

Universal

Process

7.5.8 Dissociation or linking of random data (NDIS(P),NUNI(P))

Basic

indicates an instruction symbol of NDIS/NUNI. Command NDIS, NUNI S (D)\$2 Command S \$2 NDISP, NUNIP ₽ Р (D) (BIN 16 bits) (BIN 16 bits) D : Head number of the devices where the dissociated/linked data will be stored (BIN 16 bits) ②: Head number of the devices where the units of dissociation/linking will be stored (BIN 16 bits) Setting Internal Devices $\langle \rangle$ R, ZR U...\G... Zn Constants Other Data Bit Word Wo (\$1) ____ \bigcirc \bigcirc

Granition Function

NDIS

(S2)

 \bigcirc

(1) Dissociates data stored in device numbers starting from that designated at ⑤ into the number of individual bits designated at ℗, and stores this data in device numbers starting from that designated at ℗.

- (2) The number of dissociated bits designated at <a>this can be designated within a range of 1 to 16 bits.
- (3) Bits from the device number designated at (2) to the device number where "0" is stored are processed as dissociated bits.
- (4) Do not overlap the device range for data to be dissociated(s) to end range of s) with the device range which stores the dissociated data (b to end range of b). If overlapped, the correct operation result may not be obtained.
- (5) Do not specify the same device number for (s), (2), and (D). If the same device is specified for (s), (2), and (D), the operation does not work correctly.

NUNI

(1) Links individual bits of data stored into the area starting from the device number designated by ⑤ in the number of bits specified by ⑥, and stores them following the device number designated by ⑥.

- (2) The number of bits to be linked as designated by (s) can be within a range of from 1 to 16.
- (3) Processing will be performed on the number of bits to be linked from the device number designated by (s) to the device number storing "0".
- (4) Do not overlap the device range for data to be linked(S) to end range of S) with the device range which stores the linked data (D) to end range of D). If overlapped, the correct operation result may not be obtained.
- (5) Do not overlap the device numbers to be designated at *s*₁, *s*₂ and *D*. If overlapped, correct operation is not possible.

Operation Error

- (1) In any of the following cases, an operation error occurs, the error flag (SM0) turns ON, and an error code is stored into SD0.
 - The number of bits to be dissociated or linked as specified by (2), or the device use range specified by (3) or (2) exceeds the final device number of their respective devices.

(Error code: 4101)

• The number of bits for dissociation or linking specified by <a>(Error code: 4100) (Error code: 4100)

Program Example

 The following program dissociates data of 4, 3, and 6 bits respectively from the lower bits of D0, and stores them from D10 to D12.

Filled with 0s.

(2) The following program links the lower 4 bits of data from D10, the lower 3 bits of data from D11, and the lower 6 bits of data from D12, and stores at D0.

Process Redundant Universal

Basic High

7.5.9 Data dissociation and linking in byte units (WTOB(P),BTOW(P))

	WTOB, BTOW	Command Command Command	 	indicates an instru	S D n	втоw.]]
	S D n	: Head number of the devi : Head number of the devi : Number of byte data to b	ces where data to ces where the res e dissociated/link	b be dissociated/linked in sult of dissociated/linking ed (BIN 16 bits)	byte units is stored (BIN 16 in byte units will be stored	5 bits) (BIN 16 bits)
	Setting Inter Data Bi	R, ZR	J\ Bit V	/ord U\G	Zn Constants K, H	Other
	© —					-
				0		<u> </u>
☆ F	unction wтов					
	(1) Dissociates n-	bytes of the 16-bit c	lata stored i	nto the area starti	ng from the device	number
	designated by	r_{\odot} , and stores ther	n following t	he device designa	ated by D.	
	b15b8	o7b0		b15	b8 b7	-b0
S	Upper byte	Lower byte		00н	Data of lower byte	
(S) +1	Upper byte	Lower byte	D+1	00н	Data of upper byte	
() () () () () () () () () () () () () ()		(D)+2	00н	Data of lower byte	n bytes
$(S) + (\frac{11}{2})$	-1) Upper byte	Lower byte	L(D)+3	00н	Data of upper byte	
	*1: Fractions that follow point are rounded u	r the decimal o.	▶D +(n-2)	00н	Data of lower byte	_i

00н

Data of upper byte

•

(D) +(n-1)

- (2) Setting the number of bytes with n automatically determines the range of the 16-bit data designated by (s) and the range of the devices to store the byte data designated by (b).
- (3) No processing will be conducted when the number of bytes designated by n is "0".
- (4) The "00H" code will automatically be stored at the upper 8 bits of the byte storage device designated by (D).

(5) Even though the range of the device with the data to be devided (⑤ to ⑤ +(ⁿ/₂-1)) is the same as the range of the device with the devided data (⑦ to ⑦ +(n-1)), the instruction operates correctly.

BTOW

(1) Links the lower 8 bits of the 16-bit data in n words stored in the area starting from the device designated by (s) in 1-word units and stores it into the area starting from the device designated by (b). The upper 8 bits of n-word data stored in the area starting from the device designated by (s) will be ignored. Further, if n is an odd number, 0 is stored at the upper 8 bits of the device where the nth byte data is stored.

For example, if n = 5, the lower 8 bits of data from (§) to ((§)+4) are linked and stored at (D) to ((D)+2).

ł	o15b8l	p7b0	b	15k	o8 b7b0
Î (S)	00н	12н	►D [34н	12н
(S)+1	00н	34н	∫D+1	78н	56н
lf n = 5(S)+2	00н	56н)+2	00н	FEн
(S)+3	00н	78н			
(S)+4	00н	FEн		OUH IS SEL	

- (2) Setting the number of bytes with n automatically determines the range of the byte data designated by (s) and the range of the devices to store the linked data designated by (b).
- (3) No processing will be conducted when the number of bytes designated by n is "0".

- (4) The upper 8 bits of the byte storage device designated by (s) are ignored, and the lower 8 bits are used.
- (5) Linking is correctly processed even when the device range (\odot to \odot +(n-1)) where the data to be linked is stored overlaps with the device range (\odot to \odot +($\frac{n}{2}$ -1)) where the linked data will be stored.

For example, the following will take place in a case where the lower 8 bits of D11 to D16 are to be stored at D12 to D14:

b1	5 b8	b7 b0		b15	b8 b7b0
D11	00н	31н	D11	00н	31н
D12	00н	32н	∫►D12	32н	31н
D13	00н	33н	D13	34н	33н
D14	00н	34н	∫►D14	36н	35н
D15	00н	35н	D15	00н	35н
D16	00н	36н	D16	00н	36н

✓ Operation Error

- (1) In any of the following cases, an operation error occurs, the error flag (SM0) turns ON, and an error code is stored into SD0.
 - The range of the number of bytes designated by n following the device number designated by (s) exceeds the relevant device range. (Error code: 4101)
 - The range of the number of bytes designated by n following the device number designated by

 exceeds the relevant device range.
 (Error code: 4101)

Program Example

(1) The following program dissociates the data at D10 to D12 in byte units and stores it at D20 to D25 when X0 is turned ON.

(2) The following program links the lower 8 bits of data from D20 through D25 and stores the result at D10 to D12 when X0 is turned ON.

Upper byte is ignored.

7.5.10 Maximum value search for 16- and 32-bit data (MAX(P),DMAX(P))

			i	ndicates an ins	struction syr	mbol of MAX	/DM/
MAX, DMAX _	.⊢	Command			S	D n	I
MAXP ,DMAXP_	-	Command		P	S	D r	1
	s :I	Head number of the devi	ces where a maximum v	alue is searched	(BIN 16/32 bi	its)	
	(D) : H n : H	Head number of the devie Number of data blocks to	ces where the maximum be searched (BIN 16 bi	value search res ts)	sult will be sto	ored (BIN 16/32	2 bits)
Setting Data	Interna Bit	I Devices R, ZR Word	J∷:∖∷: Bit Word	U\G	Zn	Constants K, H	(
S		0					
		0		_			
U							

MAX

(1) Searches in the n points of 16-bit BIN data, from the device designated by (s), for the maximum value and stores the searched maximum value at the device designated by (D). Starts the search from the device designated by (s) and stores the location, specified in the number of points counted from (s), of the device where the maximum value is found first at (D)+1 and stores the number of the found minimum values at (D)+2.

DMAX

(1) Searches in the n points of 32-bit BIN data, from the device designated by (s), for the maximum value and stores the searched maximum value at the device designated by (b) and (b)+1.

Starts the search from the device designated by s and stores the location, specified in the number of points counted from s, of the device where the maximum value is found first at s+2 and stores the number of the found minimum values at s+3.

Operation Error

- (1) In any of the following cases, an operation error occurs, the error flag (SM0) turns ON, and an error code is stored into SD0.
 - The n-bit range from the \mathfrak{S} , or device exceeds the range of that device.

(Error code: 4101)

The device specified by
 exceeds the range of the corresponding device.
 (For the Universal model QCPU only.)
 (Error code: 4101)

Program Example

(1) The following program subtracts, when X1C is turned ON, the data stored at D100 to D103 from the data stored at R0 to R3, and searches in the results of subtraction for the maximum value, then, stores it at D200 to D202.

[List Mode]

[Operation]

(2) The following program searches for the maximum value from the32-bit data at D0 to D7, and stores it at D100 to D103 when X20 is turned ON.

D1, D0	3786213 (BIN)	D101, D100	8744740
D3, D2	-3235 (BIN)	D102	3
D5, D4	8744740 (BIN)	D103	1
D7, D6	7141821 (BIN)		

7.5.11 Minimum value search for 16- and 32-bit data (MIN(P),DMIN(P))

			F	indicatoo o	n instruction	aumbol of MIN	
		Command	L			Symbol of Ivill	N/D1
MIN, DMIN					S	D n	
		Command					
MINP, DMINP	·		[P	S	D n	
	I						
	(s) : Hea	ad number of the devi	ces where a minimum	value is searched	d (BIN 16/32 bi	ts)	
	⑤:Hea ①:Hea	ad number of the devi ad number of the devi	ces where a minimum ces where the minimur	value is searched n value search re	d (BIN 16/32 bi esult will be sto	ts) red (BIN 16/32	bits)
	⑤ ∶Hea ⑥ ∶Hea n ∶Nur	ad number of the devi ad number of the devi nber of data blocks to	ces where a minimum ces where the minimur be searched (BIN 16 t	value is searcheo n value search re pits)	d (BIN 16/32 bi esult will be sto	ts) red (BIN 16/32	bits)
Setting Data	 S : Hea D : Hea n : Nur Internal De Dit 	ad number of the devi ad number of the devi nber of data blocks to evices Word R, ZR	ces where a minimum ces where the minimur be searched (BIN 16 I JIIII	value is searched n value search re bits) U:\G:	d (BIN 16/32 bi esult will be sto Zn	ts) red (BIN 16/32 Constants K. H	bits)
Setting Data	© : Hea ⊚ : Hea n : Nur Internal Do Bit	ad number of the devi ad number of the devi nber of data blocks to evices R, ZR	ces where a minimum ces where the minimur be searched (BIN 16 t J J Bit Word	value is searched n value search re oits) U:\G	d (BIN 16/32 bi esult will be sto Zn	ts) red (BIN 16/32 Constants K, H	bits)
Setting Data ©	© : Hea © : Hea n : Nur Internal De Bit 	ad number of the devi ad number of the devi nber of data blocks to evices R, ZR	ces where a minimum f ces where the minimur be searched (BIN 16 t J Bit Word	value is searched n value search re bits) UIIII(GIIII —	d (BIN 16/32 bi esult will be sto Zn	ts) red (BIN 16/32 Constants K, H	bits)

Basic High Process Redundant Univers

MIN

(1) Searches in the n points of 16-bit BIN data, from the device designated by (s), for the minimum value and stores searched minimum value at the device designated by (D). Starts the search from the device designated by (s) and stores the location, specified in the number of points counted from (s), of the device where the minimum value is found first at (D)+1 and stores the number of the found minimum values at (D)+2.

DMIN

Searches in the n points of 32-bit BIN data, from the device designated by (s), for the minimum value and stores searched minimum value at the devices designated by (b) and (b)+1.

Starts the search from the device designated by \mathfrak{S} and stores the location, specified in the number of points counted from \mathfrak{S} , of the device where the minimum value is found first at \mathfrak{D} +2 and stores the number of the found minimum values at \mathfrak{D} +3.

Operation Error

- (1) In any of the following cases, an operation error occurs, the error flag (SM0) turns ON, and an error code is stored into SD0.
 - The n-bit range from the device specified by (s) exceeds the range of the corresponding device.
 (Error code: 4101)
 - The device specified by
 exceeds the range of the corresponding device.
 (For the Universal model QCPU only.)
 (Error code: 4101)

Program Example

(1) The following program adds, when X1C is turned ON, the data stored at D100 to D103 and the data stored at R0 to R3, and searches in the results of addition for the minimum value, then, stores it at D200 to D202.

(2) The following program, when X20 is turned ON, searches for the minimum value from the 32-bit data contained from D0 to D7, and stores it from D100 to D103.

7.5.12 BIN 16 and 32 bits data sort operations (SORT, DSORT)

				Basic	Process Redundan	nt Universal		
				indicates an ind	struction symbol of SORT/	DSORT		
			0			Doorti.		
	SORT, DSOR	Т	Command	(S) n	<u>\$2</u> 0) 02			
						-		
 (5) : Head device number in the table to be sorted (BIN 16/32 bits) n : Number of data blocks to be sorted (BIN 16 bits) 								
		© : N	umber of data blocks to	be compared in one sort operation (B	IN 16 bits)			
		©1) : N	umber of the bit device	to be turned ON at the completion of t	he sort operation (bits)			
		©2 : D	evice reserved for the s	ystem (BIN 16 bits)		1		
	Settin Data	ig Internal	Devices R, ZR	J:::\::: Bit Word U:::\G:::	Zn Constants K. H	Other		
	SI					_		
	n	0	0	0		-		
	\$2	0	0	0		_		
	01	0	_			—		
	(D2)		0	_		—		

SORT

- (1) Sorts (rearranges data) BIN 16-bit data n points from (s) in ascending or descending order. Sort order is designated by the ON/OFF status of SM703:
 - When SM703 is OFF: Ascending order sort
 - When SM703 is ON : Descending order sort

- (2) Several scans are required for sorts performed by the SORT instruction. The number of scans executed until completion is the value obtained by dividing the maximum number of times executed until the completion of the sort by the number of data blocks compared at one execution designated by (2). (Decimal fractions are rounded up.) When the value of (2) is increased, the number of scans until completion of the sort is reduced, but the amount of time per scan is lengthened.
- (3) The maximum number of executions until completion of the sort should be calculated according to the following equation:

The maximum number of executions until completion = $(n) \times (n - 1) / 2$ [times executed]

Example

When n=10, the number of executions is obtained as $10 \times (10 - 1) / 2 = 45$ [times executed]. If $\mathfrak{D} = 2$, then the number of scans until the completion of sort is calculated as $45/2=22.5 \rightarrow 23$ [scans].

- (4) The device designated by (i) (the completion device) is turned OFF by the execution of the SORT instruction, and turned ON when the sort is completed. Because the device designated by (i) is maintained in the ON state after the completion of the sort, the user must turn it OFF if required.
- (5) The 2 points from the device designated by (2) are used by the system during the execution of the SORT instruction. These 2 points from the device designated by (2) should therefore not be used by the user.

Changing these points may cause an error code to be returned (Error code: 4100).

- (6) If the value of n is changed during the execution of the SORT instruction, the sort will be conducted in accordance with the number of sort data blocks after the change.
- (7) If the execution command is turned OFF during the execution of the SORT instruction, the sort is suspended. The sort resumes from the beginning when the execution command is turned ON again.
- (8) To execute another sort operation immediately after the completion of the previous sort, turn OFF the execution command once, then turn it ON.

DSORT

- Sorts (rearranges data) BIN 32-bit data n points from
 in ascending or descending order.

 Sort order is designated by the ON/OFF status of SM703:
 - · When SM703 is OFF : Ascending order sort
 - When SM703 is ON : Descending order sort

- (2) Several scans are required for sorts performed by the DSORT instruction. The number of scans executed until completion is the value obtained by dividing the maximum number of times executed until the completion of the sort by the number of data blocks compared at one execution designated by ⁽²⁾. (Decimal fractions are rounded up.)When the value of ⁽²⁾ is increased, the number of scans until completion of the sort is reduced, but the amount of time per scan is lengthened.
- (3) The maximum number of executions until completion of the sort should be calculated according to the following equation:

The maximum number of executions until completion $=(n) \times (n-1)/2$ [times executed]

Example

When n=10, the number of executions is obtained as $10 \times (10^{-1})/2=45$ [times executed]. If S2=2, then the number of scans until the completion of sort is calculated as $45/2=22.5\rightarrow 23$ [scans].

- (4) The device designated by (b) (the completion device) is turned OFF by the execution of the SORT instruction, and turned ON when the sort is completed. Because the device designated by (b) is maintained in the ON state after the completion of the sort, the user must turn it OFF if required.
- (5) The 2 points from the device designated by (2) are used by the system during the execution of a DSORT instruction. These 2 points from the device designated by (2) should therefore not be used by the user.

Changing these points may cause an error code to be returned (Error code: 4100).

- (6) If the value of n is changed during the execution of the SORT instruction, the sort will be conducted in accordance with the number of sort data blocks after the change.
- (7) If the execution command is turned OFF during the execution of the SORT instruction, the sort is suspended. The sort resumes from the beginning when the execution command is turned ON again.
- (8) To execute another sort operation immediately after the completion of the previous sort, turn OFF the execution command once, then turn it ON.

Operation Error

- (1) In any of the following cases, an operation error occurs, the error flag (SM0) turns ON, and an error code is stored into SD0.
 - For the SORT(P) instruction, the range for n points starting from the device at (s) exceeds the corresponding device range. (Error code: 4101)
 - For the DSORT(P) instruction, the range for 2 × n points starting from the device at sinexceeds the corresponding device range. (Error code: 4101)
 - The device range of the (n/2 × n) points starting from the device designated by so overlaps with the device range of the 2 points starting from the device designated by 2.
 (Error code: 4101)
 - S2 is 0 or is a negative value.

(Error code: 4100)

Program Example

(1) The following program sorts the BIN 16-bit data in 10 points from D0 in the ascending/ descending order when X10 is turned ON.

[Operation]

(2) The following program sorts the BIN 32-bit data in 20 points from D0 in ascending/ descending order when X10 is turned ON.

[Operation]

7.5.13 Calculation of totals for 16-bit data (WSUM(P))

				Basic	High performance Proces	ss Redundant	Universal
	WSUM WSUMP		Command Command	WSUM (§) D) D	n n	
		Ss ∶Hea Do ∶Hea n ∶Nu	ad number of the devices ad number of the devices nber of data blocks (BIN	where data to be summed are store where the sum will be stored (BIN 3 16 bits)	ed (BIN 16 bits) 2 bits)		
	Setting Data	Internal D Bit	Word R, ZR	JII\III Bit Word UIII\GIII	Zn	Constants K, H	Other
	S	-	0				
	n	0	0	0		0	
	(1) Adds al device o	1 16-bit BIN designated (\$ + (\$ + (\$ + (\$ + (\$ + (\$ + (\$ + (\$ +	data for n blocks at D. 4444 (BIN) 1 3333 (BIN) 2 1234 (BIN) 3 -5426 (BIN) 4 329 (BIN) 5 10000 (BIN)	from the device designate	ed at (s), and	d stores i	t in the
\mathcal{S}	Operation Error	ſ					
	(1) In the for code is	ollowing cas stored into	se, an operation e SD0.	rror occurs, the error flag	(SM0) turns	ON, and	an error
	• The r	n-bit range	from the _⑤ , or de	vice exceeds the range o	f that device	e. (Error co	de: 4101)

Program Example

(1) The following program adds the 16-bit BIN data from D10 to D14, and stores it in D100 and D101 when X1C is turned ON.

[Operation]

7.5.14 Calculation of totals for 32-bit data (DWSUM(P))

						Basic	High performance Proc	ess Redundant	Universal
	DWSUM	 	Command	(DWS	SUM (S		n	
S : Head number of the devices where data to be summed are stored (BIN 32 bits) : Head number of the devices where the sum will be stored (BIN 64 bits) n : Number of data blocks (BIN 16 bits)									
	Setting Data	Internal Bit	Devices Word R, ZR	J\ Bit W	/ord	U\G	Zn	Constants K, H	Other
	S	_	0			—			—
	D	0	0						
	n	0	0			0		0	
ۍ F	unction	_							

Coperation Error

- (1) In any of the following cases, an operation error occurs, the error flag (SM0) turns ON, and an error code is stored into SD0.
 - The n-bit range from the ${\scriptstyle \textcircled{S}}$, or device exceeds the range of that device.

(Error code: 4101)

• The device specified by D exceeds the range of the corresponding device. (For the Universal model QCPU only.) (Error code: 4101)

Program Example

(1) The following program adds the 32-bit BIN data at D100 to D107, and stores the result at D10 and D13 when X20 is turned ON.

[Operation]

7.5.15 Calculation of averages for 16-bit or 32-bit data (MEAN(P),DMEAN(P))

QnU(D)(H)CPU: The serial number (first five digits) is "10102" or later.
QnUDE(H)CPU: The serial number (first five digits) is "10102" or later.

(S) : Head number of the devices where the data to be averaged are stored (BIN16/32 bits)

- (D) : Head number of the devices where the average will be stored (BIN 16/32 bits)
- n : Number of data or number of the devices where the number of data are stored(Setting range: 1 to 32767) (BIN 16 bits)

Setting	Internal Devices		Internal Devices		J		u The Th		Constants	Other
Data	Bit	Word	N, 2N	Bit	Word	0:	2	К, Н	Other	
S	—	0	0			—			—	
D		0	0		_				—	
n		0	0	0			0			

Function

MEAN(P)

(1) This instruction calculates the mean of 16-bit BIN data stored in n-point devices starting from the device specified by (s), and then stores the result into the device specified by (b).

- (2) If the value calculated is not integer, this instruction will drop the number of decimal places.
- (3) If the value specified by n is 0, the instruction will be not processed.

DMEAN(P)

(1) This instruction calculates the mean of 32-bit BIN data stored in n-point devices starting from the device specified by (s), and then stores the result into the device specified by (D).

- (2) If the value calculated is not integer, this instruction will drop the number of decimal places.
- (3) If the value specified by n is 0, the instruction will be not processed.

Operation Error

- (1) In any of the following cases, an operation error occurs, the error flag (SM0) turns on, and an error code is stored into SD0.
 - The value specified by n is other than 0 to 32767. (Error code: 4100)
 - The range of the n-point devices starting from the device specified by (s) exceeds the range of the devices specified by (D). (Error code: 4101)

Program Example

 The following program stores the average value of 16-bit data stored from D0 to D2 into D10,when M0 is turned on.

[Ladder Mode]

[List Mode]

[Operation]

(2) The following program stores the average value of 32-bit data stored from D0 to D5 into D10 and D11, when M0 is turned on.

[Ladder Mode]

[List Mode]

[Operation]

Basic High

7.6 Structure creation instructions

7.6.1 FOR to NEXT instruction loop (FOR,NEXT)

		_
FOR	FOR n	_
NEXT	Repeat program NEXT	
	n : Number of repetitions of FOR to NEXT loop (1 to 32767) (BIN 16 bits)	
Setting Data	Internal Devices R, ZR J U Zn Constants Bit Word Bit Word Zn K, H	Other
n	0	

☆ Function

- (1) When the processing in the FOR to NEXT loop is executed n-times without conditions, the step following the NEXT instruction will be executed.
- (2) The value of n can be designated at between 1 and 32767. If it is designated from -32768 to 0, the processing which is executed when n=1 will be performed.
- (3) If you do not desire to execute the processing called for within the FOR to NEXT loop, use the CJ or SCJ instruction to jump.
- (4) FOR instructions can be nested up to 16 deep.

Operation Error

- (1) In any of the following cases, an operation error occurs, the error flag (SM0) turns ON, and an error code is stored into SD0.
 - An END, FEND or GOEND instruction was executed before the execution of a NEXT instruction and after the execution of a FOR instruction. (Error code: 4200)
 - A NEXT instruction is executed prior to the execution of a FOR instruction.

(Error code: 4201)

• A STOP instruction has been inserted within the FOR to NEXT loop.

(Error code: 4200)

The 17th FOR instruction is executed when FOR instructions have been nested.

(Error code: 4202)

Program Example

(1) The following program executes the FOR to NEXT loop when X8 is OFF, and does not execute it when X8 is ON.

- 1. To force an end to the repetitious execution of the FOR to NEXT loop during the execution of the loop, insert a BREAK instruction. See 7.6.2 for details concerning the use of the BREAK instruction.
- Use the EGP/EGF instruction to perform the pulse operation of an index-modified program between the FOR and NEXT instructions. Refer to 5.2.5 for details of the EGP/EGF instruction. The program samples are shown below:

3. Branching into a FOR to NEXT loop using a JMP or other branch instruction from the outside of the FOR to NEXT loop is not possible.

7.6.2 Forced end of FOR to NEXT instruction loop (BREAK(P))

BREAK Image: Command mand management of the device where the remaining number of loops will be stored (BIN 16 bits) BREAKP Image: Number of the device where the remaining number of loops will be stored (BIN 16 bits) Pr Number of the device where the remaining number of loops will be stored (BIN 16 bits) Pr Number of the device where the remaining number of loops will be stored (BIN 16 bits) Pr Number of the device mane (pointer)) where the program is branched at the forced end of a loop. Setting Internal Devices Bit Word Image: Constants O Image: Constants Other program is pranched at the forced end of a loop.		Bas	ic High Proce	ss Redundant	Universal
BREAK Image: Command					
 Number of the device where the remaining number of loops will be stored (BIN 16 bits) Pn : Number of the pointer (device name (pointer)) where the program is branched at the forced end of a loop. Setting Internal Devices R, ZR JUNG Constants Other P Bit Word O Constants Other P O O O O 	BREAK BREAKP	Command BREA	K (D) F (P (D) F	2n	
Pn : Number of the pointer (device name (pointer)) where the program is branched at the forced end of a loop. Setting Internal Devices R, ZR J U Zn Constants Other Data Bit Word R, ZR Bit Word U Constants Other D O O O O O O Pn O O O O		 Number of the device where the remaining number of loops 	will be stored (BIN 16	bits)	
Data Bit Word R, ZR Bit Word Uimit(Gimit) ZH Constants P Image: Data Bit Word Image: Data	Setting	Pn : Number of the pointer (device name (pointer)) where the pro	gram is branched at t	the forced end	d of a loop. Other
Pn – O	Data	Bit Word R, ZR Bit Word U::\G:	.: 21	Constants	P
	Pn	-			0

Function

(1) Forces an end to a FOR to NEXT instruction loop and shifts the operation to the pointer specified by Pn. Only a pointer within the same program file can be assigned to Pn. If a pointer of the other program file is used, an operation error will be returned.

- (2) The remaining number of the FOR to NEXT instruction loop times is stored at Note that the remaining number includes the operation when the BREAK instruction is executed.
- (3) The BREAK instruction can be used only during the execution of a FOR to NEXT instruction loop.
- (4) The BREAK instruction can be used only when there is only one level of nesting. When an end is forced to the multiple nesting levels, execute the same number of BREAK instructions for the nesting levels.

Operation Error

- (1) In any of the following cases, an operation error occurs, the error flag (SM0) turns ON, and an error code is stored into SD0.
 - The BREAK instruction is used in a case other than with the FOR to NEXT instruction loop. (Error code: 4203)
 - The jump destination for the pointer designated by Pn does not exist.

(Error code: 4210)

• The pointer of another program file is designated for Pn. (Error code: 4210)

Program Example

 The following program forces the FOR to NEXT loop to end when the value of D0 reaches 30 (when the FOR to NEXT loop has been executed 30 times).

7.6.3 Subroutine program calls (CALL(P))

Basic High Process Redundant Universal

Pn : Head pointer number of a subroutine program (Device name)

(5) to (5): Number of the device to be passed as an argument to a subroutine program (bits, BIN 16 bits, BIN 32 bits)

S	Setting Internal Devices		\		7n	Constants	Other			
	Data	Bit	Word	N, 2N	Bit	Word	0::\G::	20	К, Н	Р
	Pn		-	-	—				0	
<u>(S1</u>) to (55	(Other than F)	C)	0					

Grant Function

(1) When the CALL (P) instruction is executed, executes the subroutine program of the program specified by Pn.

The CALL (P) instruction can execute subroutine programs specified by a pointer within the same program file and subroutine programs specified by a common pointer.

(2) When function devices (FX, FY, FD) are used by a subroutine program, specify a device with so to so corresponding to the function device. The contents to the devices specified by so to so are as indicated below.

- (a) Prior to execution of the subroutine program, bit data is transmitted to FX, and word data is transmitted to FD.
- (b) After the execution of the subroutine program, the contents of FY and FD are transmitted to the corresponding devices.
- (c) The processing units for the function devices are as follows:
 - FX, FY: Bits
 - FD : 4-word units

The size of the data to be dealt with will differ depending on the device specified in the argument. The device specified as a function device should be secured for the data size. An error will occur if it cannot be secured for the data size.

Function devices	Device	Data Size	Remark	
• FX	Bit device	1 point		
• FY	When bit designation is made for word device	1 bit		
• ED	When digit designation of a bit device is used *1	4 words	The data size varies	
10	Word device	4 words	instruction to be used.	

*1: An error will not occur even when the device number specified by 🕥 to 🔊 is not a multiple of 16 at the digit designation of the bit device.

[Main routine program]

- (3) (3) (3) to (3) can be used with the CALL (P) instruction.
- (4) The number of function devices to be used by a subroutine program must be identical to the number of arguments in the CALL (P) instruction. Also, the types of the function device and CALL (P) argument used should be identical.
- (5) Device numbers specified by the CALL (P) instruction should not overlap.If they do overlap, it will not be possible to obtain accurate calculations.

- (6) The device used in the argument of the CALL (P) instruction should not be used in a subroutine program. If used, it will not be possible to obtain accurate calculations. (Refer to the following program example.)
- (7) When the device, either timer or counter, is used in the argument of the CALL(P) instruction, only the current value is transmitted/received.

Incorrect operation example

The following example shows the operation performed when D0 is specified for FD0 in the subroutine program and D1 is used in the subroutine program.

[Program example]

[Operation performed after subroutine program execution]

*2: Replaced by the value of the function device.

*3: D1 does not reflect the value of the function device.

Correct operation example

The following example shows the operation performed when D0 is specified for FD0 in the subroutine program and D4 is used in the subroutine program.

[Operation performed after subroutine program execution]

*1: Stores the execution result of the subroutine program.

*2: Replaced by the value of the function device.

(8) Up to 16 nesting levels are possible with the CALL(P) instruction. However, this 16 levels is the total number of levels in the CALL(P), FCALL(P), ECALL(P), EFCALL(P), and XCALL instructions.

(9) Devices which are turned ON within subroutine programs will be latched even if the subroutine program is not executed. Devices which are turned ON during the execution of a subroutine program can be turned OFF by the execution of the FCALL(P) instruction.

Operation Error

- (1) In any of the following cases, an operation error occurs, the error flag (SM0) turns ON, and an error code is stored into SD0.
 - The device specified for the argument cannot be secured for the data size.

(Error code: 4101)

• Following the execution of the CALL (P) instruction, an END, FEND, GOEND, or STOP instruction is executed before the execution of the RET instruction.

(Error code: 4211)

• An RET instruction is executed prior to the execution of the CALL (P) instruction.

```
(Error code: 4212)
```

- A 17th nesting level is executed. (Error code: 4213)
- There is no subroutine program for the pointer specified in the CALL (P) instruction.

(Error code: 4210)

MO

/Program Example

(1) The following program executes a subroutine program with argument when X20 is turned ON.

[List Mode]

Instruction Device Step X20 P0 D1 0 5 7 9 10 11 12 13

7.6.4 Return from subroutine programs (RET)

				Basic High performance Pro	DCESS Redundant Universal
	RET				RET
	Setting Data	Internal Devices Bit Word R, ZR	J∭\∭ Bit Word	∭\G∭ Zn	Constants Other
☆ F	unction	-			
	(1) Indicates	s end of subroutine prog	ram		
	(2) When th (P), ECA	e RET instruction is exe ALL (P), EFCALL (P) or 2	cuted, returns to the s (CALL instruction whi	tep following the ch called the sub	CALL (P), FCALL routine program.
		Main routi progran		Subroutine program	
			▼ Pr		
		CALL F	n 🗸	RET	
		END			
2 c	peration Error				

- (1) In any of the following cases, an operation error occurs, the error flag (SM0) turns ON, and an error code is stored into SD0.
 - Following the execution of the CALL(P), FCALL (P), ECALL (P), EFCALL (P) or XCALL instruction, an END, FEND, GOEND, or STOP instruction is executed before the execution of the RET instruction. (Error code: 4211)
 - An RET instruction is executed prior to the execution of the CALL (P), FCALL (P), ECALL (P), EFCALL (P) or XCALL instruction. (Error code: 4212)

7.6.5 Subroutine program output OFF calls (FCALL(P))

Basic High Process Redundant Universal

Pn : Head pointer number of a subroutine program (Device name)

(s) to (s): Number of the device to be passed as an argument to a subroutine program (bits, BIN 16 bits, BIN 32 bits)

Settin	g Internal	Devices	R 7R	J	\		7n	Constants	Other
Data	Bit	Word	Ν, ΖΝ	Bit Word		Σn	Constants	Р	
Pn		-	_						0
S1 to ((Other than F))	0					_

Grant Function

(1) When FCALL(P) is executed, the non-execution processing of the subroutine program of the pointer designated by Pn is performed.

The FCALL (P) instruction can execute subroutine programs designated by a pointer within the same program file, and subroutine programs designated by common pointers.

(a) Non-execution processing is identical to the processing that is conducted when the condition contacts for the individual coil instructions are in the OFF state.

(b) The operation results for the individual coil instructions following non-execution processing will be as follows, regardless of the ON/OFF status of the individual contacts:

- (2) The FCALL (P) instruction is used in conjunction with the CALL(P) instruction.
- (3) If the FCALL (P) instruction is used in conjunction with the CALL(P) instruction, non-execution processing of a subroutine program is performed when the execution command is turned OFF, enabling forcible turning OFF of the OUT instruction and the PLS instruction (including □ P instructions). In case the FCALL (P) instruction is not used in conjunction with the CALL(P) instruction, non-execution processing of a subroutine program is not performed even if the execution command is turned OFF. Therefore, output status of the individual coil instructions remains unchanged.

7.6 Structure creation instructions7.6.5 Subroutine program output OFF calls (FCALL(P))

(4) When function devices (FX, FY, FD) are used by a subroutine program, specify a device with S¹ to S⁵ corresponding to the function device. The contents to the devices specified by S¹ to S⁵ are as indicated below.

- (a) Prior to execution of the subroutine program, bit data is transmitted to FX, and word data is transmitted to FD.
- (b) After the execution of the subroutine program, the contents of FY and FD are transmitted to the corresponding devices.
- (c) The processing units for the function devices are as follows:
 - FX, FY: Bits
 - FD : 4-word units

The size of the data to be dealt with will differ depending on the device specified in the argument. The device specified as a function device should be secured for the data size. An error will occur if it cannot be secured for the data size.

Function devices	Device	Data Size	Remark
• FX	Bit device	1 point	
• FY	When Bit Designation has been Made for Word Device	1 bit	
• FD	When digit designation of a bit device is used*1	4 words	The upper 2 words of FD become 0
	Word device	4 words	

*1: An error will not occur if the device number specified by (s) to (s) is not a multiple of 16 at the digit designation of the bit device.

[Main routine program]

(5) The FCALL (P) instruction can use from \mathfrak{S} to \mathfrak{S} .

(6) Up to 16 nesting levels are possible with the FCALL(P) instruction. However, this 16 levels is the total number of levels in the CALL(P), FCALL(P), ECALL(P), EFCALL(P), and XCALL instructions.

Operation Error

- (1) In any of the following cases, an operation error occurs, the error flag (SM0) turns ON, and an error code is stored into SD0.
 - The device specified for the argument cannot be secured for the data size.

(Error code: 4101)

• Following the execution of the CALL (P) instruction, an END, FEND, GOEND, or STOP instruction is executed before the execution of the RET instruction.

(Error code: 4211)

• An RET instruction is executed prior to the execution of the FCALL (P) instruction.

(Error code: 4212)

- (Error code: 4213)
- The subroutine program of the pointer designated by the FCALL (P) instruction does not exist. (Error code: 4210)

Program Example

• A 17th nesting level is executed.

 (1) The following program executes a subroutine program with argument when X20 is turned ON, and forces non-execution processing when X20 is turned from ON to OFF.
 [Ladder Mode]
 [List Mode]

7.6.6 Subroutine calls between program files (ECALL(P))

Process

Universal

Grant Function

(1) Executes the subroutine program of the pointer designated by Pn in the designated program file name when the ECALL (P) instruction is executed. The ECALL(P) instruction can be used to call a subroutine program that uses a local pointer from a different program file.

- (2) Only the file name of a program file stored in the drive 0 (program memory/internal RAM) can be designated for a file name.
- (3) It is not necessary to designate the extension (.QPG) with the file name. (Only .QPG files will be acted on.)
- (4) When function devices (FX, FY, FD) are used by a subroutine program, specify a device corresponding to the function device with (3) to (3). The contents of the devices specified by (3) to (3) are as indicated below.

- (a) Prior to execution of the subroutine program, bit data is transmitted to FX, and word data is transmitted to FD.
- (b) After the execution of the subroutine program, the contents of FY and FD are transmitted to the corresponding devices.
- (c) The processing units for the function devices are as follows:
 - FX, FY: Bits
 - FD : 4-word units

The size of the data to be dealt with will differ depending on the device specified in the argument. The device specified as a function device should be secured for the data size. An error will occur if it cannot be secured for the data size.

Function devices	Device	Data Size	Remark
• FX	Bit device	1 point	
• FY	When Bit Designation has been Made for Word Device	1 bit	
• ED	When digit designation of a bit device is used*1	4 words	The data size varies
410	Word device	4 words	instruction to be used.

*1: An error will not occur even when the device number specified by (5) to (5) is not a multiple of 16 at the digit designation of the bit device.

[Main routine program]

- (5) From (5) to (5) can be used by the ECALL instruction.
- (6) The device used in the argument of the ECALL instruction should not be used in a subroutine program.

If used, it will not be possible to obtain accurate calculations. (Refer to the following program example.)

Incorrect operation example

The following example shows the operation performed when D0 is specified for FD0 in the subroutine program and D1 is used in the subroutine program.

[Program example]

[Operation performed after subroutine program execution]

*1: Stores the execution result of the subroutine program.

*2: Replaced by the value of the function device.

*3: D1 does not reflect the value of the function device.

Correct operation example

The following example shows the operation performed when D0 is specified for FD0 in the subroutine program and D4 is used in the subroutine program.

[Operation performed after subroutine program execution]

*2: Replaced by the value of the function device.

- (7) The numbers of the devices designated by the arguments in the ECALL(P) instruction should not overlap. If they do overlap, it will not be possible to obtain accurate calculations.
- (8) Up to 16 levels of nesting can be used with the ECALL(P) instruction. However, this 16 levels is the total number of levels in the CALL(P), FCALL(P), ECALL(P), EFCALL(P), and XCALL instructions.

(9) Devices which are turned ON within subroutine programs will be latched even if the subroutine program is not executed. Devices turned ON during the execution of a subroutine program can be turned OFF by the EFCALL(P) instruction.

Operation Error

- (1) In any of the following cases, an operation error occurs, the error flag (SM0) turns ON, and an error code is stored into SD0.
 - The device specified for the argument cannot be secured for the data size.

(Error code: 4101)

• Following the execution of the ECALL (P) instruction, an END, FEND, GOEND, or STOP instruction is executed before the execution of the RET instruction.

(Error code: 4211)

- An RET instruction is executed prior to the execution of the ECALL(P) instruction.
- A 17th nesting level is executed.(Error code: 4212)• Content of the executed of t
- The subroutine program of the pointer designated by the ECALL(P) instruction does not exist. (Error code: 4210)
- The designated file does not exist.
 (Error code: 2410)
- The designated file cannot be executed.
 (Error code: 2411)

Program Example

(1) The following program executes program block P0 of the program A-LINE when X20 is turned ON.

Process

Redundant

Universal

7.6.7 Subroutine output OFF calls between program files (EFCALL(P))

(5) to (5) : Number of the device to be passed as an argument to a subroutine program (bits, BIN 16 bits, BIN 32 bits)

Setting	Internal	Devices	R 7R	J			Zn	Cons	tants	Other
Data	Bit	Word	Ν, ΖΝ	Bit	Word	U:!\G:!	_	К, Н	\$	Р
File name	—	C	\supset						\bigcirc	
Pn		-	-							0
§1 to §5	◯ (Other than F)	C	\supset			0				

Grant Function

(1) When the EFCALL(P) instruction is executed, the non-execution processing of the subroutine program of the pointer designated by Pn is performed.

The EFCALL (P) can also be used to call a subroutine program that uses a local pointer from a different program file.

(a) Non-execution processing is identical to the processing that is conducted when the condition contacts for the individual coil instructions are in the OFF state.

(b) The operation results for the individual coil instructions following non-execution processing will be as follows, regardless of the ON/OFF status of the individual contacts:

- (2) The EFCALL (P) instruction is used in combination with the ECALL (P) instruction.
- (3) If the EFCALL(P) instruction is used in conjunction with the ECALL(P) instruction, non-execution processing of a subroutine program is performed when the execution command is turned OFF, enabling forcible turning OFF of the OUT instruction and the PLS instruction (including P instructions).

In case the EFCALL(P) instruction is not used in conjunction with the ECALL(P) instruction, non-execution processing of a subroutine program is not performed even if the execution command is turned OFF. Therefore, output status of the individual coil instructions remains unchanged.

- (4) Only the file name of a program file stored in the drive 0 (program memory/internal RAM) can be designated for a file name.
- (5) It is not necessary to designate the extension (.QPG) with the file name. (Only .QPG files will be acted on.)
- (6) When function devices (FX, FY, FD) are used by a subroutine program, specify a device corresponding to the function device with (s) to (s).

- (a) Prior to execution of the subroutine program, bit data is transmitted to FX, and word data is transmitted to FD.
- (b) After the execution of the subroutine program, the contents of FY and FD are transmitted to the corresponding devices.
- (c) The processing units for the function devices are as follows:
 - FX, FY: Bits
 - FD : 4-word units

The size of the data to be dealt with will differ depending on the device specified in the argument. The device specified as a function device should be secured for the data size. An error will occur if it cannot be secured for the data size.

Function devices	Device	Data Size	Remark
• FX	Bit device	1 point	
• FY	When Bit Designation has been Made for Word Device	1 bit	_
۰FD	When digit designation of a bit device is used*1	4 words	The upper 2 words of FD become 0
	Word device	4 words	—

*1: An error will not occur even when the device number specified by (S) to (S) is not a multiple of 16 at the digit designation of the bit device.

- (7) (5) to (5) can be used with the EFCALL (P) instruction.
- (8) The number of function devices used by subroutine programs must be identical to the number of arguments used by the EFCALL (P) instruction. Further, the function devices should be identical to the types of arguments used by the EFCALL (P) instruction.
- (9) Up to 16 levels of nesting can be used with the EFCALL (P) instruction. However, this 16 levels is the total number of levels in the CALL(P), FCALL(P), ECALL(P), EFCALL(P), and XCALL instructions.

Operation Error

- (1) In any of the following cases, an operation error occurs, the error flag (SM0) turns ON, and an error code is stored into SD0.
 - The device specified for the argument cannot be secured for the data size.

```
(Error code: 4101)
```

• Following the execution of the EFCALL (P) instruction, an END, FEND, GOEND, or STOP instruction is executed before the execution of the RET instruction.

(Error code: 4211)

- An RET instruction is executed prior to the execution of the EFCALL (P) instruction.
 - (Error code: 4212)
- A 17th nesting level is executed. (Error code: 4213)
- The subroutine program of the pointer designated by the EFCALL (P) instruction does not exist. (Error code: 4210)
- The designated file does not exist.
 (Error code: 4210)
- The designated file cannot be executed.
 (Error code: 2411)

Program Example

(1) The following program executes a subroutine program with argument when X0 is ON, and forces non-execution processing when X20 is turned from ON to OFF.

7.6.8 Subroutine program call (XCALL)

Basic model QCPU: The upper five digits of the serial No. are "04122" or larger.

XCALL	Л	Comma	nd	{	XCALL	Pn	§) to §5	
	Pn §1) to §	: Head pointer	number device	r of a subroutine progra to be passed as an arg	am (Device nam ument to a subro	e) putine program	(bits, BIN 16 bit	s, BIN 32 bits)
Setting Data	Internal Bit	Devices Word	ZR	J\ Bit Word	U∭\G∭	Zn	Constants K, H	Other P
Р	<u> </u>							0
St to S5	O(Other than F)	0			0			

Grant Function

- (1) XCALL instruction executes the subroutine program and performs non-execution processing of the subroutine program.
 - (a) Execution of subroutine program Executes each coil instruction according to ON/OFF status of the condition contacts.
 - (b) Non-execution of subroutine program Performs the same processing for each coil instruction as when the condition contacts are OFF status. The operation results for the individual coil instructions following non-execution processing will be as follows,

regardless of the ON/OFF status of the individual contacts:

OUT instruction		 Forced OFF
SET instruction	N	
RST instruction		
SFT instruction		 Maintains status
Basic instructions		
Application instructions		
PLS instruction	5	Processing identical to
Pulse generation		 when condition contacts
instruction (P))	are OFF
Present value of low speed/high spee	ed timers	 0
Present value of retentive timer Present value of counter]	 Preserves

(2) Operation of XCALL instruction varies according to the CPU module type. The following program example shows the operation of XCALL instruction for each CPU module.

[Program example]

*2: Time during X0 is ON(2)) does not include the time when turning X0 ON (1)).

Component	Operation of XCALL instruction
 Process CPU (serial No. of first 5 digits : 07031 or earlier) High performance model QCPU (serial No. of first 5 digits: 06081 or earlier.) 	 When X0 is turned ON: Without process (Do not execute subroutine program of "P1".) During X0 is ON: Execute subroutine program of "P1". When X0 is turned OFF: Perform "Non-execution processing" of subroutine program of "P1".
 High performance model QCPU (serial No. of first 5 digits: 06082 or later.) Process CPU (serial No. of first 5 digits : 07032 or later) 	 Using SM734 (XCALL instruction executing condition designation) to select operation when X0 is turned ON. When SM734 is OFF: Without process (Do not execute subroutine program of "P1".) When SM734 is ON: Execute subroutine program of "P1". During X0 is ON: Execute subroutine program of "P1". When X0 is turned OFF: Perform "Non-execution processing" of subroutine program of "P1".
Redundant CPU Basic model QCPU Universal model QCPU	 When X0 is turned ON: Execute subroutine program of "P1". During X0 is ON: Execute subroutine program of "P1". When X0 is turned OFF: Perform "Non-execution processing" of subroutine program of "P1".

(3) When function devices (FX, FY, FD) are used by a subroutine program, specify a device with so to so corresponding to the function device. The contents to the devices specified by so to so are as indicated below.

- (a) Prior to execution of the subroutine program, bit data is transmitted to FX, and word data is transmitted to FD.
- (b) After the execution of the subroutine program, the contents of FY and FD are transmitted to the corresponding devices.
- (c) The processing units for the function devices are as follows:
 - FX, FY: Bits
 - FD : 4-word units

The size of the data to be dealt with will differ depending on the device specified in the argument. The device specified as a function device should be secured for the data size. An error will occur if it cannot be secured for the data size.

Function devices	Device	Data Size	Remark	
• FX	Bit device	1 point		
• FY	When Bit Designation has been Made for Word Device	1 bit		
• ED	When digit designation of a bit device is used*3	4 words	The data size varies	
10	Word device	4 words	instruction to be used.	

*3: An error will not occur even when the device number specified by 🔄 to 😒 is not a multiple of 16 at the digit specification of the bit device.

[Main routine program]

- (4) St to St can be used by the XCALL instruction.
- (5) The number of function devices used by a subroutine program must be identical to the number of arguments in the XCALL instruction. Also, the function device and the type of XCALL argument should be identical.
- (6) Device numbers specified in the argument of the XCALL instruction should not overlap. If they do overlap, it will not be possible to obtain accurate calculations.

(7) Up to 16 nesting levels can be used with the XCALL instruction. However, this 16 levels is the total number of levels in the CALL(P), FCALL(P), ECALL(P), EFCALL(P), and XCALL instructions.

(8) The device used for the argument of the XCALL instruction must not be used in a subroutine program.

If used, it will not be possible to perform correct calculations.

(Refer to the following program example.)

The processing to be executed when D1 is used in a subroutine program with D0 designated for FD0 in a subroutine program is shown below.

[Program example]

[Operation performed after subroutine program execution]

*1: Stores the execution result of the subroutine program.

*2: Replaced by the value of the function device. D1 does not reflect the operation result in the subroutine program.

Operation Error

- (1) In any of the following cases, an operation error occurs, the error flag (SM0) turns ON, and an error code is stored into SD0.
 - The device specified for the argument cannot be secured for the data size.

(Error code: 4101)

• Following the execution of the XCALL(P) instruction, the END, FEND, GOEND or STOP instruction is executed before the execution of the RET instruction.

(Error code: 4211)

The RET instruction is executed prior to the execution of the XCALL(P) instruction.

(Error code: 4212)

- A 17th nesting level is executed. (Error code: 4213)
- There is no subroutine program for the pointer specified in the XCALL(P) instruction.

(Error code: 4210)

Program Example

(1) The following program executes a subroutine program with argument when X20 is turned ON.

[Ladder Mode]

7.6.9 Refresh instruction (COM)

Refer to Section 7.6.10 for the COM instruction of the following CPU modules.

- · Basic model QCPU of serial No. 04122 or later
- High Performance model QCPU of serial No. 04012 or later
- · Process CPU of serial No. 07032 or later
- Redundant CPU
- Universal model QCPU

СОМ							- COM	-
	Setting Data	Internal Devices Bit Word	R, ZR	J⊞\∭ Bit Word	UIII\GIII	Zn	Constants	Other

Grant Function

- (1) Use the COM instruction when:
 - (a) It is desired to increase the speed of transmission/reception processing to/from the remote I/O stations.
 - (b) It is desired to ensure reliable data transmission/reception with other stations that use different scan times during the execution of the data link.
- (2) The processing of the COM instruction differs depending on whether the special relay SM775 is ON or OFF.
 - When SM775 is OFF: Performs auto refresh and communication with a peripheral device *1 *2
 - When SM775 is ON: Performs communication with peripheral device only *1
 - *1: The following processing is performed in communication with peripheral device:
 - · Monitor processing of other stations
 - Read processing by the serial communications module of the buffer memory of another intelligent function module
 - *2: The auto refresh includes the following processing:
 - Refresh of MELSECNET/10H
 - CC-Link refresh
 - · Auto refresh of intelligent function modules.

- COM
- (3) At the point of the execution of the COM instruction, the CPU module temporarily stops the processing of the sequence program, and performs the same operation as ordinary data processing as well as auto refresh of intelligent function modules (including link refreshes) at the END processing. However, the low speed cyclic refresh of MELSECNET/10 or MELSECNET/H is not performed.

- (4) The COM instruction can be used in a sequence program any number of times. However, note that the scan time of the sequence program will be lengthened by the time taken for communication with peripheral device and the auto refresh (including the link refresh) of the intelligent function modules.
- (5) Data communications using the COM instruction
 - (a) Example of data communications when COM instruction is not used

(b) Example of data communications when COM instruction has been used

- When the COM instruction is used at the host station, it is possible to increase the number of data communication repetitions with the remote I/O station unconditionally, as shown in (b) above, and thus to speed up data communications.
- 2) In cases where the remote station scan time is longer than the scan time of the host station, the COM instruction used at the remote station side can avoid the occurrence of timing failure in which the data cannot be fetched, as shown in (a).
- 3) When the COM instruction has been used at the other station, a link refresh will be performed each time that station receives a command from the host station.
 - Step 0 ~COM instruction Link refresh can be performed
 - $\begin{array}{c} \cdot \text{ COM instruction } \sim \text{COM instruction} \\ \cdot \text{ COM instruction } \sim \text{END instruction} \end{array} \text{ once in each of these intervals.}$

(6) If the scan time from the linked station is longer than the sequence program scan time at the host station, designating the COM instruction at the host station will not increase the speed of data communications.

		END				
Sequence program						
Link scan						
⊠POINT -						
The programs in which the COM instruction cannot be used are shown below:						
I ow-speed execution type programs						
- Interrupt programa						
• Interrupt programs						

Fixed scan execution type programs

(1) There are no operation errors associated with the COM instruction.
7.6.10 Select Refresh Instruction (COM)

Refer to Section 7.6.9. for the COM instruction of the following CPU modules.

- · Basic model QCPU of serial No. 04121 or lower
- High Performance model QCPU of serial No. 04011 or lower
- Process CPU of serial No. 07031 or lower

The first 5 digits of the serial No. are "04122" or higher. The first 5 digits of the serial No. are "04012" or higher. The first 5 digits of the serial No. are "07032" or higher.

Setting Internal Devices Z, ZR JIIII UIII\GIII Zn Constants Data Bit Word Bit Word IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	COM							- COM	\neg
		Setting Data	Internal Devices Bit Word	Z, ZR	Jiii\iiii Bit Word	U\G]	Zn	Constants	Other

Grant Function

- (1) When the COM instruction is executed, the following refresh operations can be performed.
 - I/O refresh

Remark

- CC-Link refresh
- · CC-Link IE controller network refresh
- MELSECNET/H refresh
- · Auto refresh of intelligent function modules
- · Auto refresh using QCPU standard area of multiple CPU system
- · Reading input/output data of all modules other than the multiple CPU system group
- Auto refresh using the multiple CPU high speed transmission area of multiple CPU system
- Communication with peripheral device

The following processing is performed in communication with peripheral device.

.

- · Monitor processing of other station
- Read of another intelligent function module buffer memory by the serial communication module

(2) Turning OFF SM775 refreshes all refresh items except I/O refresh.

- (3) When selecting refresh items
 - (a) Select refresh items by SD778, and set SM775 to ON. The following table shows the refresh items that can be designated by turning SM775 ON/OFF and with SD778.

Refresh Item	When SM775 is OFF	When SM775 is ON
I/O refresh	Not executed	
CC-Link refresh		
CC-Link IE controller network refresh		
MELSECNET/H refresh		
Auto refresh of intelligent function modules		
Auto refresh using QCPU standard area of		Whether to be executed or not can be
multiple CPU system	Executed	selected.
Reading input/output data of all modules other		
than the multiple CPU system group		
Auto refresh using the multiple CPU high speed		
transmission area of multiple CPU system		
Communication with peripheral device		

(b) Select refresh items using b0 to b5 and b15 of SD778.

Whether to execute each bit of SD778 or not can be designated as shown below:

Bit of SD778	Executed	Not Executed
b0 to b5	1	0
b15	0	1

Example

To make only the send/receive processing with the remote I/O station faster, designate MELSECNET/H refresh only. (Set only b2 and b15 of SD778 to 1 (SD778: 8004H).)

Refresh between the multiple CPUs by the COM instruction is performed under the following condition.

Receiving operation from other CPUs : When b4 of SD778 (auto refresh in the CPU shared memory) is 1.
 Sending operation from host CPU : When b15 of SD778 (communication with peripheral device is executed/not executed) is 0

(4) Upon the execution of the COM instruction, the CPU module suspends the processing of the sequence program, and refreshes the designated refresh item.

- (5) The COM instruction can be used in a sequence program any number of times. However, note that the sequence program scan time will be lengthened by the time taken for refresh time of the communication with peripheral devices and refresh item that are selected in SD778.
- (6) Only with the Universal model QCPU, interruption is enabled during the execution of the COM instruction. However, note that the data can be separated if the refresh data is used by an interrupt program etc.
- (7) With the Built-in Ethernet port QCPU, service processing time may be increased if the processing was executed by the COM instruction while the built-in Ethernet ports are in Ethernet connection.
- (8) Refresh items for the COM instruction are indicated in the following table.

CPU Module Type Name	Function Version	Serial No.	SM775	Refresh Item
	Δ	"04021" or	OFF	Refreshes all of the refresh items.
	7	lower	ON	Communication with peripheral device only.
Q01CPU	в	"04122" or	OFF	Refreshes all of the refresh items.
	D	higher	ON	Refreshes the refresh items selected by SD778.
Q02CPU	А		ON/OFF	Refreshes all of the refresh items.
Q02HCPU		"04011" or	OFF	Refreshes all of the refresh items.
Q06HCPU	P	lower	ON	Communication with peripheral device only.
Q12HCPU	D	"04012" or	OFF	Refreshes all of the refresh items.
Q25HCPU		higher	ON	Refreshes the refresh items selected by SD778.
Q02PHCPU			OFF	Refreshes all of the refresh items.
Q06PHCPU			ON	Refreshes the refresh items selected by SD778
		"07031" or	OFF	Refreshes all of the refresh items.
Q12PHCPU	C	lower	ON	Communication with peripheral device only.
Q25PHCPU	C	"07032" or	OFF	Refreshes all of the refresh items.
		higher	ON	Refreshes the refresh items selected by SD778.
Q12PRHCPU	D		OFF	Refreshes all of the refresh items.
Q25PRHCPU	D		ON	Refreshes the refresh items selected by SD778.
Q02UCPU			OFF	Refreshes the refresh items selected by SD778.
Q03UDCPU				
Q04UDHCPU				
Q06UDHCPU				
Q03UDECPU	В		ON	Refreshes all of the refresh items
Q04UDEHCPU				
Q06UDEHCPU				
Q13UDEHCPU				
Q26UDEHCPU				

7.6.11 Select Refresh Instruction (CCOM)

QnU(D)(H)CPU: The serial number (first five digits) is "10102" or later. QnUDE(H)CPU: The serial number (first five digits) is "10102" or later.

СС	ом	Command			[ССОМ	-
СС		Command			[CCOMP	-
	Setting Internal I Data Bit	Devices Z, ZR Word	J∭\Í∐ Bit Word	U\G	Zn	Constants	Other

Grant Function

- (1) When the CCOM(P) instruction is executed, the following refresh operations can be executed.
 - I/O refresh
 - CC-Link refresh
 - · CC-Link IE controller network refresh
 - MELSECNET/H refresh
 - · Auto refresh of intelligent function modules
 - · Auto refresh using QCPU standard area of multiple CPU system
 - · Reading input or output data of all modules other than the multiple CPU system group
 - Auto refresh using the multiple CPU high speed transmission area of multiple CPU system
 - Communication with peripheral devices
- (2) Turning off SM775 refreshes all refresh items except I/O refresh.

- (3) When refresh items are selected
 - (a) Specify refresh items for SD778, and set SM775 to on. The following table shows the refresh items that can be specified by turning SM775 on or off and in SD778.

Refresh item	When SM775 is off	When SM775 is on
I/O refresh	Not executed	
CC-Link refresh		
CC-Link IE controller network refresh		
MELSECNET/H refresh		
Auto refresh of intelligent function modules		
Auto refresh using QCPU standard area of multiple		Whether to be executed or not can be
CPU system	Executed	selected.
Reading input or output data of all modules other		
than the multiple CPU system group		
Auto refresh using the multiple CPU high speed		
transmission area of multiple CPU system		
Communication with peripheral devices		

(b) Select refresh items using b0 to b5 and b15 of SD778.

Whether to execute each bit of SD778 or not can be specified as shown below:

Bit of SD778	Executed	Not executed
b0 to b5	1	0
b15	0	1
b15 b14 b SD778 1/0 0	6 b5 b4 b3 1/0 1/0 1/0	3 b2 b1 b0 0 1/0 1/0 1/0

Refresh between the multiple CPUs by the CCOM(P) instruction is executed under the following condition.

- Receiving operation from other CPUs: When b4 of SD778 (auto refresh in the CPU shared memory) is 1.
- Sending operation from host CPU: When b15 of SD778 (communication with peripheral device) is 0.

(4) On the execution of the CCOM (P) instruction, the CPU module suspends the processing of the sequence program, and refreshes the specified refresh item.

- (5) The CCOM(P) instruction can be used in a sequence program any number of times. However, note that the sequence program scan time will be lengthened by the time taken for refresh item that are specified in SD778.
- (6) Interruption is enabled during the execution of the CCOM(P) instruction. However, note that the data can be separated if the refresh data is used for an interrupt program.
- (7) The CCOM(P) instruction is not available for the fixed scan execution type program or interrupt program.
- (8) With the Built-in Ethernet port QCPU, service processing time may be increased if the processing was executed by the CCOM instruction while the built-in Ethernet ports are in Ethernet connection.

Operation Error

 (1) When the CCOM(P) instruction is executed in the QnUD(H)CPU whose serial number (first five digits) is "10101" or later, an error occurs.
 (Error code: 4100)

Program Example

(1) Turning on M0 enables the program to execute the select refresh, while turning off M0 disables the program to execute the select refresh.

[Ladder Mode]

[List Mode]

7.6.12 Index modification of entire ladder (IX,IXEND)

Grant Function

(1) Performs index modification on all devices in the ladder up to the IXEND instruction after the IX instruction, using the index modification value specified in the index modification table. Refer to 7.6.13 for how to configure an index modification table.

The configuration of the index modification table and the corresponding index register numbers are as shown below:

	Device name	Index register number		Device name	Index register number	
S	Modification value of timer (T)	Z0	(S) + 8	Modification value of data register (D)	Z8	
(S) + 1	Modification value of counter (C)	Z1	(S) + 9	Modification value of link register (W)	Z9	
(S) + 2	Modification value of input (X)	Z2	(S) + 10	Modification value of file register (R)	Z10	
(S) + 3	Modification value of output (Y)	Z3	(S) + 11	Modification value of buffer register I/O No. (U)	Z11	
(S) + 4	Modification value of internal relay (M)	Z4	<u>(</u> S) + 12	Modification value of buffer register (G)	Z12	
(S) + 5	Modification value of latch relay (L)	Z5	(S) + 13	Modification value of link direct device network No. (J)	Z13)
(S) + 6	Modification value of link relay (B)	Z6	(S) + 14	Modification value of file register (ZR)	Z14	
(S) + 7	Modification value of edge relay (V)	Z7	(S) + 15	Modification value of pointer (P)	Z15	

*1: When using a basic model QCPU, index registers with numbers from Z10 onward cannot be used.

(2) Index modification for device numbers is accomplished in the manner as below: By setting a modification value to each of the devices, the set modification values are added to the all device numbers of the devices used in the ladder between the IX and IXEND instructions. The program is executed using the index modified device numbers.

- (3) Instructions such as the PLS, PLF, and CECP instructions, which are executed only once when input conditions have been established, cannot be index modified by using the IX to IXEND instruction loop.
- (4) In cases where adding the modification value causes the device number to exceed the device range, accurate processing will not be conducted.
- (5) Do not execute the IX or IXEND instructions during online program changes of sequence programs (write during RUN). Accurate processing will not be conducted if this happens.
- (6) Modification values are preset for random word devices as BIN values, and the initial device number for which modification values have been set is designated by (s).
- (7) Do not execute a scan execution type program and an interrupt program simultaneously between the IX and IXEND instructions.

- (8) Whether the program will be expanded or a user needs to create the program is depending on your GPP function software package.
 - (a) When a user needs to create the program (When GX Developer is used) The index register should be added to the index modification ladder established with the IX and IXEND instructions. *²

- *2 : The value of Zn is returned to the previous Zn value before the execution of the IX instruction after the IXEND instruction has been executed.
- (b) When the program is expanded (When SW \square -GPPQ is used)

The index modification ladder established with the IX and IXEND instructions will be transformed into a ladder using the index register (Zn) during the program expansion. *³ Index modification cannot be conducted in a program between the IX and IXEND instructions.

*3 : The value of Zn is returned to the previous Zn value before the execution of the IX instruction after the IXEND instruction has been executed.

- When using the IX and IXEND instructions in both a normal sequence program and an interrupt sequence program, establish the interlock to avoid simultaneous execution. The interlock assumes the area between the IX and IXEND instructions in the normal sequence program as DI, disabling the interruption.
- 2. The IXDEV and IXSET instructions can be used to specify modification values. Refer to 7.6.13 for details.

Operation Error

- (1) In any of the following cases, an operation error occurs, the error flag (SM0) turns ON, and an error code is stored into SD0.
 - The IX and IXEND instructions are not used together. (Error code: 4231)
 - An END, FEND, GOEND, or STOP instruction is executed prior to the execution of the IXEND instruction, but after the execution of the IX instruction. (Error code: 4231)

Program Example

(1) The following program executes the same ladder 10 times, while changing device numbers.

[Operation]

	Modification value	1st time	2nd time	3rd ti	ne	10th time
D100	Modification value of T	B0 →	B1 →	B2		B9
D101	Modification value of C	X10 → Y30 →	X11 → Y31 →	X12 Y32	· >	X19 Y39
D102	Modification value of X	M0 →	M1 -	M2		M9
D103	Modification value of Y	D0 🔶	D1 🛶	D2		D9
D104	Modification value of M	D10 -	D11 🛶	D12		D19
D105	Modification value of L		T4 →	T5	>	T12
D106	Modification value of B	$D40 \rightarrow$		C6	· >	C13
D107	Modification value of V	DHO	D41 P	D42	r r	D49
D108	Modification value of D					

7.6.13 Designation of modification values in index modification of entire ladders (IXDEV,IXSET)

(s) : Head number of the devices where index modification data is stored (pointer only) P⊡ (Pointer)

(D) : Head number of the devices where index modification data will be stored (except a pointer) (BIN 16 bits)

Basic

Process

Redund

l Iniv

Setting	Internal Devices		R 7R	J\			7n	Constants	Other
Data	Bit	Word	π, 2π	Bit	Word U::\G::			Constants	Р
S	-	-							0
D		(\supset						

Grant Function

- (1) The IXDEV and IXSET instructions are used to configure an index modification table used in the IX and IXEND instructions.
- (2) The device offset value designated at the offset designation area is set at the index modification table designated by (**D**).
- (3) The value 0 will be entered if no designation is made.
- (4) Word devices are also indicated by contact (word device bit designation). Data register 10 (D10) is designated with D10.0.

(Any value from 0 to F can be used for the bit number.)

(5) Designation is made according to the method described below. *1 (The symbol □ is where the offset value will be. The notation XX indicates random selection.)

Device	Т	С	Х	Y	М	L	V	В
Designation method	T□ 	C□ _	X□ 	Y□ — —	M	L [] 		B□ — —
Device	D	W	R	U,	/G		J	ZR
Designation method	D□.XX — —	W□.XX	R□.XX — —		S .XX	J □\ E -	*2 3	ZR 🗆 . XX
Device		Р	•					
Designation method	IXSE	T S	D*3					

*1: When using a basic model QCPU, the devices R, U/G, J, ZR and P cannot be used.

*2: Devices following J [] \ designate B, W, X, or Y, and the offset value is also set in correspondence with this.

*3: When using a basic model QCPU, specify a dummy device number. (s) is P \square .

- (6) If two offsets for two identical types of device have been set in the offset designation area, the last value set will be valid.
- (7) The IXDEV and IXSET instructions should be treated as a pair.
- (8) Any value from 0 to 32767 is valid for ZR. (The offset value will be the remainder of the quotient of the designated device number divided by 32768.)
- (9) The dummy contacts in the offset specifying part are valid for only LD and AND located within the range of the IXDEV-IXSET instructions. The IXDEV-IXSET instructions will not be executed if other instructions are described.

Operation Error

- (1) In the following case, an operation error occurs, the error flag (SM0) turns ON, and an error code is stored into SD0.
 - The IXDEV and IXSET instructions have not been used as a pair. (Error code: 4231)

/Program Example

(1) The following program changes the modification values for input (X), output (Y), data register (D) and pointer (P).

When using a basic model QCPU, the devices R, U/G, J, ZR and P cannot be used.[Ladder Mode][List Mode]

*4: Refer to 7.6.12 for index modification using the IX to IXEND instructions.

7.7 Data Table Operation Instructions

7.7.1 Writing data to the data table (FIFW(P))

D : Head number of the table (BIN 16 bits)

Setting	Internal	Devices	R 7R	R, ZR		U\G			Constants	Other
Data	Bit	Word		Bit	Word	0:		К, Н	01.101	
S	0	C	\supset			0		0	—	
D		C	\supset						_	

(1) Stores the 16-bit data designated by \odot in the data table designated by \odot .

The number of data blocks stored in the table is stored at $_{\bigcirc}$, and the data designated by $_{\odot}$ is stored in sequence from $_{\bigcirc}$ +1.

- (2) The first time the FIFW instruction is executed, any values in the designated by $_{\bigcirc}$ device should be cleared.
- (3) The number of data blocks to be written in the data table and the data table range should be controlled by the user.[See Program Example (2)]

Operation Error

- (1) In the following case, an operation error occurs, the error flag (SM0) turns ON, and an error code is stored into SD0.
 - The data table range exceeds the relevant device range when the FIFW instruction is executed.
 (Error code: 4101)

Program Example

(1) The following program stores the data at D0 to the data table following R0 when X10 is turned ON.

[Operation]

(2) The following program stores the data at X20 to X2F to data table of D38 to D44 table when X1B is turned ON, and, if there are more than 6 data blocks to be stored, turns Y60 ON and disables the FIFW instruction.

[Operation]

High

7.7.2 Reading oldest data from tables (FIFR(P))

				Dasic	performance	Reduildant	Universal
FIFR	⊦	Command		FIFR	s (S)	D	_
FIFRP	<u> </u>	Command		FIFR	P S	D	\neg
	S ∶Hea D ∶Hea	nd number of the device and number of the table	ces where the data read (BIN 16 bits)	from the table v	will be stored (B	IN 16 bits)	
Setting Data	Internal De Bit	Word R, ZR	J∭∖∭ Bit Word	U∭\G∭	Zn	Constants	Other
S	0	0		0			-
D		0				_	-
C Eurotion	· · · · · ·						

(1) Stores the oldest data (D+1) input to the table designated by D at the device designated by S.

After the execution of the FIFR instruction, the data in the table is all compressed up by one block.

(2) Users should attempt to avoid executing the FIFR instruction if the value stored at (2) is 0. [See Program Example (1)]

Operation Error

- (1) In any of the following cases, an operation error occurs, the error flag (SM0) turns ON, and an error code is stored into SD0.
 - The FIFR instruction was executed when the value at D was 0. (Error code: 4100)
 - The data table range exceeded the corresponding device range at execution of the FIFR instruction.
 (Error code: 4101)

Program Example

(1) The following program stores the R1 data from the table R0 to R7 at D0 when X10 is turned ON.

[Operation]

(2) The following program stores the data at D0 in the data table D38 to D43, and, when the table stores 5 data, stores the data at D39 of the data table in R0, when X1C is turned ON.
 [Ladder Mode]
 [List Mode]

[Operation]

7.7.3 Reading newest data from data tables (FPOP(P))

)P -)PP -		Command		FPOP	P S		_
)P _)PP _	 _ 	Command		FPOP	P S		
)PP _		Command		FPOP	P S	(D)	
							7
	© : Не	ead number of the devic ead number of the table	ces where the data rea e (BIN 16 bits)	ad from the table wi	ill be stored (B	3IN 16 bits)	
Setting Data	Internal [Bit	Devices R, ZR	J∷i∖∷i Bit Word	U∭\G∭	Zn	Constants	Oth
S	\bigcirc	0		0			_
D	_	0		—		_	-
	Setting Data S D	DetainInternalSetting DataInternalBitInternalImage: DataImage: Data </td <td>Image: Setting DataInternal DevicesR, ZRSOODOO</td> <td>Internal DevicesR, ZRJDataBitWordR, ZRBitImage: Setting DataImage: DataImage: DataImage: DataImage: DataIma</td> <td>Internal Devices R, ZR JIII IIII Data Bit Word R, ZR Bit Word S O O O O O D O O O O O</td> <td>Internal Devices R, ZR J::::\::: U::::\G::: Zn S O O O O Data O O O O</td> <td>Internal Devices R, ZR J J Zn Constants Sata Bit Word R, ZR Bit Word Constants S O O O O O O D O O O O O O</td>	Image: Setting DataInternal DevicesR, ZRSOODOO	Internal DevicesR, ZRJDataBitWordR, ZRBitImage: Setting DataImage: DataImage: DataImage: DataImage: DataIma	Internal Devices R, ZR JIII IIII Data Bit Word R, ZR Bit Word S O O O O O D O O O O O	Internal Devices R, ZR J::::\::: U::::\G::: Zn S O O O O Data O O O O	Internal Devices R, ZR J J Zn Constants Sata Bit Word R, ZR Bit Word Constants S O O O O O O D O O O O O O

(1) Stores the newest data input to the table designated by (b) at the device designated by (s). After the execution of the FPOP instruction, the device storing the data read by the FPOP instruction is reset to 0.

(2) Perform interlock to avoid executing the FPOP instruction when the value stored at $_{\bigcirc}$ is 0. [See Program Example (1)]

Operation Error

Function

- (1) In any of the following cases, an operation error occurs, the error flag (SM0) turns ON, and an error code is stored into SD0.
 - The FPOP instruction was executed when the value of D was 0. (Error code: 4100)
 - The data table range exceeded the corresponding device range at execution of the FPOP instruction.
 (Error code: 4101)

Program Example

(1) The following program stores the data stored last in the data table R0 to R7 at D0 when X10 is turned ON.

(2) The following program stores the data at D0 in the data table D38 to D43 when X1C is turned ON, and when the number of data stores in the table reaches 5, turns X1D ON, and stores the data stored last in the data table to R0.

7.7.4 Deleting and inserting data from and in data tables (FDEL(P),FINS(P))

FDEL

(1) Deletes the nth block of data from the data table designated by (b), and stores it at the device designated by (s).

After the execution of the FDEL instruction, the data in the table following the deleted block is compressed forward by one block.

FINS

(1) Inserts the 16-bit data designated by (s) at the nth block of the data table designated by (p). After the execution of the FINS instruction, the data in the table following the inserted block is all dropped one position.

Operation Error

- (1) In any of the following cases, an operation error occurs, the error flag (SM0) turns ON, and an error code is stored into SD0.
 - The Nth position from () is larger than the data storage number at the execution of the FDEL instruction. (Error code: 4101)
 - The Nth position from

 is larger than the "data storage number + 1" at the execution of the FINS instruction.
 (Error code: 4101)
 - The value of n in the case of the FDEL, FINS instruction exceeds the device range of the table (D). (Error code: 4101)
 - The FDEL or FINS instruction was executed when n = 0. (Error code: 4100)
 - The FDEL instruction was executed when the value of (b) was 0. (Error code: 4100)
 - The data table range exceeded the corresponding device range at execution of the FDEL or FINS instruction. (Error code: 4101)

Program Example

(1) The following program deletes the second data from the table R0 to R7 and stores the deleted data at D0 when X10 is turned ON.

[Operation]

(2) The following program inserts the data at D0 into the third position at the table R0 to R7 when X10 is turned ON.

7.8 Buffer memory access instruction

7.8.1 Reading 1-/2-word data from the intelligent function module (FROM(P),DFRO(P))

			[] ir	dicatos an instru	uction symb		
		L Command	L		iction symb		
FROM, D	FRO		-	n1 n2	D	n3	
		Command					
FROMP,	DFROP _		P	n1 n2	D	n3	
		I					ľ
	n1 : H	Head I/O number of an i	ntelligent function modu	le (BIN 16 bits)			
	n2 : H D : H	Head address of data to Head number of the dev	be read (BIN 16 bits) ces where the read data	a will be stored (BI	N 16/32 bits)		
	n3 :1	Number of data blocks to	be read (BIN 16 bits)				
	Setting Internal	Devices R, ZR	J\	U∭\G∭	Zn	Constants K. H	(
	n1			\circ			
	n2	0		0			
	D	0					
		\bigcirc		\bigcirc			

Grant Function

FROM

(1) Reads the data in n3 words from the buffer memory address designated by n2 of the intelligent function module designated by n1, and stores the data into the area starting from the device designated by (D).

DFRO

(1) Reads the data in $(n3 \times 2)$ words from the buffer memory address designated by n2 of the the intelligent function module designated by n1, and stores the data into the area starting

Data read from intelligent function modules is also possible with the use of an intelligent function module device.

For the intelligent function module device, refer to the QnUCPU User's Manual (Function Explanation, Program Fundamentals) or Qn(H)/QnPH/QnPRHCPU User's Manual (Function Explanation, Program Fundamentals).

Operation Error

- (1) In any of the following cases, an operation error occurs, the error flag (SM0) turns ON, and an error code is stored into SD0.
 - There has been no exchange of signals with an intelligent function module at the execution of the instruction.
 (Error code: 1412)
 - An error has been detected in an intelligent function module at the execution of the instruction.
 (Error code: 1402)
 - The I/O number designated by n1 is not for the intelligent function module.

(Error code: 2110)

- The range of n3 points (2 \times n3 points for DFRO) from the device designated by $_{\bigcirc}$ (Error code: 4101)
- The address designated by n2 is outside the buffer memory range.

(Error code: 4101)

Program Example

(1) The following program reads the digital value of CH1 of the A68AD mounted at I/O numbers 040 to 05F into D0 when X0 is turned ON. (Reads 1 word of data from address 10 of the buffer memory.)

(2) The following program reads the X-axis present value of the AD71 mounted at the I/O numbers 040 to 05F into D0 and D1, when X0 is turned ON. (Reads data in 2 words from the address 602 and 603 of the buffer memory.)

nark

1. The value of n1 is specified by the upper 3 digits of hexadecimal 4-digit representation of the head I/O number of the slot in which an intelligent function module is mounted.

2. QCPU establishes the automatic interlock of the FROM/DFRO instructions.

7.8.2 Writing 1-/2-word data to intelligent function module (TO(P),DTO(P))

Basic High Process Redundant Universal

☆ Function

то

Writes the data stored in n3 points starting from the device designated by \odot into the area starting from buffer memory address designated by n2 of the intelligent function module designated by n1.

When a constant is designated to \odot , writes the same data (value designated to \odot) to the area of n3 points starting from the specified buffer memory. (\odot can be designated in the following range: -32768 to 32767 or 0H to FFFFH.)

DTO

Writes the data stored in $n3 \times 2$ points starting from the device designated by S into the area starting from buffer memory address designated by n2 of the intelligent function module designated by n1.

When a constant is designated to \odot , writes the same data (value designated to \odot) to the area of n3 \times 2 points starting from the specified buffer memory. (\odot can be designated in the following range: -2147483648 to 2147483647 or 0H to FFFFFFH.)

Data write to intelligent function modules is also possible with the use of an intelligent function module device.

For the intelligent function module device, refer to the QnUCPU User's Manual (Function Explanation, Program Fundamentals) or Qn(H)/QnPH/QnPRHCPU User's Manual (Function Explanation, Program Fundamentals).

Operation Error

- (1) In any of the following cases, an operation error occurs, the error flag (SM0) turns ON, and an error code is stored into SD0.
 - There has been no exchange of signals with an intelligent function module at the execution of the instruction.
 (Error code: 1412)
 - An error has been detected in an intelligent function module at the execution of the instruction.
 (Error code: 1402)
 - The I/O number designated by n1 is not for the intelligent function module.

(Error code: 2110)

- The n3 points (2 × n3 points for DTO) of the device designated by (s) exceed the designated device range. (Error code: 4101)
- The address designated by n2 is outside the buffer memory range.

(Error code: 4101)

The address designated by n2 is an odd numbered address. (AJ71QC24(N))

(Error code: 4100)

Program Example

 The following program sets the CH1 and CH2 of the Q68ADV mounted at the I/O numbers 040 to 04F to the "A/D conversion" mode, when X0 is turned ON. (Writes 3 into the buffer memory address 0.)

(2) The following program sets the X-axis current value of the AD71 mounted at I/O numbers 040 to 05F to 0 when X0 is turned ON. (Writes 0 to addresses 41, 42 of the buffer memory.)
 [Ladder Mode]
 [List Mode]

1. The value of n1 is specified by the upper 3 digits of hexadecimal 4-digit representation of the head I/O number of the slot in which an intelligent function module is mounted.

7.9 Display instructions

7.9.1 Print ASCII code instruction (PR)

Setting	Internal	Devices	R 7R	J	\	umom	7n	Constants	Other
Data	Bit	Word	Ν, ΖΙΧ	Bit	Word	0:	2.1	\$	Othor
S		\bigtriangleup	*1	—			0	0	—
D	O (Only Y)	_	—		_		0	_	

*1: Local devices and the file registers set for individual programs cannot be used.

Grant Function

- Outputs ASCII code stored in the device specified by (s) or ASCII code stored in the area startings from the device number to an output module specified by (p). The number of characters output differs according to the ON/OFF status of SM701 (number of output characters selection).
 - (a) If SM701 is ON, characters 8 points (16 characters) from the device designated by (s) will be the target of the operation.

Device where ASCII code is stored

(b) If SM701 is OFF, everything from the device designated by (s) to the 00H code will be the target of the operation.

Upper 8 bits Lower 8 bits Output Y b15-----b8 b7-----b0 (S)+0 42 H (B) 41 н (A) →Head of output 44 н (D) (S)+1 43 н (C) <u>46 H</u> 48 H Ē н 6† 5 (S)+2 46 н (F) 45 н (E) (S)+3 48 H (H) 47 н (G) ((S)+4 4Ан (J) 49 н (I) ASCII code output (S)+5 4Cн (L) 4Bн (K) Scheduled Printer or (S)+6 4Eн(N) 00 H (NULL) completion display device D+7 50 н (P) (S)+7 4Fн(O) D+8 Strobe signal output Sequence program D)+9 Flag indicating PR instruction in execution Used as interlock

Device where ASCII code is stored

- (2) The number of points used by the output module is 10 points from the Y address designated by (b).
- (3) Output signals from the output module are transmitted at the rate of 30 ms per character. For this reason, the time required to the completion of the transmission of the designated

number of characters (n) will be 30 ms \times n (ms). At 10 ms interrupt intervals, the PR instruction executes data output, strobe signal ON, and strobe signal OFF. The other instructions are executed continuously during a period between the above processings.

- (4) In addition to the ASCII code, the output module also outputs a strobe signal (10 ms ON, 20 ms OFF) from the () + 8 device.
- (5) Following the execution of the PR instruction, the PR instruction execution flag (D + 9 device) remains ON until the completion of the transmission of the designated number of characters.
- (6) The PR and PRC instructions can be used multiple times, but it is preferable to establish an interlock with the PR instruction execution flag (<u></u>) + 9 device) so that they will not be ON simultaneously.
- (7) If the contents of the device in which ASCII codes are stored changes during the ASCII code output, the modified data after change will be output.

Operation Error

- (1) In the following case, an operation error occurs, the error flag (SM0) turns ON, and an error code is stored into SD0.
 - There is no 00H code within the range of the device specified by (s) when SM701 is OFF. (Error code: 4101)

Program Example

(1) The following program converts the string "ABCDEFGHIJKLMNOP" to ASCII code when X0 is turned ON and stores it from D0 to D7, and then outputs the ASCII code at D0 to D7 to Y14 to Y1D when X3 is turned ON.

[Ladder Mode]

[List Mode]

7.9.2 Print comment instruction (PRC)

1 When High Performance model QCPU/Process CPU is used									
	PRC		_ _	Command		PRC	Ś	D	_
			© :Н	ead number of the device ead number of the outp	ce which prints the comr ut module which outputs	nent (Device na the comment (I	me) bits)		
		Setting Data	Internal Bit	Devices Word R, ZR	J∷⊡∖⊡ Bit Word	U∭\G∭	Zn	Constants	Other P, I, J, U,
		S	0	0	0		_		0
		D	O(Only Y)				_		

(1) Outputs comment (ASCII code) at device designated by S to output module designated by D.

The number of characters output differs according to the ON/OFF status of SM701.

• When SM701 is OFF: Comment is 32 characters

Grant Function

• When SM701 is ON : Comment is the upper 16 characters The number of points used by the output module is 10 points from the Y address designated by ().

(2) Output signals from the output module are transmitted at the rate of 30 ms per character. For this reason, the time required to the completion of the transmission of the designated number of characters will be 30 ms \times n (ms).

At 10ms interrupt intervals, the PRC instruction executes data output, strobe signal ON, and strobe signal OFF. The other instructions are executed continuously during a period between the above processings.

- (3) In addition to the ASCII code, the output module also outputs a strobe signal (10 ms ON, 20 ms OFF) from the (D) + 8 device.
- (4) Following the execution of the PRC instruction, the PRC instruction execution flag (D + 9 device) remains ON until the completion of the transmission of the designated number of characters.
- (5) The PRC instruction can be used multiple times, but it is preferable to establish an interlock with the PRC instruction execution flag (
 () + 9 device) so that they will not be ON simultaneously.
- (6) If no comments have been registered at the device designated by (s), processing will not be performed.
- (7) When a comment is read, SM720 turns ON for one scan after the instruction is completed. SM721 turns ON during the execution of the instruction. The PRC instruction cannot be executed while SM721 is ON. If the attempt is made, no processing is performed.

[Timing Chart]

1. For device comments used with the PRC instruction, use comment files stored in the memory card Standard Rom.

Comment files stored in the program memory cannot be used.

- The comment file used by the PRC instruction is set at the "PLC File Setting" option in the PLC parameter dialog box.
 If no comment file has been set for use by the PLC file setting, it will not be possible to output device comments with the PRC instruction.
- 3. Do not execute the PRC instruction during an interrupt program. Otherwise, malfunction may occur.

Operation Error

- (1) In the following case, an operation error occurs, the error flag (SM0) turns ON, and an error code is stored into SD0.
 - The PRC instruction is executed while a comment is written during RUN.

(Error code: 4100)

Program Example

(1) Program which outputs the comment of Y60 to Y30 to Y39 when X0 is turned ON.[Ladder Mode][List Mode]

7.9 Display instructions 7.9.2 Print comment instruction (PRC)

7.9.3 Error display and annunciator reset instruction (LEDR)

		Basi	High performance Process Redundant Universal
LEDR	Command		LEDR
Settin Data	g Internal Devices R, ZR Bit Word	J∭\∭ Bit Word	Zn Constants Other

Function

Resets the self-diagnosis error display so that annunciator display or operation can be continued. With one execution of this instruction, either error display or annunciator is reset.

- (1) Operation when self-diagnosis error is generated
 - (a) If the self-diagnosis error is one which allows continued operation. If the self-diagnosis error being displayed is one that will allow continued operation of the CPU module, the "ERROR/ERR." LED or error indication is reset. It will be necessary to reset SM0, SM1, and SD0 at the user program, because they are not reset automatically.

Since the cause of the error displayed at this time has a higher priority over annunciator, no action for resetting the annunciator is taken.

(b) When a battery error is generated.

If the LEDR instruction is executed after the battery has been replaced, the "BAT. ARM/ BAT." LED at the front of the CPU module and the error display will be reset. SM51 is also turned OFF at this time.
- (2) Operations when an annunciator (F) is ON.
 - (a) When the CPU module has no LED display

The following operations will be conducted when the LEDR instruction is executed:

- 1) "USER" LED flickers, and is turned OFF
- 2) The annunciators (F) stored in SD62 and SD64 are reset, and the F numbers for SD65 to SD79 are moved up.
- 3) The data newly stored at SD64 is transmitted to SD62.
- 4) The data at SD63 is decremented by 1. However, if SD63 is 0, it remains 0.

(b) For CPUs with an LED display at the front

The following operations will be conducted when the LEDR instruction is executed:

1) The F number being displayed at the front of the CPU module will be reset.

- 2) "USER" LED flickers, and is turned off.
- 3) The annunciators (F) stored in SD62 and SD64 are reset, and the F numbers for SD65 to SD79 are compressed forwards.
- 4) The data newly stored at SD64 is transmitted to SD62.
- 5) The data at SD63 is decremented by -1. However, if SD63 is 0, it remains 0.
- 6) The F number being stored at SD62 is displayed at the LED display. However, if the value of SD63 is 0, nothing will be displayed.

Remark

.

.

. . . .

. . .

.

 The defaults for the error item numbers set in special registers SD207 to SD209 and order of priority are given in the table below:

Priority	Factor number (Hexadecimal)	Meaning	Remarks
1	1	AC DOWN SINGLE PS.DOWN SINGLE PS.ERROR	Power supply cut Redundant base unit power supply voltage drop Redundant power supply module fault
2	2	UNIT VERIFY ERR. FUSE BREAK OFF SP. UNIT ERROR	I/O module verify error Blown fuse Special function module verify error
3	3	OPERATION ERROR LINK PARA.ERROR SFCP OPE. ERROR SFCP EXE. ERROR	[Operation Errors] Link parameter error SFC instruction operation error SFC program execution error
4	4	ICM.OPE ERROR FILE OPE. ERROR EXTEND INST. ERROR OPE. MODE DIFF. CAN'T EXE.MODE TRK.TRANS.ERR. TRK.SIZE ERROR TRK.DISCONNECT	Memory card operation error File access error Extend instruction error Operation status, switch mismatch Current mode-time function execution disabled Tracking data transmission error Tracking capacity excess error Tracking cable not connected, failure
5	5	PRG.TIME OVER	Constant scan setting time over error Low speed execution monitoring tome over error
6	6	CHK instruction	—
7	7	Annunciators	
8	8	LED instruction	
9	9	BATTERY ERR.	—
10	А	Clock data	—
11	В	CAN'T SWITCH STANDBY SYS.DOWN MEM.COPY EXE.	System switching error Standby system not started/stop error Memory copy function executed

2. If the highest priority is given to the annunciator, it can be reset with priority by the LEDR instruction.

.

.

. . .

7.10 Debugging and failure diagnosis instructions

7.10.1 Special format failure checks (CHKST,CHK)

Grant Function

CHKST

(1) The CHKST instruction is the instruction that starts the CHK instruction.

If the command for the CHKST instruction is OFF, execution jumps from the CHK instruction to the next instruction.

If the command for the CHKST instruction is ON, the CHK instruction is executed.

СНК

- (1) The CHK instruction is the instruction used for the bidirectional operation as shown on the following page to confirm the nature of the system failure.
 - (a) When the CHK instruction is executed, a failure diagnosis check is conducted with the designated check conditions, and if a failure is detected, SM80 is turned ON, and the failure number is stored at SD80 as a BCD value. The error code "9010" will be returned if a failure is detected. The contact number where the failure was discovered is stored at the upper 3 digits of SD80 (see (3)), and the coil number where the failure was detected (see (2)) is stored at the lower 1 digit of SD80. At the detection of failure of

Refere the detection of failure	Contact No.: 62, Coil No.: 3	► After the detection of failure
		Aller the detection of failure
SM80 OFF		SM80 <u>ON</u>
SD80 0 0 0 0		SD80 0 6 2 3

(b) The contact instruction prior to the CHK instruction does not control the execution of the CHK instruction, but rather sets the check conditions.

(c) A ladder such as the one shown below can be created to perform a cycle time over check for the system shown above:

T0 -	HKST] - When T0 is OFF, program jumps to the instruction next to the CHK instruction. Executes CHK instruction when T0 is ON.
X004 X005 X000	
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	(050) - Advances conveyor 1.
Y050 HH [SET Y	000] – Turns ON the internal relay used for failure detection.
X005 X004 X001 - ∤ ↓	/051) – Retracts conveyor 1.
Y051 H	(000] – Turns OFF the internal relay used for failure detection.
Y050 X000 ⊬ ⊢I⊢→I/	(100 0) – Cycle time
Y051 X001 ⊣I}k	check timer

- (d) The following points should be taken into consideration when creating a ladder for use with the CHK instruction:
 - The contact numbers for the advance edge detection sensor and the retract edge detection sensor (X□) must always be continuous. Further, the contact number (X□) for the advance edge detection sensor should be lower than that for the retract edge.
 - 2) Controls for the advance edge detection sensor contact number (X□) and output with the identical number (Y□)*1 are as follows:
 When advance operation is in progress turn ON
 When retract operation is in progress turn OFF

*1: Output (YE) is treated as an internal relay, and cannot be output to an external device.

(2) Depending on the designated contact, the CHK instruction undergoes processing identical to that shown for the ladder below:

(3) Numbers 1 to 150 from the vertical bus on the left side have been allocated as contact numbers during failure detection.

(4) Reset SM80 and SD80 prior to forcing the execution of the CHK instruction.
 After the execution of the CHK instruction, it cannot be performed once again until SM80 and SD80 have been reset.

(The contents of SM80 and SD80 will be preserved until reset by user.)

(5) A CHKST instruction must be placed before the CHK instruction.

An error will be returned if an instruction other than the LD, LDI, AND or ANI instruction is used between the CHK instruction and the CHKST instruction. (Error code: 4235)

(6) The CHK instruction can be written at any step of the program.

However, there is a limit in the number of uses of the CHK instruction.

- Can be used up to two places in all program files being executed.
- Can be used only one place in a single program file.

An error will be returned if the CHK instruction is used exceeding the number of uses specified above. (Error code: 4235)

(7) Place LD and AND instructions prior to the CHK instruction to establish a check condition. Check conditions cannot be set using other contact instructions.

If a check condition has been set with LDI or ANI, the processing for the check condition they specify will not be conducted.

However, contact numbers during failure detection can also be allocated to the LDI and ANI instructions.

- (8) The failure detection method differs according to whether SM710 is ON or OFF.
 - (a) If SM710 is OFF, checks will be conducted of coil numbers 1 to 6 for each contact successively.

When the CHK instruction is executed, checks will be in order from coil No. 1 of contact No. 1, through coil No. 6, then move on to contact No. 2 and check the coils in order from No. 1.

The CHK instruction will be completed when coil No. 6 from contact No. n has been checked.

(b) If SM710 is ON, checks will be conducted of contact numbers 1 through n, in coil number order.

When the CHK instruction is executed, checks will begin with the ladder for coil No. 1, in order from contact No. 1 until contact No. n, then move on to the coil No. 2 ladder and begin from contact No. 1.

The CHK instruction will be completed when a check has been made through contact No. n of coil No. 6.

- (9) If more than one failure is detected, the number of the first failure detected will be stored. Failure numbers detected after this will be ignored.
- (10) The CHK instruction cannot be used by a low speed execution type program. If a low speed execution type program has been set in a program file containing the CHK instruction, an operation error will be returned, and the CPU module operation will be suspended.

Operation Error

(1) In any of the following cases, an operation error occurs, the error flag (SM0) turns ON, and an error code is stored into SD0.

•	There is a parallel ladder.	(Error code: 4235)
•	There is an NOP instruction.	(Error code: 4235)

- There are more than 150 contact instructions.
 (Error code: 4235)
- A CHK instruction is not executed following the CHKST instruction.
- (Error code: 4235)
- The CHK instruction is executed when no CHKST instruction has been executed.
 (Error code: 4235)
- The CHKST and CHK instruction are used in a low speed execution type program. (Error code: 4235)
- There is an instruction other than the LD, LDI, AND or ANI instruction between the CHK instruction and the CHKST instruction.
 (Error code: 4235)
- The CHK instruction is used at three places or more in all of programs being executed.
 (Error code: 4235)
- The CHK instruction is used at two places or more in a single program.

⁽Error code: 4235)

7.10.2 Changing check format of CHK instruction (CHKCIR,CHKEND)

When the GX Developer is used (High Performance model QCPU/Process CPU/ Redundant CPU)

	СНКST СНК		Command	X**	X**	;	[X * * - [СНКЅТ]_ →]_	Refer to Section 7.10.1.
Ľ	CHKCIF	۱ ۲	SM400				[CHKCIR]	
		-	SM400	La	dder pattern to	be checked	d	Fn Fn Fn Fn	→ → → } Ma	ıx. 9 coils
	CHKEN	D	SM400				[CHKEND		
I FL	unction	Setting Data	Internal Devices Bit Word	R, ZR	J Bit	Word	J\G]	Zn	Constants	Other
	CH	KCIR, CH	IKEND							
	(1)	The check format des The actual	ladder pattern ired. failure checks	that wi are co	ll be used in nducted with	the CHK the CHK	instructio	on can be CHK instru	updated t	to any
	(2) Failure checks are conducted according to the check conditions designated by the CHK instruction and the ladder pattern described between the CHKCIR and CHKEND instructions.								e CHK	
		Remark	Refer to 7.10.1	for mo	re informatio	n on the	CHKST a	and CHK i	nstructior	ns.
		⊠PO	To change the instructions, th	check fo e user s	ormat of the 0 should create	CHK insti e a ladde	ruction us r with ind	sing the CH ex modific	HKCIR to ation (Z0	CHKEND).

(a) The device numbers indicated at check conditions (X2 and X8 in the figure below) will assume index modification values for the individual device numbers (with the exception of annunciators (F)) described in the ladder patterns.

Example X10 in the \square in the figure below would be as follows:

When corresponding to check condition X2 Processing performed by...X12 When corresponding to check condition X8 Processing performed by...X18

However, the order in which failure detection is executed differs depending on whether SM710 is ON or OFF.

1) If SM710 is OFF, checks will be conducted of coil numbers 1 through the end for each contact successively.

[Ladder designated by CHKCIR to CHKEND]

[Order of check by CPU module]

2) If SM710 is ON, checks will be conducted of contact numbers 1 through the end, in coil number order.

[Ladder designated by CHKCIR to CHKEND]

[Order of check by CPU module]

(b) Failure checks check the ON/OFF status of OUT F[] by using the ladder pattern in the various check conditions.

In all check conditions, SM80 will be turned ON if even one of the OUT F [] is ON in a ladder pattern.

Further, the error numbers (contact numbers and coil numbers) corresponding to the OUT F :: which were found to be ON will be stored from SD80 in BCD order.

(c) The instructions that can be used in ladder patterns are as follows: Contacts ... LD, LDI, AND, ANI, OR, ORI, ANB, ORB, MPS, MPP,MRD, and comparative operation instructions

Coil OUT F

- (d) The following devices can be used for ladder pattern contacts: Input (X), Output (Y)
- (e) Only annunciators (F) can be used in ladder pattern coils. However, since annunciators (F) are used as a dummy, any value can be set for an annunciator (F). Further, they can overlap with no difficulties.
- (f) ON/OFF controls can be performed without error if an annunciator (F) used during the execution of the CHK instruction has the same number as an annunciator (F) used in some other context than the CHK instruction. They will be treated differently during the CHK instruction than they are in the different context.
- (g) Since the annunciators (F) used in the CHK instruction do not turn ON/OFF actually, they will not turn ON/OFF if monitored by a peripheral device.
- (h) A ladder pattern can be created up to 256 steps.Further, OUT F ∷ can use up to 9 coils.
- (3) Coil numbers for ladders designated with the CHKCIR through CHKEND instructions are allocated coil numbers from 1 to 9, from top to bottom.

7.10 Debugging and failure diagnosis instructions 7.10.2 Changing check format of CHK instruction (CHKCIR,CHKEND)

- (4) The CHKCIR and CHKEND instructions can be written at any step in the program desired. It can be used in up to two locations in all program files being executed. However, the CHKCIR and CHKEND instructions cannot be used in more than 1 location in a single program file.
- (5) The CHKCIR and CHKEND instructions cannot be used in low speed execution type programs.

If a program file in which the CHKCIR or CHKEND instruction is described is set as a low speed execution type program, an operation error will occur, and the High Performance model QCPU/Process CPU/Redundant CPU operation will be suspended.

Coperation Error

- (1) In any of the following cases, an operation error occurs, the error flag (SM0) turns ON, and an error code is stored into SD0.
 - The CHKCIR or CHKEND instruction appears three or more times in all program files.
 (Error code: 4235)
 - The CHKCIR or CHKEND instruction appears two or more times in a single program file. (Error code: 4235)
 - The CHKEND instruction is not executed following the execution of the CHKCIR instruction. (Error code: 4230)
 - The CHKEND instruction is executed although no CHKCIR instruction has been executed.
 (Error code: 4230)
 - The CHKST and CHK instruction are used in a low speed execution type program. (Error code: 4235)
 - There are 10 or more F instances in a ladder pattern.
 (Error code: 4235)
 - A ladder pattern has 257 or more steps. (Error code: 4235)
 - A device has been encountered which cannot be used in a ladder pattern.

(Error code: 4235)

• Index modification has been conducted on a ladder pattern device.

(Error code: 4235)

Process

Redundant

Universa

7.11 Character string processing instructions

7.11.1 Conversion from BIN 16-bit or 32-bit to decimal ASCII (BINDA(P),DBINDA(P))

	indicates an instruction symbol of BINDA/DBINDA.
Command	
Command	P (S) (D)

(\$) : BIN data to be converted to ASCII (BIN 16/32 bits)

O $% \label{eq:conversion}$: Head number of the devices where the conversion result will be stored (character string)

Setting	Internal	Devices	R 7R	J			7n	Constants	Other
Data	Bit	Word	Ν, ΖΝ	Bit	Word	0::\G::	211	К, Н	Oulor
S	0	C	0						
D		C	\supset						

BINDA

(1) Converts the individual digit numbers of decimal notation of the BIN 16-bit data designated by (s) into ASCII codes, and stores the results into the area starting from the device designated by (b).

For example, if -12345 has been designated at s , the following will be stored from b onward:

(2) The BIN data designated at \odot can be in the range from -32768 to 32767.

- (3) The operation results stored at **D** are as follows:
 - (a) The sign "20H" will be stored if the BIN data is positive, and the sign "2DH" will be stored if it is negative.
 - (b) The sign "20_H" will be stored for the leading zeros of effective digits. (Zero suppression is conducted.)

(c) The storage of data at devices specified by D+3 differs depending on the ON/OFF status of SM701 (output number of characters conversion signal).
 When SM701 is OFF.....Stores "0"
 When SM701 is ONDoes not change

DBINDA

(1) Converts the individual digit numbers of decimal notation of the BIN 32-bit data designated by s into ASCII codes, and stores the results into the area starting from the device designated by s.

For example, if the value -12345678 has been designated by \odot , the following would be stored into the area starting from \odot :

	b)15b8	3b7b0
	D	20н (space)	2Dн (—)
(S)+1 (S)	(D)+1	31 _H (1)	20н (space)
	(D+2	33н (3)	32н (2)
	⁻√ (D)+3	35н (5)	34н (4)
	(D)+4	37н (7)	36н (6)
	(D)+4	0 or 20н	38н (8)

- (2) BIN data designated by \odot can be between -2147483648 to 2147483647.
- (3) The operations results stored at D will be stored in the following way:
 - (a) The sign "20H" will be stored if the BIN data is positive, and the sign "2DH" will be stored if it is negative.
 - (b) The sign "20_H" will be stored for the leading zeros of effective digits. (Zero suppression is conducted.)

<u>0012034560</u> 20н Number of significant digits

- (c) The data stored at the upper 8 bits of the device designated by (1) +5 differs depending on the ON/OFF status of SM701 (number of characters to output select signal). When SM701 is OFF.....Stores "0"
 - When SM701 is ONStores "20H"

✓ Operation Error

- (1) In the following case, an operation error occurs, the error flag (SM0) turns ON, and an error code is stored into SD0.
 - The device specified by
 exceeds the range of the corresponding device.
 (For the Universal model QCPU only.)
 (Error code: 4101)

Program Example

(1) The following example program uses the PR instruction to output the 16-bit BIN data W0 value by decimal to Y40 to Y48 as ASCII.

[Ladder Mode]

[List Mode]

[Operation]

Conducts ASCII output of Y40 to Y48 by using the PR instruction when X0 goes ON. Because SM701 is OFF, the PR instruction will output ASCII code until 00_{H} is encountered.

(2) The following program uses the PR instruction to output the decimal value of the 32-bit BIN data at W10 and W11 in ASCII code to Y40 to Y48.

[Operation]

Conducts ASCII output of Y40 to Y48 by using the PR instruction when X0 goes ON. Because SM701 is OFF, the PR instruction will output ASCII code until 00H is encountered.

7.11 Character string processing instructions 7.11.1 Conversion from BIN 16-bit or 32-bit to decimal ASCII (BINDA(P),DBINDA(P))

7.11.2 Conversion from BIN 16-bit or 32-bit data to hexadecimal ASCII (BINHA(P),DBINHA(P))

(1) Converts the individual digit numbers of hexadecimal notation of the BIN 16-bit data designated by (s) into ASCII codes, and stores the results into the area starting from the device designated by (c).

For example, if 02A6_H has been designated by s, it will be stored as follows:b

- (2) The BIN data designated by \odot can be in the range from 0_H to FFFF_H.
- (3) The operation results stored at D are processed as 4-digit hexadecimal values. For this reason, zeros which are significant digits on the left side of the value are processed as "0". (No zero suppression is conducted.)

When SM701 is OFF.....Stores "0" When SM701 is ONDoes not change

DBINHA

(1) Converts the individual digit numbers of hexadecimal notation of the BIN 32-bit data designated by (s) into ASCII codes, and stores the results into the area starting from the device designated by (b).

For example, if the value 03AC625EH has been designated by s, it would be stored following s in the following manner:

	<u>b15b8</u>	b7 b0
D	33н (3)	30н (0)
(S)+1 (S) (D)+1	43н (C)	41н (A)
	32н (2)	36 н (6)
0 3 A C 0 2 3EH D+3	45н (E)	35н (5)
D+4	00)н

- (2) The BIN data designated by \odot can be in the range from 0H to FFFFFFFH.
- (3) The operation results stored at D are processed as 8-digit hexadecimal values. For this reason, zeros which are significant digits on the left side of the value are processed as "0". (No zero suppression is conducted.)
- (4) The data to be stored at the device designated by D+2 differs depending on the ON/OFF status of SM701 (number of characters to output select signal).

When SM701 is OFF.....Stores "0" When SM701 is ONDoes not change

✓ Operation Error

- (1) In the following case, an operation error occurs, the error flag (SM0) turns ON, and an error code is stored into SD0.
 - The device specified by
 exceeds the range of the corresponding device.
 (For the Universal model QCPU only.)
 (Error code: 4101)

Program Example

(1) The following program uses the PR instruction to output the hexadecimal value of the 16-bit BIN data at W0 in ASCII code to Y40 to Y48.

[Operation]

Conducts ASCII output of Y40 to Y48 by using the PR instruction when X0 goes ON. Because SM701 is OFF, The PR instruction will output ASCII code until 00H is encountered.

	I	b15I	o8b7	-b0	
W0	D0	43н (C)	39н (9)	PR	
9С06н	>D1	36н (6)	30н (0)		☐ Y40 to Y48
BIN value	D2		00н	Outputs "9C0	6"

(2) The following program uses the PR instruction to output the hexadecimal value of the 32-bit BIN data at W10 and W11 to Y40 to Y48.

[Operation]

Conducts ASCII output of Y40 to Y48 by using the PR instruction when X0 goes ON. Because SM701 is OFF, The PR instruction will output ASCII code until 00H is encountered.

 \mathbf{X}

7.11.3 Conversion from BCD 4-digit and 8-digit to decimal ASCII data (BCDDA(P),DBCDDA(P))

						l	Bašic	Properformance Pro	ocess Redundant	Universal
						indicates	an instru	ction symbol	I of BCDDA/DE	BCDDA.
BCDDA,DBC	CDDA		-		l				S D	
BCDDAP,DB	CDD	AP	-	Command	l			P	S D	
		© :В	CD data to	be converted	d to ASCII (BCD 4 di	igits/8 digi	ts)			
		D : H	ead numbe	r of the devi	ces where the conve	ersion resu	ılt will be s	stored (charac	cter string)	
S	Setting Data	Internal Bit	Devices Word	R, ZR	J∭∖∭ Bit Word	d UI	::\G:::]	Zn	Constants K, H	Other
	S	0	(0			
			-							

BCDDA

(1) Converts the individual digit numbers of hexadecimal notation of the BCD 4-digit data designated by (s) into ASCII codes, and stores the results into the area starting from the device designated by (b).

For example, when "9105" is designated for \mathfrak{S} , the results of the operation are stored into the area starting from \mathfrak{D} in the following manner:

						<u>b15</u>	b8b7b0
	b15b12	b11b8b	07k	04b3 b0	D	31н(1)	39н (9)
S	9	1	0	5)D+1	35н(5)	30н(0)
					(D)+2		00н

- (2) The BCD data designated by \odot can be in the range of from 0 to 9999.
- (3) The results of calculation stored in the device D. All zeros on the left side of the "Number of significant digits" are zero-suppressed.

- (4) The data to be stored at the device designated by
 ^D+2 differs depending on the ON/OFF status of SM701 (number of characters to output select signal).
 - When SM701 is OFF......Stores "0" When SM701 is ONDoes not change

DBCDDA

(1) Converts the individual digit numbers of hexadecimal notation of the BCD 8-digit data designated by (s) into ASCII codes, and stores the results into the area starting from the device designated by (b).

For example, if the value 01234056 is designated by S, the operation result would be stored following D in the following manner:

		b	15b8	b7b0
		D	31н (1)	20н
b31b28b27b24b23b20b19b16	<u>b15b12b11b8b7 b4b3 b</u> 0	(D)+1	33н (3)	32н (2)
0 1 2 3	4 0 5 6	⇒D+2	30н (0)	34н (4)
		(D)+3	36 н (6)	35н (5)
3+1	3	(D)+4	00	н

- (2) The BCD data designated by \odot can be in the range of 0 to 99999999.
- (3) The results of calculation stored in the device D. All zeros on the left side of the "Number of significant digits" are zero-suppressed.

(4) The data to be stored at the device designated by D+4 differs depending on the ON/OFF status of SM701 (number of characters to output select signal).

When SM701 is OFF......Stores "0" When SM701 is ONDoes not change

Coperation Error

- (1) In any of the following cases, an operation error occurs, the error flag (SM0) turns ON, and an error code is stored into SD0.
 - The data at (s) during the operation of the BCDDA instruction is outside the range of from 0 to 9999. (Error code: 4100)
 - The data at (s) during the operation of the DBCDDA instruction is outside the range of 0 to 99999999.
 (Error code: 4100)
 - The device specified by
 exceeds the range of the corresponding device.
 (For the Universal model QCPU only.)
 (Error code: 4101)

Program Example

 The following program uses the PR instruction to convert BCD 4-digit data (the value at W0) to decimal, and outputs it in ASCII format to Y40 to Y48.

[Operation]

Conducts ASCII output of Y40 to Y48 by using the PR instruction when X0 goes ON. Because SM701 is OFF, The PR instruction will output ASCII code until 00H is encountered.

	b	<u>15b8</u>	b7	<u>b0</u>
W0	D0	32н (2)	31н (1)	PR
1295	>D1	35н (5)	39н (9)	Y40 to Y48
BCD value	D2	00	Он	Outputs "1295"

- END

(2) The following program uses the PR instruction to convert BCD 8-digit data (the values at W10 and W11) to decimal, and outputs it in ASCII format to Y40 to 48.

[Operation]

Conducts ASCII output of Y40 to Y48 by using the PR instruction when X0 goes ON. Because SM701 is OFF, The PR instruction will output ASCII code until 00H is encountered.

	b	15b	8b7	<u>b0</u>
	D0	35н (5)	33н (3)	
W11 W10	D1	37н (7)	34н (4)	PR
3 5 4 7 8 3 5 2	□=>D2	33н (3)	38н (8)	└────────────────────────────────────
BCD value	D3	32н (2)	35н (5)	Outputs "35478352"
	D4	()Он	

7.11.4 Conversion from decimal ASCII to BIN 16-bit and 32-bit data (DABIN(P),DDABIN(P))

DABIN

(1) Converts decimal ASCII data stored into the area starting from the device number designated by (s) into BIN 16-bit data, and stores it in the device number designated by (b).

For example, if the ASCII code "-25108H" is specified for the area starting from \odot , the conversion result is stored at \odot as shown below:

k	o15b8	3b7b	0						
S	32н (2)	2Dн (—)	k	o15					b0
(S)+1	31н (1)	35н (5)	$\square > D$	-	- 2	5	1	0	8
(S)+2	38н (8)	30н (0)							

- (2) The ASCII data designated by from \odot to \odot +2 can be in the range of from -32768 to 32767
- (3) The sign "20H" will be stored if the BIN data is positive, and the sign "2DH" will be stored if it is negative.

(If other than "20H " and "2DH" is set, it will be processed as positive data.)

- (4) ASCII code can be set for each position within the range from "30H" to "39H".
- (5) If the ASCII code set for individual positions is "20H" or "00H," it will be processed as "30H".

DDABIN

 Converts decimal ASCII data stored into the area starting from the device number designated by (s) into BIN 32-bit data, and stores it in the device number designated by (D).

For example, if the ASCII code of -1234543210 H is designated for the area starting from (s), the operation result would be stored at (D)+1 and (D) in the following manner:

t	o15b8	b7b	0
S	31н (1)	2Dн (—)	
(S) +1	33н (3)	32н (2)	D+1 D
(S) +2	35н (5)	34н (4)	
S +3	33н (3)	34н (4)	
S +4	31н (1)	32н (2)	_
S +5		30н (0)	

(2) The ASCII data designated by s to s +5 can be in the range of from -2147483648 to 2147483647.

Further, data stored at the upper bytes of (s) +5 will be ignored.

(3) The sign "20H" will be stored if the BIN data is positive, and the sign "2DH" will be stored if it is negative.

(If other than "20H " and "2DH" is set, it will be processed as positive data.)

- (4) ASCII code can be set for each position within the range from "30H" to "39H".
- (5) If the ASCII code set for individual positions is "20H" or "00H," it will be processed as "30H".

Operation Error

- (1) In any of the following cases, an operation error occurs, the error flag (SM0) turns ON, and an error code is stored into SD0.
 - The ASCII code designated by (s) to (s) +5 for the individual numbers is something other than "30H" to "39H", "20H", or "00H". (Error code: 4100)
 - The ASCII data designated by (s) to (s) +5 is outside the ranges shown below:

(Error code: 4100)

When DABIN instruction is used-32768 to 32767 When DDABIN instruction is used.....-2147483648 to 2147483647

 The device specified by (s) exceeds the range of the corresponding device. (For the Universal model QCPU only.) (Error code: 4101)

Program Example

(1) The following program converts the decimal, 5-digit ASCII data and sign set at D20 through D22 to BIN values, and stores the result at D0.

[Operation]

(2) The following program converts the decimal, 10-digit ASCII data and sign set at D20 through D25 to BIN values and stores the result at D10 and D11.

[Ladder Mode]			[List Mo	de]	
0 SM400		D10 7	Step	Instruction	Device
4	_	-[END]	0 1 4	LD DDAB I NP END	SM400 D20 D10

[Operation]

b	<u> 15b</u>	<u>8b7b</u>	<u>0</u>	
D20	20н (space)	20н (space)		
D21	20н (space)	20н (space)		D10
D22	39н (9)	33н (3)		6 8 3 7 0
D23	38н (8)	36н (6)	(December 1 and 1	
D24	37н (7)	33н (3)	(Regarded as +0003968370) BI	N value
D25		30н (0)		
	"	. **		

்டடடட 3968370

7.11.5 Conversion from hexadecimal ASCII to BIN 16-bit and 32-bit data (HABIN(P),DHABIN(P))

HABIN

(1) Converts hexadecimal ASCII data stored in the area starting from the device number designated by (s) into BIN 16-bit data, and stores it in the device number designated by (D).

For example, if the ASCII code of 5A8D_H is designated for the area starting from S, the operation result would be stored at D in the following manner:

	b15b8	3 b7	-b0	45	1.0
S	41н (A)	35н (5)		EAQD	00
(S)+1	44н (D)	38 н (8)		DAODH	

- (2) The ASCII data designated by (s) to (s)+1 can be in the range of from 0000H to FFFFH.
- (3) The ASCII codes can be in the range of "30H" to "39H" and from "41H" to "46H".

DHABIN

(1) Converts hexadecimal ASCII data stored in the area starting from the device number designated by (s) into BIN 32-bit data, and stores it in the device number designated by (b).

(S) ASCII code for the 7th digit ASCII code for the 8th digit (D)+1 (D)	
(S) +1 ASCII code for the 5th digit. ASCII code for the 6th digit	- b0
(S) +2 ASCII code for the 3rd digit, ASCII code for the 4th digit	s
S +3 ASCII code for the 1st digit ASCII code for the 2nd digit BIN 32 bits	

For example, if the ASCII code of 5CB807E1 μ is designated for the area starting from (s), the operation result would be stored at (D)+1 and (D) in the following manner:

b	<u> 15b8</u>	b7b()		
S	43н (C)	35н (5)	b 04	D+1	. D
(S)+1	38 _H (8)	42н (B)		FCP9	07E1
(Š)+2	37 _H (7)	30 _H (0)		ЭСВОН	UTETH
<u></u> 	31н (1)	45н (E)			

- (2) The ASCII data designated by \odot to \odot +3 can be in the range of from 00000000H to FFFFFFFH.
- (3) The ASCII codes can be in the range of "30H" to "39H" and from "41H" to "46H".

✓ Operation Error

- (1) In any of the following cases, an operation error occurs, the error flag (SM0) turns ON, and an error code is stored into SD0.
 - The ASCII codes for the individual numbers designated by (s) to (s) +3 are outside the range of from "30H" to "39H" and from "41H" to "46H". (Error code: 4100)
 - The device specified by (s) exceeds the range of the corresponding device. (For the Universal model QCPU only.) (Error code: 4101)

Program Example

 The following program converts the hexadecimal, 4-digit ASCII data set at D20 and D21 to BIN data, and stores the result at D0.

[Operation]

(2) The following program converts the hexadecimal, 8-digit ASCII data set at D20 to D23 to BIN values, and stores the result at D10 and D11.

[Operation]

b	15b8	b7 b()		
D20	46н (F)	34н (4)		D11	D10
D21	32н (2)	44н (D)		12201	07264
D22	37н (7)	38н (8)	Begarded as 4ED29750	13391	97204
D23	30н (0)	35н (5)	(1339197264 in decimal	BIN	value
	"4FD2	8750"	value)	j	

7.11.6 Conversion from decimal ASCII to BCD 4-digit or 8-digit data (DABCD(P),DDABCD(P))

					indica	ates an instruc	tion symbo	I of DABCD/DD	ABCD
DABCD,DE	DABCD		Co	mmand				S D	
		DP T	Co	mmand		[P	S D	
DADCDF,L			I						
DADCDF,L		 ۱) (۱) (۱) (۱) (۱) (۱) (۱) (۱) (۱) (۱) (CII data to be co	onverted to BC	D value or head	d number of the	devices wher	re the ASCII data	is store
DADCDF,L		⑤:AS (ch	CII data to be co aracter string)	onverted to BC	CD value or head	d number of the	devices wher	re the ASCII data	is store
DADODF,L		S : AS (ch D : He	CII data to be co aracter string) ad number of th	onverted to BC	CD value or head re the conversio	d number of the	devices wher	re the ASCII data 4 digits/8 digits)	is store
DADODF,L	Setting Data	(ch ⊚ : He Internal I Bit	CII data to be co aracter string) ad number of th Devices Word	onverted to BC e devices when , ZR	CD value or head re the conversio J	d number of the on result will be s	devices wher stored (BCD 4 Zn	re the ASCII data 4 digits/8 digits) Constants \$	is store Othe
DADODF,L	Setting Data S	© : AS (ch D : He Internal I Bit —	CII data to be ca aracter string) ad number of th Devices Word	onverted to BC e devices when , ZR	CD value or head re the conversio JCA Word	d number of the on result will be s	devices wher stored (BCD 4 Zn	re the ASCII data 4 digits/8 digits) Constants \$	is store Othe

DABCD

(1) Converts decimal ASCII data stored in the area starting from device number designated by (s) into 4-digit BCD data, and stores at device number designated by (b).

For example, if the ASCII code of 8765 μ is designated for the area starting from s, the operation results would be stored at b in the following manner:

	b15b8	b7	b0	h15 h10) h 1 1 h 0	0 h7 h4	h2 h0
S	37н (7)	<u> 38</u> н (8)		010012		00704	
(S)+1	35н (5)	36н (6)		8	1	6	5

- (2) The ASCII data designated by \odot to \odot +1 can be in the range of from 0 to 9999.
- (3) The ASCII code set at each digit can be in the range of from "30H" to "39H".
- (4) If ASCII code for individual digits is "20H" or "00H", it is processed as "30H".

DDABCD

(1) Converts decimal ASCII data stored in the area starting from the device designated by s to 8-digit BCD data, and stores it into the area starting from the device designated by s.

For example, if the ASCII code of 87654321 μ is designated for the area starting from (s), the operation results would be stored at (p)+1 and (p) in the following manner:

t	o15b8	b7 b(2									
S	37н (7)	38н (8)										
(S)+1	35н (5)	36H (6)	b	31 b28	b27b24	4b23b2	0b19b	16b15	5b12	b11b8	b7 b4	b3 b0
<u></u> (\$)+2	33н (3)	34н (4)	\square	8	7	6	5		4	3	2	1
(S)+3	31н (1)	32н (2)										
			·		D)+1				(I	2)	

- (2) The ASCII data designated at (s) to (s) +3 can be in the range of from 0 to 999999999.
- (3) The ASCII code set at each digit can be in the range of from "30H" to "39H".
- (4) If ASCII code for individual digits is from "20H" to "00H", it is processed as "30H".

Coperation Error

- (1) In any of the following cases, an operation error occurs, the error flag (SM0) turns ON, and an error code is stored into SD0.
 - There are characters within the data at (s) that are outside the 0 to 9 range.

(Error code: 4100)

• The device specified by (s) exceeds the range of the corresponding device. (For the Universal model QCPU only.) (Error code: 4101)

Program Example

 The following program converts the decimal ASCII data set from D20 to D22 to BCD 4-digit data, and outputs the results to Y40 to Y4F.

[Ladder Mode]

[List Mode]

(2) The following program converts the decimal ASCII data set at D20 to D23 into 8-digit BCD data, stores the result at D10 and D11, and also outputs it to from Y40 to Y5F. [Ladder Mode]

[List Mode]

[Operation]

t	o15b	8b7b0)				
D20	34н (4)	20н(space)		D11	10	DMOV	
D21	37н (7)	39н (9)	N		2949	DIVIOV	-1 0 4 0 7 2 0 4 0
D22	39н (9)	32н (2)	Regarded		2 3 4 3		
D23	39н (9)	34н (4)	as 04972949	BCD	value		BCD value
	" ب	4972949"	()				

 \propto

7.11.7 Reading device comment data (COMRD(P))

							Basic	performance Pro	Redundant	Univer
CON	IRD		Co	mmand			COMRI	D (S)		-
COM	IRDP		Col	mmand			COMRE	DP (S)	D	-
		୍ତି : He D : He	ead number ead number	of the devid	ces where a	comment to ne read com	be read is store ment will be store	ed (Device nar red (character	me) string)	
	Setting Data	Internal Bit	Devices Word	R, ZR	J∭ Bit	Word	U:\G	Zn	Constants	Oth BL\S \TR P,I,
	S	0	C)		0		-		
	D		C)				-		-

(1) Reads the comment at the device number designated by (s), and stores it as ASCII code in the area starting from the device number designated by (b).

For example, if the comment for the device designated by \odot were "NO. 1 $_$ LINE $_$ START," the operation results would be stored following \bigcirc as follows:

	b	15b8	lb7b(
	D	4Fн (O)	4Ен (N)
	(D) +1	31н (1)	2Ен (.)
Comment at S	(D) +2	4Cн (L)	20н (space)
NO.1 LINE START	□)D+3	4Eн (N)	49н (I)
	(D) +4	20н (space)	45н (E)
	D +5	54н (T)	53н (S)
	(D) +6	52н (R)	41н (A)
	<u>D</u> +7	20н (space)	54н (T)
		(
)
	(D) +15	20н (space)	20н (space)
		C	Юн
	-		

- (2) If no comment has been registered for the device specified by \odot despite the fact that the comment range setting is made, all of the characters for the comment are processed as "20_H" (space).
- (3) The device number plus 1 where the final character of D is stored differs depending on the ON/OFF status of SM701 (number of characters to output select signal).
 - When SM701 is OFF: Does not changeWhen SM701 is ON: Stores "0"
- (4) When a comment is read, SM720 turns ON for one scan after the instruction is completed. SM721 turns ON during the execution of the instruction.

While SM721 is ON, the COMRD(P) instruction cannot be executed. If the attempt is made, no processing is performed.

⊠POINT -

- 1. The device comment used in the COMRD(P) instruction uses a comment file stored in a memory card and the standard ROM.
 - Comment files stored in the program memory cannot be used.
- 2. Set the comment file used for the COMRD(P) instruction in "PLC file setting" in the PLC parameter dialog box. If the comment file to be used is not set in the PLC file setting, device comments cannot be output with the COMRD(P) instruction.
- 3. The COMRD(P) instruction cannot be executed during the interrupt program. No operation if executed.

Operation Error

- (1) In any of the following cases, an operation error occurs, the error flag (SM0) turns ON, and an error code is stored into SD0.
 - The comment is not registered to the device number specified by (s). (Error code: 4100)
 - The device number specified by D is not a word device. (Error code: 4101)
 - The device specified by

 exceeds the range of the corresponding device.
 (For the Universal model QCPU only.)
 (Error code: 4101)

Program Example

(1) The following program stores the comments set at D100 into the area starting from W0 as ASCII when X1C is turned ON.

[Operation]

- (1) QCPU completes the processing after several scans.
- (2) The COMRD(P)/PRC instruction is not executed if the start signal (execution command) of the COMRD(P)/PRC instruction is turned ON before completion of the instruction (while SM721 is ON). Execute the COMRD(P)/PRC instruction when SM721 is OFF.
- (3) Two or more file comments cannot be accessed simultaneously.
- (4) The following instructions cannot be executed simultaneously because they use SM721 in common.

Instruction Name	ON During Execution	ON for One Scan After Completion	ON after Abnormal Completion
SP. FREAD SP. FWRITE	SM721	Designated by instruction.	(Device designated by instruction) + 1
PRC COMRD	SIM 21	SM720	None

7.11.8 Character string length detection (LEN(P))

				Basic	performance PTOC	Redundant	Universal
LEN		Command		LEN	S	D-	-
LENP		Command		LENP	<u> </u>	D	-
	 (s) : Character string or head number of the devices where the character string is stored (character string) (b) : Number of the device where the length of detected character string will be stored (BIN 16 bits) 						
Setting Data	Internal Bit	Devices R, ZR	J\ Bit Word	U\G	Zn	Constants \$	Other
S		0				0	
D	0	0		0			
Eunction	_						

(1) Detects length of character string designated by (s) and stores in the area starting from the device number designated by (b).

Processes the data from the device number designated by \odot to the device number storing "00H" as a character string.

For example, when the value "ABCDEFGHI" is stored in the area starting from (s), the value 9 is stored at (p).

b	o15b8	b7b()	
S	42н (B)	41н (A)		
S+1	44н (D)	43н (C)	"ABCDEEGHI" _ b15	<u>5b(</u>
S+2	46н (F)	45н (E)		9
S+3	48н (H)	47н (G)		
S+4	00н	49н (I)		

Operation Error

- (1) In the following case, an operation error occurs, the error flag (SM0) turns ON, and an error code is stored into SD0.
 - There is no "00_H" set within the relevant device range following the device number designated by (s). (Error code: 4101)

Program Example

(1) The following program outputs the length of the character string from D0 to Y40 to Y4F as BCD 4-digit values.

[Ladder Mode]

[List Mode]

[Operation]

b	15b8	b7b(
D0	49н (I)	4Dн (M)	
D1	53н (S)	54н (T)	
D2	42н (B)	55н (U)	
D3	53н (S)	49н (I)	"MITSUBISHI" BCD value
D4	49н (I)	48н (H)	(Characters "ABC" that follow 00H are ignored)
D5	B1н (A)	00н	
D6	ВЗн (С)	B2н (B)	
\approx	<u> </u>	\approx	3

7.11.9 Conversion from BIN 16-bit or 32-bit to character string (STR(P),DSTR(P))

Given Function

STR

- (2) The total number of digits that can be designated by \mathfrak{S} is from 2 to 8.
- (3) The number of digits that can be designated by (1 + 1) as a part of the decimal fraction is from 0 to 5.

However, the number of digits following the decimal point must be smaller than or equal to the total number of digits minus 3.

- (4) BIN data in the range between -32768 and 32767 can be designated at \bigotimes .
- (5) After conversion, character string data is stored at the device number (b) or later device number as indicated below:
 - (a) The sign "20_H" (space) will be stored if the BIN data is positive, and the sign "2D_H" (minus sign) will be stored if it is negative.
 - (b) If the setting for the number of digits after the decimal fraction is anything other than "0", "2EH" (.) will automatically be stored at the position before the first of the specified number of digits.

If the number of digits in the decimal fraction part of the number is "0", the ASCII code " $2E_H$ " (.) will not be stored.

(c) If the total number of digits following the decimal fraction is greater than the number of BIN data digits, a zero will be added automatically and the number converted by shifting

to the right, so that it would become "0.

Total number of digits	6	
Number of digits in decimal fraction	3	0.012
BIN data	1 2	
		Automatically added

(d) If the total number of digits excluding the sign and the decimal point is greater than the number of BIN data digits, "20H" (space) will be stored between the sign and the numeric value.

If the number of BIN digits is greater, an error will be returned.

(e) The value "00H" is automatically stored at the end of the converted character string.

DSTR

- (2) The total number of digits that can be designated by \mathfrak{S} is from 2 to 13.
- (3) The number of digits that can be designated by (s) +1 as a part of the decimal fraction is from 0 to 10.

However, the number of digits following the decimal point must be smaller than or equal to the total number of digits minus 3.

- (4) The BIN data that can be designated by (5) and (2)+1 is within the range of from -2147483648 to 2147483647.
- (5) After conversion, character string data is stored at the device number following D as indicated below:
 - (a) The sign "20H" (space) will be stored if the BIN data is positive, and the sign "2DH" (minus sign) will be stored if it is negative.
 - (b) If the setting for the number of digits after the decimal fraction is anything other than "0", "2EH" (.) will automatically be stored at the position before the first of the specified number of digits.

If the number of digits in the decimal fraction part of the number is "0", the ASCII code "2EH" (.) will not be stored.
(c) If the total number of digits following the decimal fraction is greater than the number of BIN data digits, a zero will be added automatically and the number converted by shifting to the right, so that it would become "0.0000".

(d) If the total number of digits excluding the sign and the decimal point is greater than the number of BIN data digits, "20H" (space) will be stored between the sign and the numeric value.

If the number of BIN digits is greater, an error will be returned.

(e) The value "00H" is automatically stored at the end of the converted character string.

Coperation Error

- (1) In any of the following cases, an operation error occurs, the error flag (SM0) turns ON, and an error code is stored into SD0.
 - The total number of digits designated by (s) is outside the ranges shown below.

```
(Error code: 4100)
```

When the STR instruction is in use2 to 8 When the DSTR instruction is in use.....2 to 13

The number of digits designated as a part of the decimal fraction by (1 is outside the range shown below. (Error code: 4100) When the STR instruction is in use0 to 5

When the DSTR instruction is in use.....0 to 10

• The relationship between the total number of digits designated by (s) and the number of digits in the decimal fraction designated by (s) +1 is not as shown below:

(Error code: 4100)

Total number of digits minus 3 is equal to or larger than the number of digits in the decimal fraction.

The number of digits designated by s is smaller than "2 + number of digits of the BIN data, designated by s ".

(Number of digits of \mathfrak{G} < Number of digits of the BIN data at \mathfrak{G} without a sign + Number of digits of a sign (+ or -) + Number of digits of decimal point (.)) (Error code: 4100)

 7

Program Example

 The following program converts the BIN 16-bit data stored at D10 when X0 is turned ON in accordance with the digit designation of D0 and D1, and stores the result from D20 to D23. [Ladder Mode]

[List Mode]

[Operation]

		b	015	b8b7	b0
D10	12672	D20	31н (1)	20н (space)	
		D21	36н (6)	32н (2)	" 4007 0
D0	7	D22	2Eн (.)	37н (7)	1267.2
D1	1	D23	00н	32н (2)	

(2) The following program converts the BIN 32-bit data stored at D10 and D11 when X0 is turned ON in accordance with the digit designation of D0 and D1, and stores the result at from D20 to D26.

[Ladder Mode]

[List Mode]

Step	Instruction		Device	
0 1 4 6 8 12	LD DMOVP MOVP MOVP DSTRP END	X0 K12345 K12 K9 D0	678 D0 D1 D10	D10 D20

[Operation]

7

7.11.10 Conversion from character string to BIN 16-bit or 32-bit data (VAL(P),DVAL(P))

Basic model QCPU: The upper five digits of the serial No. are "04122" or larger (Correspording GX Seveloper :Version 8.00 A or later).

		indicates an instruction symbol of VAL/DVAL.
VAL,DVAL	Command	<u> </u>
VALP,DVALP _	Command	P S 01 02

(s): Character string to be converted to BIN data or head number of the devices where the character string is stored (character string)

(D): Head number of the devices where the number of digits of the converted BIN data will be stored (BIN 16 bits)

0 : Head number of the devices where the converted BIN data will be stored (BIN 16/32 bits)

Setting	Internal	Devices	R 7R	J]\]				u .c	uiii Zn		Constants	Other
Data	Bit	Word	N, 2N	Bit	Word	0::\G::	2.1	\$	Othor			
S	_	C)					0				
đ	0	C)	_								
02	0	C)			0		_	_			

Grant Function

VAL

(1) Converts character strings stored in the device numbers starting from that designated at s to BIN 16-bit data, and stores the number of digits and BIN data in and and 2.
 For conversions from character strings to BIN, all data from the device number designated

by s to the device number where "00H" is stored will be processed as character strings.

For example, if the character string "-123.45" is designated for the area starting from (s), the operation result would be stored at (s) and (s) in the following manner:

- (2) The total number of characters that can be designated as a character string at $_{\odot}$ is from 2 to 8.
- (3) From 0 to 5 characters from the character string designated at (s) can become the decimal fraction part.

However, this number must not exceed the total number of digits minus 3.

(4) The range of the numerical character string that can be converted to BIN value is from -32768 to 32767, ignoring a decimal point.

Numerical value character strings, excluding the sign and the decimal point, can be designated only within the range from " 30_{H} " to " 39_{H} ".

The value ignoring a decimal point means:

Example : "−12345.6" → "−123456"

- (5) The sign "20_H" will be stored if the numerical value is positive, and the sign "2D_H" will be stored if it is negative.
- (6) " $2E_H$ " is set for the decimal point.
- (7) The total number of digits stored at a amounts to all characters expressing numerical values (including signs and decimal points).

The characters following the decimal point stored at D_1 +1 include the number of characters from "2E_H" (.) onward.

The BIN data stored at $_{\textcircled{0}2}$ is the character string ignoring the decimal point that has been converted to BIN data.

(8) In cases where the character string designated by S contains "20H" (space) or "30H" (0) between the sign and the first numerical value other than "0", these "20H" and "30H" are ignored in the conversion into a BIN value.

DVAL

(1) Converts the character string stored in the area starting from the device designated by (s) to BIN 32-bit data, and stores the digits numbers and BIN data in (n) and (2). For conversions from character strings to BIN, all data from the device number designated by (s) to the device number where "00H" is stored will be processed as character strings.

- (2) The total number of characters in the character string indicated by (s) is from 2 to 13.
- (3) From 0 to 10 characters in the character string indicated by ${}_{\textcircled{S}}$ can be the decimal fraction part.

However, this number must not exceed the total number of digits minus 3.

(4) The range of the numerical character string that can be converted to BIN value is from -2147483648 to 2147483647, excluding the decimal point.

Numerical value character strings, excluding the sign and the decimal point, can be designated only within the range from "30H" to "39H".

- (5) The sign "20_H" will be stored if the numerical value is positive, and the sign "2D_H" will be stored if it is negative.
- (6) "2E_H" is set for the decimal point.
- (7) The total number of digits stored at D1 amounts to all characters expressing numerical values (including signs and decimal points).

The characters following the decimal point stored at p_1 +1 include the number of characters from "2E_H" (.) onward.

The BIN data stored at $_{\odot}$ is the character string ignoring the decimal point that has been converted to BIN data.

(8) In cases where the character string designated by \odot contains "20_H" (space) or "30_H" (0) between the sign and the first numerical value other than "0", these "20_H" and "30_H" are ignored in the conversion into a BIN value.

✓ Operation Error

- (1) In any of the following cases, an operation error occurs, the error flag (SM0) turns ON, and an error code is stored into SD0.
 - The number of characters in the character string designated by (5) falls outside the ranges shown below: (Error code: 4100)
 When VAL instruction is in use From 2 to 8 characters
 When DVAL instruction is in use From 2 to 13 characters

 - The total number of characters in the character string designated by (s) and the number of characters in the decimal fraction part stand in a relationship that is outside the range indicated below: (Error code: 4100)
 Total number of characters minus 3 is equal to or greater than the number of characters in
 - An ASCII code other than "20_H" or "2D_H" has been set for the sign.

the decimal fraction part.

(Error code: 4100)

- An ASCII code other than from "30H" to "39H" or "2EH" (decimal point) has been set as a digit for one of the individual numbers. (Error code: 4100)
- There has been more than one decimal point set in the value. (Error code: 4100)
- The value of the BIN value when converted falls outside the following ranges:

(Error code: 4100)

When VAL instruction is in use	-32768 to 32767
When DVAL instruction is in use	-2147483648 to 2147483647

• No "00H" is set within the range from the device number designated by (s) to the last device number of the relevant device. (Error code: 4101)

7

/ Program Example

(1) The following program reads the character string data stored from D20 to D22 as an integer, converts it to a BIN value, and stores it at D0 when X0 is ON.

[Operation]

(2) The following program reads the character string data stored from D20 to D24 as an integer, converts it to a BIN value, and stores it at D0 when X0 is ON.

[Operation]

Set 00H

7.11.11 Conversion from floating decimal point to character string data (ESTR(P))

Basic model QCPU: The upper five digits of the serial No. are "04122" or larger.

(s): 32-bit floating decimal point data to be converted or head number of the devices where the data is stored (real number)

(BIN 16 bits) 🕸 : Head number of the devices where display designation for the numerical value to be converted is stored (BIN 16 bits)

(D): Head number of	the devices	where the converted	character string	will be stored (c	haracter string)

Setting	Internal	Devices	R 7R	J!\			Zn	Constants	Other
Data	Bit	Word	,	Bit	Word	0: (G:)		E	0 1101
<u>(S1)</u>	—	C)	_		0	⊜*1	0	_
\$2		C)				_		
D		C)				_		

*1:Available only in multiple Universal model QCPU

Grand Function

- (1) Converts the 32-bit floating decimal point data designated by (s) to a character string according to the display designation specified by (s), and stores the result into the area starting from the device number designated by (b).
- (2) The post-conversion data differs depending on the display designation designated by \mathfrak{B} .

When using decimal point format

32-bit floating-point real number

Automatically stored at the end of character sting

For example, in a case where there are 8 digits in total, with 3 digits in the decimal fraction part, and the value designated is -1.23456, the operation result would be stored in the area starting from \bigcirc in the following manner:

32-bit floating-point real number

(a) The total number of digits that can be designated by _∞ +1 is as shown below: When the number of decimal fraction digits is "0"

......Number of digits (max.: 24) \ge 2

When the number of decimal fraction digits is other than "0"

...... Number of digits (max.: 24) \geq (Number of decimal fraction digits + 3)

(b) The number of digits of decimal fraction part that can be designated by $\mathfrak{D} + 2$ is from 0 to 7.

However, the number of digits following the decimal point must be smaller than or equal to the total number of digits minus 3.

- (c) The converted character string data is stored at the area starting from the device number (b) as indicated below:
 - 1) The sign "20H" (space) will be stored if the 32-bit floating decimal point type real number is positive, and the sign "2DH" (minus sign) will be stored if it is negative.
 - 2) If the decimal fraction part of a 32-bit floating point real number data is out of the range of the digits of decimal fraction part, the lower decimal values will be rounded off.

3) If the number of digits following the decimal point has been set at any value other than "0", "2E_H" (.) will automatically be stored at the position before the first of the specified number of digits.

If the number of digits in the decimal fraction part is "0", the ASCII code " $2E_{H}$ " (.) will not be stored.

4) If the total number of digits, excluding the sign, the decimal point and the decimal fraction part, is greater than the integer part of the 32-bit floating point type real number data, "20_H (space)" will be stored between the sign and the integer part.

5) The value "00H" is automatically stored at the end of the converted character string.

For example, in a case where there are 12 digits is total, with 4 digits in the decimal fraction portion, and the value designated is -12.34567, the operation results would be stored in the area starting from \bigcirc in the following manner:

32-bit floating-point real number

......Number of digits (max.: 24) \geq (Number of decimal fraction digits + 7)

(b) The number of digits of dicimal fraction part that can be designated by 2 + 2 is from 0 to 7.

However, the number of digits in the decimal fraction portion should be equal to or less than the total number of digits minus 7.

- (c) The converted character string data is stored at the area starting from the device number () as indicated below:
 - 1) If the 32-bit floating decimal point type real number data is positive in value, the sign before the integer will be stored as ASCII code "20H" (space), and if it is a negative value, the sign will be stored as "2DH" (-).
 - 2) The integer portion is fixed to one digit.

20H (space) will be stored between the integer and the sign.

3) If the decimal fraction part of the 32-bit floating point type real number is out of the range of the digits of the decimal fraction part, the lower decimal values will be rounded off.

4) If the number of digits of the decimal fraction part has been set at any value other than "0", "2EH" (.) will automatically be stored at the position before the first of the specified number of digits.

If the number of digits in the decimal fraction part of the number is "0", the ASCII code "2EH" (.) will not be stored.

- 5) The ASCII code "2CH" (+) will be stored as the sign for the exponent portion of the value if the exponent is positive in value, and the code "2DH" (-) will be stored if the exponent is a negative value.
- 6) The exponent portion is fixed at 2 digits. If the exponent portion is only 1 digit, the ASCII code "30H" (0) will be stored between the sign and the exponent portion of the number.

7) The value "00H" is automatically stored at the end of the converted character string.

Operation Error

- (1) In any of the following cases, an operation error occurs, the error flag (SM0) turns ON, and an error code is stored into SD0.
 - The solution value is not within the range indicated below: (Error code: 4100) 0, $2^{-126} \le |$ solution $| < 2^{128}$
 - The format designated by
 was neither 0 nor 1. (Error code: 4100)
 - The total number of digits designated by (2) + 1 is outside the ranges shown below. (Error code: 4100)

	· · · · · · · · · · · · · · · · · · ·
When using decimal point format	
When the number of decimal fraction digits is "0"	
Total number of digits \ge 2	
When the number of decimal fraction digits is other than "0"	
	igits + 3)
When using exponent format	
When the number of decimal fraction digits is "0"	
Total number of digits \ge 6	
When the number of decimal fraction digits is other than "0"	
	igits + 7)
The number of digits designated for the decimal fraction portion of the	value by 😰 +2 was
outside the ranges indicated below:	(Error code: 4100)
When using the decimal point format	
Number of decimal fraction digits \leq (Total number of d When using the exponent format	igits – 3)
Number of decimal fraction digits \leq (Total number of d	igits [_] 7)
The value whose total digits exceeds "24" is specified.	(Error code: 4100)
The device range to store the character string designated by ${}_{\bigcirc}$ exceed device range.	eds the relevant (Error code: 4101)
The device specified by (2) exceeds the range of the corresponding de (For the Universal model QCPU only.)	evice. (Error code: 4101)
The value of the specified device is -0 , unnormalized number, nonnu (For the Universal model QCPU only)	meric, and ±∞ . (Error code: 4140)

7-222

Program Example

(1) The following program converts the 32-bit floating point type real number data which had been stored at R0 and R1 in accordance with the conversion designation that is being stored at R10 to R12, and stores the result following D0 when X0 goes ON.

[Ladder Mode]					[List Mode]					
0	xo 	[ESTRP	R0	R10	DO]	Step	Instruction		Device	
5					TEND]	0 1	LD ESTRP	XO RO	R10	DO
Ĭ						5	END			

[Operation]

(2) The following program converts the 32-bit floating decimal point type real number data which had been stored at D0 and D1 in accordance with the conversion designation that is being stored at R10 to R12, and stores the result following D10 when X1C goes ON.

[Ladder Mode]

[List Mode]

[Operation]

7

7.11.12 Conversion from character string to floating decimal point data (EVAL(P))

Basic model QCPU: The upper five digits of the serial No. are "04122" or larger.

Grant Function

- Converts character string stored in the area starting from the device number designated by

 (s) to 32-bit floating point type real number, and stores result at device designated by
 (b)
- (2) The designated character string can be converted to 32-bit floating point type real number data either in the decimal point format or the exponent format.

(b) When using exponent format

	<u>b15</u> b)8b7 k	<u>00</u>			
S	20н (space)	2Dн (-)				
(S)+1	2Eн(.)	31н(1)		~	~	
(S)+2	32н(2)	33н(3)		<u>(D)+1</u>	(D)	
(S)+3	31 _H (1)	30н(0)	\square	-1.320	1E + 10	
(S)+4	2Bн(+)	45н(E)				,
(S)+5	30н(0)	31н(1)		32-bit floa	ating-poin	t
(S)+6		00н		ica num		

1 1 . 3 2 0 1 E + 1 0

- (3) Excluding the sign, decimal point, and exponent portion of the result, 6 digits of the character string designated by (s) to be converted to a 32-bit floating decimal point type real number will be effective; the 7th digit on later digit will be cut from the result.
 - (a) When using decimal point format

	b15b8	b7 b()
S	20н (space)	2Dн (-)	
(S)+1	31 _H (1)	20н (space)	
(S)+2	33н(3)	2Ен(.)	<u>(D)+1</u> (D)
(S)+3	31 _H (1)	30н (0)	-1.30 156
(S)+4	36н(6)	35н(5)	
(S)+5	31 _H (1)	38н(8)	32-bit floating-point real number
S+6	00н	32н(2)	
	- 1 .3	0 1 5 6 8 1 2 These are cu	t

(b) When using exponent format

	b15b8	b7 b0	0
S	20н (space)	2Dн (-)	
(S)+1	2Eн(.)	31н(1)	
(S)+2	35н (5)	33н(3)	D+1D
S +3	33н(3)	30н(0)	-1 .350 34 E- 2
(S)+4	31 _H (1)	34н(4)	
(S)+5	45н(E)	32н(2)	32-bit floating-point
(S)+6	30 н (0)	2Dн (-)	Tearnumber
(S)+7	00н	32н(2)	
	- 1.350	3 4 <u>1 2</u> E - 0 2	
		These are cut	

- (4) In the decimal point format, if "2BH" (+) is specified for the sign or if the designation of sign is omitted, conversion is made assuming a positive value.
 If "2DH" (-) is specified for the sign, the character string is converted assuming a negative value.
- (5) In the exponent format, if "2B_H" (+) is specified for the sign in the exponent portion or if the designation of sign is omitted, conversion is made assuming a positive value. If "2D_H" (-) is specified for the sign in the exponent portion, the character string is converted assuming a negative value.

(6) In a case where the ASCII code "20_H (space)" or "30_H" (0) exists between numbers not including the initial zero in a character string specified by (s), it will be ignored when the conversion is done.

(7) In a case where the ASCII code "30H (0) " exists between the character "E" and a number in an exponent format character string, the "30H" would be ignored when the conversion is performed.

- (8) If the "20H" (space) code is contained in the character string, the code is ignored in the conversion.
- (9) Up to 24 characters can be set for a character string. The codes "20H" (space) and "30H" (0) contained in the character string are also counted as a character.

Operation Error

- (1) In any of the following cases, an operation error occurs, the error flag (SM0) turns ON, and an error code is stored into SD0.
 - The integer portion or the decimal fraction portion contains a character other than one in the range of from "30H" (0) to "39H" (9).
 (Error code: 4100)
 - There are two or more occurrences of the character "2E_H" (.) in the character string designated by (D). (Error code: 4100)
 - The exponent portion contains the code (character) other than "45_H"(E), "2B_H"(+), "45_H"(E) or "2D_H"(-), or the string contains more than one exponent portion.

(Error code: 4100)

- Data after conversion is not within the following range. (Error code: 4100) 0, $2^{-126} \le |data after conversion| \le 2^{128}$
- The code "00_H" does not appear in the range from ${\scriptstyle\textcircled{(s)}}$ to the relevant device.

(Error code: 4101)

- The number of characters in the character string following ${}_{\textcircled{S}}$ is either 0 or more than 24. (Error code: 4100)

/Program Example

(1) The following program converts the character string stored in the area starting from R0 to a 32-bit floating decimal point type real number, and stores the result at D0 and D1 when X20 is turned ON.

[Operation]

T

b	015b8	3b7 b0	
R0	20н (space)	2Dн (-)	
R1	31 _H (1)	30н (0)	D1 D0
R2	32н(2)	2Eн(.)	
R3	34н (4)	33н(3)	
R4	32н(2)	35н(5)	
R5	00н	31н(1)	
	[-][<u>]</u> [0][1][.][234521	

- T Ignored These are cut
- (2) The following program converts the character string stored in the area starting from D10 to a 32-bit floating decimal point type real number, and stores the result at D100 and D101 when X20 is turned ON.

[Ladder Mode]					[List Mode]				
X20	-FVALP	D10	D100	1	Step	Instruction		Device	
4			-[END]	0 1 4	LD EVALP END	X20 D10	D100	

[Operation]

I	b15b8	b7 b()
D10	20н (space)	20н (space)	
D11	2Eн(.)	31 _H (1)	
D12	33н(3)	32н(2)	D101D100
D13	35н(5)	34н(4)	1.234 5E-2
D14	2Dн (-)	45н(E)	
D15	32н(2)	30н(0)	
D16	00)	
	[_][][1][.][2][3] ↑ Ignored	45E-02 ↑ Ignored	

7

7.11.13 Conversion from hexadecimal BIN to ASCII (ASC(P))

Process

Redundan

Universa

Command ASC S ┥┝ ASC D n Command ASCP ASCP S (D)n : Head number of the devices where BIN data to be converted to a character string is stored (BIN 16 bits) (S) (D) : Head number of the devices where the converted character string will be stored (character string) : Number of characters to be stored (BIN 16 bits) n Setting Internal Devices Constants J....\.... R, ZR U...\G.... Zn Other Data К, Н Bit Word Word S \bigcirc ____ \bigcirc n \bigcirc \bigcirc \bigcirc

Grant Function

(1) Converts the BIN 16-bit data stored in the area starting from the device designated by s to ASCII by treating the BIN data in hexadecimal representation. Then, stores the converted data into the area starting from the device designated by b, for the number of characters specified by n.

- (2) The use of n to set the number of characters causes the BIN data range designated by (s) and the character string storage device range designated by (c) to be set automatically.
- (3) Processing will be performed accurately even if the device range where BIN data to be converted is being stored overlaps with the device range where the converted ASCII data will be stored.

	b15b12	b11b8	8b7 b4	b3 b	0	b15	b8b7-	b(
D11	4 _H	3н	2н	1н)10 ;	32н	31н
D12	8н	7н	6н	5н)11 ;	34н	33н
D13		1	Ан	9н)12 ;	36н	35н
					\c)13 ;	38н	37н
						14	41 ₁₁	304

(4) If an odd number of characters has been designated by n, the ASCII code "00H" will be automatically stored in the upper 8 bits of the final device in the range where the character string is to be stored.

When 5 characters have been designated by n.

(5) If the number of characters designated by n is "0", conversion processing will not be conducted.

Operation Error

- (1) In any of the following cases, an operation error occurs, the error flag (SM0) turns ON, and an error code is stored into SD0.
 - The range for the number of characters designated by n following the device number designated by (s) exceeds the relevant device range. (Error code: 4101)
 - The range for the number of characters designated by n following the device number designated by (D) exceeds the relevant device range. (Error code: 4101)

Program Example

(1) The following program reads the BIN data being stored at D0 as hexadecimal values, converts them to a character string, and stores the result from D10 to D14 when X0 is turned ON.

[Ladder Mode]						[List Mode]				
		DO	D10	K10	٦	Step	Instruction		Device	
;				-END	}	0 1 5	LD ASCP END	XO DO	D10	K10

[Operation]

l	o15 b12	b11b8	b7 b4	b3b() k	o15	b8b7b0
D0	Сн	7н	2н	9н		32н (2)	39н (9)
D1	0н	5н	Ан	Fн	D11	43н (C)	37н (7)
D2	0н	0н	2н	2н	」 ∫D12	41н (A)	46н (F)
					D13	30н (0)	35н (5)
					└ <u></u> D14	32н (2)	32н (2)

7.11.14 Conversion from ASCII to hexadecimal BIN (HEX(P))

Process Redundant Universal

HE	× _		Command		HEX	S	D	n	_
HE	XP _	f	Command		HEXP	S	D	n	
		Si ∶He	ad number of the devic	ces where a ch	aracter string to	be converte	ed to BIN dat	ta is stored (cł	naracter s
		n : Nu	ad number of the devic umber of characters to b	ces where the observed (BIN	converted BIN (16 bits)	data will be s	tored (BIN 1	6 bits)	
	Setting Data	n : Nu Internal Bit	and number of the device umber of characters to b Devices Word	ces where the d be stored (BIN J:	Converted BIN of 16 bits)	data will be s	tored (BIN 1 Zn	6 bits) Constants K, H	Othe
	Setting Data S	n : Nu Internal Bit	ad number of the devic umber of characters to t Devices Word C	ces where the d be stored (BIN Jiiii\iii Bit	Converted BIN (16 bits)	data will be s	tored (BIN 1 Zn	6 bits) Constants K, H	Othe
	Setting Data ©	0 : He n : Nu Internal Bit —	And number of the devices Word R, ZR	ces where the d be stored (BIN Jilli)	converted BIN of 16 bits) j Word	data will be s	zn	6 bits) Constants K, H	Othe

(1) Converts the number of characters of hexadecimal ASCII data designated by n stored in the area starting from the device number designated by (s) into BIN values and stores them in the area starting from the device number designated by (b).

Code "38H" remains unchanged since the designated number of characters is "9".

(2) When the number of characters is specified for n, the range of characters designated by as well as the device range designated by in which the BIN data will be stored are automatically decided. (3) Accurate processing will be conducted even in cases where the range of devices where the ASCII code to be converted is being stored overlaps with the range of devices that will store the converted BIN data.

b	015b8	3b7	-b0	b15b12	2b11b8	3b7b4	4b3 b0
D10	32н (2)	31н (1))>D1	1 4н	3н	2н	1н
D11	34н (4)	33н (3)	//D1	2 8н	7н	6н	5н
D12	36н (6)	35н (5)		3 Он	0н	Ан	9н
D13	38н (8)	37н (7)					
D14	41н (A)	39н (9)					

(4) If the number of characters designated by n is not divisible by 4, "0" will be automatically stored after the designated number of characters in the final device number of the devices which are storing the converted BIN values.

the area outside the range of the designated number of characters.

- (5) If the number of characters designated by n is "0", conversion processing will not be conducted.
- (6) ASCII code that can be designated by \odot includes from "30_H" to "39_H" and from "41_H" to "46_H".

Operation Error

- (1) In any of the following cases, an operation error occurs, the error flag (SM0) turns ON, and an error code is stored into SD0.
 - Characters outside the hexadecimal character string (that is, characters that are not in the range of from "30_H" to "39_H", or from "41_H" to "46_H") have been set by (s).

(Error code: 4100)

- The range for the number of characters designated by n following the device number designated by (s) exceeds the relevant device range. (Error code: 4101)
- The range for the number of characters designated by n following the device number designated by (1) exceeds the relevant device range. (Error code: 4101)
- The number of characters designated by n is a negative value. (Error code: 4101)

Program Example

(1) The following program converts the character string being stored from D0 to D4 to BIN data and stores the result from D10 to D14 when X0 goes ON.

[Ladder Mode]

[Operation]

b	15	b8	b7b()	b15 b12	2b11b8	b7b4	b3 b0
D0		42н (B)	36н (6)		2н	5н	Вн	6н
D1		32H (2)	35H (5)		3н	1н	7н	Ан
D2		37н (7)	41н (A)		0н	0н	9н	7н
D3		33н (3)	31н (1)					
D4		39 _н (9)	37н (7)					

7.11.15 Extracting character string data from the right or left (RIGHT(P),LEFT(P))

Setting	Internal	Devices	R 7R	J	J		Zn	Constants		Other
Data	Bit	Word	Ν, ΖΙΧ	Bit	Word	0::\G::	211	К, Н	\$	Calor
S	—	C)			—		_	0	—
D	—	C)			_		_	_	_
n	0	C)			0		0	-	_

RIGHT

- (1) Stores n number of characters from the right side of the character string (the end of the character string) being stored in devices starting from that whose number is designated by
 - s , in devices starting from that whose number is designated by b .

-				-	
_	b15b8	3b7b0			
S	ASCII code for the 2nd character	ASCII code for the 1st character		015D8	SD7bU
(S)+1	ASCII code for the 4th character	ASCII code for the 3rd character		ASCII code for the (last - n + 2)th character	ASCII code for the (last - n + 1)th character
		5	\ U+1	ASCII code for the (last - h + 4)th character	ASCII code for the (last - h + 3)th character
	ASCII code for the (last - n + 2)th character	ASCII code for the (last - n + 1)th character		[
	ASCII code for the (last - n + 4)th character	ASCII code for the (last - n + 3)th character		ASCII code for the (last - 1)th character	ASCII code for the (last - 2)th character
1		5	1	00н	ASCII code for the last character
	ASCII code for the (last - 1)th character	ASCII code for the (last - 2)th character			
	00н	ASCII code for the last character			
Whe	n n = 5				
	D15CID	8D7D0	J	b15b	8b7b0
S	42н (В)	41н (A)	D	32 (2)	31µ(1)
(<u>S</u>)+1	44н(D)	43н (C)		34(4)	33(2)
(S)+2	46н(F)	45 _H (E)		00	00⊓(0) 05 (5)
(S)+3	32н(2)	31н (1) 🗲	U+2	UUH	<u>ээн(э)</u>
(S)+4	34н(4)	33 _H (3)		"12	345"
(S)+5	00н	35н (5)	ASCII code for	the 5th character	
	"ABCDE	F12345"			

- (2) The NULL code (00H) indicating the end of the character string is automatically appended at the end of the character string. Refer to 3.2.5 for the format of the character string data.
- (3) If the number of characters designated by n is "0", the NULL code (00H) will be stored at \bigcirc .

LEFT

- (1) Stores n number of characters from the left side of the character string (the beginning of the character string) being stored in devices starting from that whose number is designated by
 - S , in devices starting from that whose number designated by D .

When n = 7

(2) The NULL code (00H) indicating the end of the character string is automatically added to the end of the character string.

Refer to 3.2.5 for the format of the character string data.

(3) If the number of characters designated by n is "0", the NULL code (00H) will be stored at \bigcirc .

Operation Error

- (1) In any of the following cases, an operation error occurs, the error flag (SM0) turns ON, and an error code is stored into SD0.
 - The value of n exceeds the number of characters designated by (s). (Error code: 4101)
 - The range of n characters from D exceeds the relevant device. (Error code: 4101)

Program Example

(1) The following program stores 4 characters of data from the rightmost of the character string stored in the area starting from R0, and stores it into the area starting from D0 when X0 is turned ON.

(2) The following program stores the number of characters corresponding to the value being stored in D0 from the left of the character string data being stored at D100 to the area starting from R10 when X1C is turned ON.

[Ladder Mode]

[List Mode]

[Operation]

7.11.16 Random selection from and replacement in character strings (MIDR(P),MIDW(P))

7

(2) The NULL code (00_H) indicating the end of the character string is automatically added to the end of the character string.

Refer to 3.2.5 for the format of the character string data.

- (3) No processing will be conducted if the number of characters designated by (2)+1 is "0".
- (4) If the number of characters designated by (2) +1 is "−1", stores the data up to the final character designated by (3) starting from the device designated by (2).

	o15b8	b7b	0	ŀ	15 h0	h7 h0
ଞ	42н (B)	41н (A)	_		16 (E)	45(E)
(<u></u> ସ)+1	44н (D)	43н (C)			40H (F)	43H (E)
SI)+2	46н (F)	45н (E) 🗲		(U)-1	40H (Π)	47H(G)
SI)+3	48н (H)	47н (G)	Position of	0-2 0-2	<u>4Ан (J)</u>	49H (I)
S1)+4	4Ан (J)	49н (I)	character S2	U#3	00H	4BH (K)
SI)+5	00н	4Bн (K)			"EFG	SHIJK"
	"ABCDE	EFGHIJK"				
S2 S2+	5 1 —1					

MIDW

(1) Extracts the character string data of (2) +1 characters, starting from the left end of the character string data designated by (5), and stores the extracted data to the character string data designated by (c) in the area starting from the position designated by (c) from the left end.

(2) The NULL code (00H) indicating the end of the character string is automatically added to the end of the character string.

Refer to 3.2.5 for the format of the character string data.

(3) No processing will be conducted if the number of characters designated by $\otimes +1$ is "0".

(4) If the number of characters designated by (2) +1 exceeds the final character from the character string data designated by (2), data will be stored up to the final character.

(5) If the number of characters designated by (2) +1 is "−1", stores the data up to the final character designated by (3) to the area starting from the device designated by (2).

Operation Error

- In any of the following cases, an operation error occurs, the error flag (SM0) turns ON, and an error code is stored into SD0.
 For MIDR instruction
 - The value of (2) exceeds the number of characters designated by (3). (Error code: 4101)
 - The <a>style="text-align: center;">text-align: center; from position <a>D exceeds the <a>D device range.

(Error code: 4101)

(Error code: 4101)

- The _{\$2} + 0 value is 0.
- "00H" does not exist in the specified devices that follow the device specified for (s). (Error code: 4101)

For MIDW instruction

• The value of exceeds the number of characters designated by . (Error code: 4101)

7

• The \$2+1 value exceeds the number of characters for \$1.

(Error code: 4101)

• The so + 0 value is 0.

(Error code: 4101)

• "00H" does not exist in the specified devices that follow the device specified for \mathfrak{S} .

(Error code: 4101)

Program Example

(1) The following program stores the 3rd character through the 6th character from the left of the character string stored in the area starting from D10 at devices starting from D0 when X0 is turned ON.

[Ladder Mode]

[Operation]

(2) The following program stores 4 characters of the character string data stored in the area starting from D0 into the area starting from the 3rd character from the left of the character string data in the area starting from D100 when X0 is turned ON.

[List Mode]

[Operation]

	b15	b8b7	'	b0	
D0	31н (3)	1	32н (2)		
D1	45н (E)		46н (F)		
D2	33н (3)	İ	30н (0)		
D3		00н			
"21FE03"					
F	R1 4				

	Before execution					
I	b15b8	b7 b0				
D100	53н (S)	55н (U)				
D101	59н (Y)	43н (C)				
D102	31н (1)	5Ан (Z)				
D103	42н (B)	30н (0)				
D104)н					
	"USCYZ10B"					
	After execution					
	b15b8	<u> 8b7 b0</u>				
D100	53н (S)	55н (U)				
D101	31н (1)	32н (2)				
⇒D102	45н (E)	46н (F)				
D103	42н (B)	30н (0)				
D104)н					
	"US21FE0B"					

7.11.17 Character string search (INSTR(P))

Grant Function

(1) Searches for the character string data designated by ⑤ in the area starting from the nth character from the left of the character string data designated by ⑥ and stores the result of search at the device designated by ⑤.

As the result of search, the location of match, counted in the number of characters from the first character of the character string data designated by , is stored.

When n = 3

(2) If there is no matching character string data, stores "0" at \bigcirc .

Operation Error

- (1) In any of the following cases, an operation error occurs, the error flag (SM0) turns ON, and an error code is stored into SD0.
 - The value of n exceeds the number of characters for <a>s. (Error code: 4100)
 - 00H (NULL) does not exist within the corresponding device range after the device designated by S₁, S₂. (Error code: 4100)
 - The value of n is negative number or "0". (Error code: 4100)

Program Example

(1) The following program searches from the 5th character from the left of the character string data stored in devices starting from R0 for the character string data in devices starting from D0, and stores the results at D100 when X0 goes ON.

[Ladder Mode]

[List Mode]

[Operation]

l	b15b8	b7 b() Not soarchod since
R0	49⊢ (I)	43н(C)	the search start
R1	33н (3)	32н(2)	∫ position is 5
R2	32н (2)	31 H (1)	 Searches from
R3	49н (I)	43н(C)	the 5th character
R4	00н	4Dн (M)]
	"CI2312		

(2) The following program searches from the 3rd character from the left of the character string data being stored in devices starting from D0 for the character string data "AB", and stores the results of the search at D100 when X1C goes ON.

[Ladder Mode] [List Mode] Step Instruction Device ″AB″ **FINSTRP** D0 D100 К3 LD INSTRP 0 1 7 X1C "AB" D0 D100 K3 END FEND [Operation] b15-----b8b7 -----b0 D0 32H(2) 31_H(1) Searches from the "AB" ⇒ D100 5 D1 34_H(4) 33_H(3) 3rd character 5th character from D2 42H(B) 41_H(A) the first character D3 36H(6) 35H(5) D4 42H(B) 41_H(A) D5 00⊦ "1234AB56AB"

7.11.18 Insertion of character string (STRINS(P))

QnU(D)(H)CPU: The serial number (first five digits) is "10102" or later. QnUDE(H)CPU: The serial number (first five digits) is "10102" or later.

Grant Function

(1) This instruction inserts the character string data specified by \odot to the nth device (insert position) from the initial character string data stored in the devices specified by \odot .

- (2) This instruction stores the NULL code (00H) into the device (1 word) that positions after the last device where the character string data are stored, if the character string ((s+)) value is even after the insertion.
- (3) This instruction stores the NULL code (00H) into the last device (high 8 bits) where the character string data are stored, if the character string (s+b) value is odd after the insertion.
- (4) This instruction links the device, where the character string data are stored, specified by (s) with the last device specified by (b), if n is specified by the number of devices specified by (b) plus one.

Operation Error

- (1) In any of the following cases, an operation error occurs, the error flag (SM0) turns on, and an error code is stored into SD0.
 - The number of characters in the devices specified by (s), (b), or the devices specified by (s+b) after the insertion exceeds 16383 characters. (Error code: 4100)
 - The value specified by n is not within the specified range. ($1 \le n \le 16383$)

```
(Error code: 4100)
```

- The value specified by n exceeds the number of the devices specified by ${}_{\bigcirc}$ plus one. (Error code: 4100)
- The devices, that store character strings, specified by (s) overlaps with even one of the devices specified by (p). (Error code: 4101)
- The range of the devices specified by ((s+(b)) in which character strings data have been inserted exceeds the specified device range. (Error code: 4101)
- The NULL code (00H) does not exist within the specified device range after the device specified by (s) or (D). (Error code: 4101)
- The range of the devices specified by ((s+)) in which character strings data have been inserted overlaps with the range of the devices specified by (s) that store the character string data. (Error code: 4101)

Program Example

(1) The following program inserts the character string data stored in the device D0 and up to the fourth device from the initial character string data stored in D20 and up, when M0 is turned on.

7.11.19 Deletion of character string (STRDEL(P))

QnU(D)(H)CPU: The serial number (first five digits) is "10102" or later. QnUDE(H)CPU: The serial number (first five digits) is "10102" or later.

(D) : Head number (character string) of the devices where character strings to be deleted are stored

- n1 $\,$: Deletion start position (Setting range 1 $\leq\,$ n1 $\,\leq\,$ 16383) (BIN 16 bits)
- n2 $\,$: Number of characters to be deleted (Setting range 1 $\leq\,$ n2 $\,\leq\,$ 16384-n1) (BIN 16 bits)

Setting	Internal Devices		R 7R	J			7n	Constants	Other
Data	Bit	Word	Ν, ΖΙΧ	Bit	Word	0::\G::	Z 11	К, Н	Other
D	—	C)			_		—	—
n1	_	C)			0		0	-
n2	_	C)	0			0	_	

Grant Function

(1) This instruction deletes n2 characters data in the devices specified by D starting from the device (insert position) specified by n1.

Device position where character string data to be deleted: n1 = 3Number of characters to be deleted: n2 = 5

- (2) This instruction stores the NULL code (00H) into the device (one word) that positions after the last device that stores the character string data when the character string data specified by (D) is even, after the characters are deleted.
- (3) This instruction stores the NULL code (00H) into the last device (high 8 bits) that stores the character string data when the character string data specified by D is odd, after the characters are deleted.
- (4) This instruction shifts the characters stored in the devices that position after the deleted devices by n2 characters to the right, and then stores the NULL code (00H) into the empty device.

Operation Error

- (1) In any of the following cases, an operation error occurs, the error flag (SM0) turns on, and an error code is stored into SD0.
 - The number of characters in the devices specified by D exceeds 16383.

(Error code: 4100)

- The value specified by n1 is not within the range. $(1 \le n1 \le 16383)$ (Error code: 4100)
- The value specified by n1 exceeds the number of characters in the devices specified by (Error code: 4100)
- The value specified by n2 exceeds the number of characters in the devices starting from n1th to the last devices position. (Error code: 4100)
- The value specified by n2 is negative. (Error code: 4100)

Program Example

(1) The following program deletes the fourth to the seventh characters in the character string data stored in the devices D0 and up, when M0 is turned on.

[Ladder Mode]

[List Mode]

[Operation]

7.11.20 Floating decimal point to BCD (EMOD(P))

Grant Function

(1) Dissociate the 32-bit floating decimal point data designated by ⑤ into BCD type floating point format based on the decimal fraction digits specified by ⑥, and stores the result into the area starting from the device designated by ⑤.

specifies the decimal fraction digits of the 32-bit floating decimal point real number data of
 In the example above, a decimal fraction digit is designated as shown below:
 3.25427

(2) The 7th digit of the significant digits being stored at (D) +1 and (D) +2 is rounded off to make a 6-digit number.

Operation Error

- (1) In any of the following cases, an operation error occurs, the error flag (SM0) turns ON, and an error code is stored into SD0.
 - The decimal fraction digit designated by <a>subscripts is outside the range of from 0 to 7.

```
(Error code: 4100)
```

• The device range designated by **D** exceeds the range of the relevant device.

(Error code: 4101)

- The 32-bit floating point real number specified by (s) is outside the following range. $0, 2^{-126} \leq | \text{ device } | < 2^{128}$ (Error code: 4100)
- The device specified by

 exceeds the range of the corresponding device.
 (For the Universal model QCPU only.)
 (Error code: 4101)
- The value of the specified device is -0, unnormalized number, nonnumeric, and $\pm \infty$. (For the Universal model QCPU only) (Error code: 4140)

Program Example

(1) The following program breaks down the 32-bit floating decimal point type real number data stored at D0 and D1 into BCD according to the decimal fraction digits as designated by R10, and stores the results into the area starting from D100 when X0 is turned ON.

7.11.21 From BCD format data to floating decimal point (EREXP(P))

SI: Head number of the devices where BCD type floating point format data is stored (BIN 16 bits)

- S2: Decimal fraction digits data (BIN 16 bits)
- (D): The device where the converted 32-bit floating point real number data will be stored (real number)

Process

Redundant

Universa

Setting	Internal	Devices	R 7R	J			7n	Constants	Other
Data	Bit	Word	1 X, 2 I X	Bit	Word	0:!\G:!	20	К, Н	Other
S1	—	C)	_			—	—	—
62	0	C)	0	0		0	0	
D		C)		0		⊜*1		

*1:Available only in multiple Universal model QCPU

Grant Function

(1) Converts the BCD type floating point data designated by ⑤ to the 32-bit floating decimal point real number data according to the decimal fraction digits specified by ⑥, and stores the result into the area starting from the device designated by ⑤.

- (2) The sign at (3) and the sign for the exponent part at (3) +3 is set at 0 for a positive value and at 1 for a negative value.
- (3) 0 to 38 can be set for the BCD exponent of $\mathfrak{S} + 4$.
- (4) 0 to 7 can be set for the decimal fraction digits of \mathfrak{S}_2 .

- (1) In any of the following cases, an operation error occurs, the error flag (SM0) turns ON, and an error code is stored into SD0.
 - The format designated by (s) was neither 0 nor 1. (Error code: 4100)
 - A value other than 0 to 9 exists in the each digit of (s) + 1 and (s) + 2. (Error code: 4100)
 - The format designation made by (s) + 3 is something other than 0 or 1.

(Error code: 4100)

The exponent data designated by (s) +4 is outside the range of from 0 to 38.

(Error code: 4100)

- The decimal fraction digit designated by $_{\textcircled{2}}$ is outside the range of from 0 to 7. (Error code: 4100)
- The device specified by (s) exceeds the range of the corresponding device. (For the Universal model QCPU only.) (Error code: 4101)

Program Example

(1) The following program converts the BCD type floating decimal point format data being stored in devices starting from D0 to 32-bit floating decimal point type real number data based on the decimal fraction digit being stored at D10, and stores the result at D100 and D101 when X0 goes ON.

7.12 Special function instructions

7.12.1 SIN operation on floating-point data (Single precision) (SIN(P))

(1) Returns the SIN (sine) value of the angle designated at (s) and stores the operation result in the device number designated at (b).

(2) Angles designated at \odot are set in radian units (degrees $\times \pi$ / 180). For conversion between degrees and radian values, see the RAD and DEG instructions.

- (1) In any of the following cases, an operation error occurs, the error flag (SM0) turns ON, and an error code is stored into SD0.
 - The value of the specified device is -0. *2

 (For the Basic model QCPU, High Performance model QCPU, Process CPU, Redundant CPU)
 (Error code: 4100)
 - *2: There are CPU modules that will not result in an operation error if -0 is specified. For details, refer to 3.2.4.
 - The result exceeds the following range (Operation results in an overflow) (For the Universal model QCPU only)

 $2^{128} \leq$ | Operation result |

(Error code: 4141)

• The value of the specified device is -0, unnormalized number, nonnumeric, and $\pm \infty$. (For the Universal model QCPU only) (Error code: 4140)

Program Example

(1) The following program conducts a SIN operation on the angles stored in the four BCD digits from X20 to X2F and stores the results at D0 and D1 as 32-bit floating decimal point type real numbers.

[Ladder Mode]

[List Mode]

Step	Instruction	C	Device
0 1 4 7 10 13	LD BIN FLT RAD SIN END	SM400 K4X20 D30 D20 D10	D30 D20 D10 D0

[Operations involved when X20 to X2F designate a value of 150]

7.12.2 SIN operation on floating-point data (Double precision) (SIND(P))

Basic High Process Redundant

Grant Function

(1) The SIN (sine) value of the angle specified by (s) is calculated and its result is stored into the device specified by (b).

- (2) Angles designated at \odot are set in radian units (degrees $\times \pi$ / 180). For conversion between degrees and radian values, see the RADD and DEGD instructions.
- (3) When the operation results in -0 or an underflow, the result is processed as 0.

Operation Error

- (1) In any of the following cases, an operation error occurs, the error flag (SM0) turns ON, and an error code is stored into SD0.
 - The value of the specified device is not in the following range: (Error code: 4140) $0.2^{-1022} \leq |$ value of specified device $| < 2^{1024}$
 - The value of the designated device is -0. (Error code: 4140)
 - The result exceeds the following range (Operation results in an overflow): $2^{1024} \leq |$ Operation result | (Error code: 4141)

Program Example

(1) The following program conducts a SIN operation on the angles stored in the four BCD digits from X20 to X2F and stores the results at D0 to D3 as 64-bit floating decimal point type real numbers.

[Ladder Mode]

Inputs an angle used for SIN operation (1). Converts the input angle into a 64-bit floating-point real number (2). Converts the converted angle into a radian value (3). Executes SIN operation using the converted radian value (1).

[List Mode]

Step	Instruction	Device			
0 1 3 6 9 12	LD BIN FLTD RADD SIND END	SM400 K4X20 D30 D20 D10	D30 D20 D10 D0		

Executes SIN operation using the converted radian value (④).
]

[Operations involved when X20 to X2F designate a value of 150]

7.12.3 COS operation on floating-point data (Single precision) (COS(P))

Basic model QCPU: The upper five digits of the serial No. are "04122" or larger.

(s) : Angle data of which the COS (cosine) value is obtained or head number of the devices where the angle data is stored (real number)

 $\textcircled{D}\,$: Head number of the devices where the operation result will be stored (real number)

Setting	Internal	Devices	R 7R	J	\		7n	Constants	Other
Data	Bit	Word	Ν, ΖΙΧ	Bit	Word	0::\G::		E	Other
S		C	\supset	—		0	○ *1	0	—
D		($\mathbf{)}$	_		0	○*1	_	_

*1: Applicable for the Universal model QCPU only.

Grant Function

(1) Returns the COS (cosine) value of the angle designated by (s) and stores operation result at device number designated by (b).

(2) Angles designated at (s) are set in radian units (degrees $\times \pi$ / 180). For conversion between degrees and radian values, see the RAD and DEG instructions.

- (1) In any of the following cases, an operation error occurs, the error flag (SM0) turns ON, and an error code is stored into SD0.
 - The value of the specified device is -0. *2

 (For the Basic model QCPU, High Performance model QCPU, Process CPU, Redundant CPU)
 (Error code: 4100)
 - *2: There are CPU modules that will not result in an operation error if -0 is specified. For details, refer to 3.2.4.
 - The result exceeds the following range (Operation results in an overflow) (For the Universal model QCPU only)

 $2^{128} \leq |$ Operation result |

(Error code: 4141)

• The value of the specified device is -0, unnormalized number, nonnumeric, and $\pm \infty$. (For the Universal model QCPU only) (Error code: 4140)

Program Example

(1) The following program performs a COS operation on the angle data designated by the 4 BCD digits from X20 to X2F, and stores results as 32-bit floating decimal point type real numbers at D0 and D1.

[Ladder Mode]

[Operations involved when X20 to X2F designate a value of 60]

7.12.4 COS operation on floating-point data (Double precision) (COSD(P))

Basic High Process Redundant

Grant Function

 The COS (cosine) value of the angle specified by (s) is calculated and its result is stored into the device specified by (p).

- (2) Angles designated at \odot are set in radian units (degrees $\times \pi$ / 180). For conversion between degrees and radian values, see the RADD and DEGD instructions.
- (3) When the operation results in -0 or an underflow, the result is processed as 0.

Operation Error

- (1) In any of the following cases, an operation error occurs, the error flag (SM0) turns ON, and an error code is stored into SD0.
 - The value of the specified device is not in the following range: (Error code: 4140) $0.2^{-1022} \leq |$ value of specified device $| < 2^{1024}$
 - The value of the designated device is -0. (Error code: 4140)
 - The result exceeds the following range (Operation results in an overflow):
 - $2^{1024} \leq |$ Operation result | (Error code: 4141)

Program Example

(1) The following program performs a COS operation on the angle data designated by the 4 BCD digits from X20 to X2F, and stores results as 64-bit floating decimal point type real numbers at D0 to D3.

[Ladder Mode]

[List Mode]

Step	Instruction	Device		
0 1 3 6 9 12	LD BIN FLTD RADD COSD END	SM400 K4X20 D30 D20 D10	D30 D20 D10 D0	

[Operations involved when X20 to X2F designate a value of 60]

7.12.5 TAN operation on floating-point data (Single precision) (TAN(P))

Basic model QCPU: The upper five digits of the serial No. are "04122" or larger.

(s) : Angle data of which the TAN (tangent) value is obtained or head number of the devices where the angle data is stored (real number)

(D) : Head number of the devices where the operation result will be stored (real number)

Setting	Internal	Devices	R 7R	J	\		7n	Constants	Other
Data	Bit	Word	N, 2N	Bit	Word	0::\G:!	2.1	E	01101
S		C	\supset	—		0	○ *2	0	—
D		(\supset	_		0	○ *2	_	_

*2: Applicable for the Universal model QCPU only.

Grant Function

(1) Returns the tangent (TAN) value of the angle data designated by (s), and stores operation result in device designated by (p).

- (2) Angles designated at \odot are set in radian units (degrees $\times \pi$ / 180). For conversion between degrees and radian values, see the RAD and DEG instructions.
- (3) When angles designated by (s) are π /2 radians, or (3/2) π radians, an operation error will be generated in the calculation of the radian value, so care must be taken to avoid such errors.

- (1) In any of the following cases, an operation error occurs, the error flag (SM0) turns ON, and an error code is stored into SD0.
 - Operation results are outside the range shown below:
 - 0, $2^{-126} \leq |operation result| < 2^{128}$

(For the Basic model QCPU, High Performance model QCPU, Process CPU, Redundant CPU) (Error code: 4100)

- The value of the specified device is -0. *3

 (For the Basic model QCPU, High Performance model QCPU, Process CPU, Redundant CPU)
 (Error code: 4100)
 - *3: There are CPU modules that will not result in an operation error if -0 is specified. For details, refer to 3.2.4.
- The result exceeds the following range (Operation results in an overflow) (For the Universal model QCPU only)

 $2^{128} \leq$ | Operation result |

- (Error code: 4141)
- The value of the specified device is −0, unnormalized number, nonnumeric, and ±∞.
 (For the Universal model QCPU only)
 (Error code: 4140)

Program Example

(1) The following program performs a TAN operation on the angle data set by the 4 BCD digits from X20 to X2F, and stores the results as 32-bit floating decimal point type real numbers at D0 and D1.

[Ladder Mode]

Inputs an angle used for TAN operation (1).
 Converts the input angle into a 32-bit floating-point real number (2).
 Converts the converted angle into a radian value (3).
 Executes TAN operation using

Executes TAN operation using the converted radian value (4).

[List Mode]

Step	Instruction	Device
0 1 4 7 10 13	LD BIN FLT RAD TAN END	SM400 K4X20 D30 D30 D20 D20 D10 D10 D0

[Operations involved when X20 to X2F designate a value of 135]

7.12.6 TAN operation on floating-point data (Double precision) (TAND(P))

Basic High Redundant

Grant Function

(1) The TAN (tangent) value of the angle specified by (s) is calculated and its result is stored into the device specified by (b).

- (2) Angles designated at s are set in radian units (degrees $\times \pi$ / 180). For conversion between degrees and radian values, see the RADD and DEGD instructions.
- (3) When angles designated by s are π/2 radians, or (3/2)π radians, an operation error will be generated in the calculation of the radian value, so care must be taken to avoid such errors.
- (4) When the operation results in -0 or an underflow, the result is processed as 0.

- (1) In any of the following cases, an operation error occurs, the error flag (SM0) turns ON, and an error code is stored into SD0.
 - The value of the specified device is not in the following range: (Error code: 4140) $0.2^{-1022} \leq |$ value of specified device $| < 2^{1024}$
 - The value of the designated device is -0. (Error code: 4140)
 - The result exceeds the following range (Operation results in an overflow): $2^{1024} \leq |$ Operation result | (Error code: 4141)

Program Example

(1) The following program performs a TAN operation on the angle data set by the 4 BCD digits from X20 to X2F, and stores the results as 64-bit floating decimal point type real numbers at D0 to D3.

[List Mode]

[Ladder Mode]

Step	Instruction	Device		
0 1 3 6 9 12	LD BIN FLTD RADD TAND END	SM400 K4X20 D30 D20 D10	D30 D20 D10 D0	

[Operations involved when X20 to X2F designate a value of 135]

7.12.7 SIN⁻¹ operation on floating point data (Single precision) (ASIN(P))

Grant Function

 Returns the SIN⁻¹ angle of the SIN value designated by (s), and stores operation results at word device designated by (b).

- (2) The SIN value designated by \odot can be in the range from -1.0 to 1.0.
- (3) The angle (operation result) stored at
 is stored in radian units.
 For more information on the conversion between radian and angle data, see description of RAD and DEG instructions.

- (1) In any of the following cases, an operation error occurs, the error flag (SM0) turns ON, and an error code is stored into SD0.
 - The value designated by (s) is outside the range of from -1.0 to 1.0. (Error code: 4100)
 - The contents of the designated device or the result of the addition are not "0", or not within the following range(For the Universal model QCPU only): (Error code: 4140)
 2. 2¹²⁶ Contents of designated designated designated end of the content of t

0, $2^{-126} \leq$ | Contents of designated device | < 2^{128}

 The value of the specified device is -0. *2 (For the High Performance model QCPU, Process CPU, Redundant CPU)

(Error code: 4100)

- *2: There are CPU modules that will not result in an operation error if -0 is specified. Refer to 3.2.4 for details.
- The result exceeds the following range (Operation results in an overflow) (For the Universal model QCPU only)

 $2^{128} \leq$ | Operation result |

(Error code: 4141)

• The value of the specified device is -0, unnormalized number, nonnumeric, and $\pm \infty$. (For the Universal model QCPU only) (Error code: 4140)

Program Example

 The following program seeks the inverse sine of the 32-bit floating decimal point real number at D0 and D1, and outputs the angle to the 4 BCD digits at Y40 to Y4F.
 [Ladder Mode]

[List Mode]

[Operations involved when the D0 and D1 value is 0.5]

Basic High performance Process Redundant Universal

7.12.8 SIN⁻¹ operation on floating-point data (Double precision) (ASIND(P))

☆ Function

(1) The angle is calculated from the SIN (sine) value specified by (s) is and its result is stored into the device specified by (p).

- (2) The SIN value designated by \odot can be in the range from -1.0 to 1.0.
- (3) The angle (operation result) stored at D is stored in radian units. For more information on the conversion between radian and angle data, see description of RADD and DEGD instructions.
- (4) When the operation results in -0 or an underflow, the result is processed as 0.

- (1) In any of the following cases, an operation error occurs, the error flag (SM0) turns ON, and an error code is stored into SD0.
 - The value of the specified device is not in the following range: (Error code: 4140) $0.2^{-1022} \leq |$ value of specified device $| < 2^{1024}$
 - The value of the designated device is -0. (Error code: 4140)
 - The value specified by (s) is within the double-precision floating-point range and outside the range of -1.0 to 1.0. (Error code: 4100)
 - The result exceeds the following range (Operation results in an overflow): $2^{1024} \leq | \text{ Operation result } |$ (Error code: 4141)

Program Example

(1) The following program seeks the inverse sine of the 64-bit floating decimal point real number at D0 to D3, and outputs the angle to the 4 BCD digits at Y40 to Y4F.

[Ladder Mode]

[List Mode]

Step	Instruction		Device			
0 1 4 7 10 12	LD AS IND DEGD INTD BCD END	SM400 D0 D10 D20 D30	D10 D20 D30 K4Y40			

[Operations involved when the D0 to D3 value is 0.5]

7.12.9 COS ⁻¹ operation on floating-point data (Single precision) (ACOS(P))

(1) Returns the COS⁻¹ angle of the COS value designated by \mathfrak{S} , and stores operation result at word device designated by \mathfrak{D} .

- (2) The COS value designated by \odot can be in the range of from -1.0 to 1.0.
- (3) The angle (operation result) stored at
 is stored in radian units. For more information on the conversion between radian and angle data, see description of RAD and DEG instructions.

- (1) In any of the following cases, an operation error occurs, the error flag (SM0) turns ON, and an error code is stored into SD0.
 - The value designated by \odot is outside the range of from -1.0 to 1.0. (Error code: 4100)
 - The contents of the designated device or the result of the addition are not "0", or not within the following range(For the Universal model QCPU only):
 (Error code: 4140)

0, $2^{-126} \leq$ | Contents of designated device | < 2^{128}

The value of the specified device is -0. *2

 (For the Basic model QCPU, High Performance model QCPU, Process CPU, Redundant CPU)
 (Error code: 4100)

*2: There are CPU modules that will not result in an operation error if -0 is specified. Refer to 3.2.4 for details.

• The result exceeds the following range (Operation results in an overflow) (For the Universal model QCPU only)

```
2^{128} \leq | Operation result |
```

(Error code: 4141)

• The value of the specified device is -0, unnormalized number, nonnumeric, and $\pm \infty$. (For the Universal model QCPU only) (Error code: 4140)

Program Example

(1) The following program seeks the inverse cosine of the 32-bit floating decimal point real number at D0 and D1, and outputs the angle to the 4 BCD digits at Y40 to Y4F. [Ladder Mode]

[List Mode]

[Operations involved when the D0 and D1 value is 0.5]

7.12.10 COS ⁻¹ operation on floating-point data (Double precision) (ACOSD(P))

(1) The angle is calculated from the COS (cosine) value specified by (s) is and its result is stored into the device specified by (b).

- (2) The COS value designated by (s) can be in the range of from -1.0 to 1.0.
- (3) The angle (operation result) stored at D is stored in radian units. For more information on the conversion between radian and angle data, see description of RADD and DEGD instructions.
- (4) When the operation results in -0 or an underflow, the result is processed as 0.

- (1) In any of the following cases, an operation error occurs, the error flag (SM0) turns ON, and an error code is stored into SD0.
 - The value of the specified device is not in the following range: (Error code: 4140) $0.2^{-1022} \leq |$ value of specified device $| < 2^{1024}$
 - The value of the designated device is -0. (Error code: 4140)
 - The value specified by s is within the double-precision floating-point range and outside the range of -1.0 to 1.0. (Error code: 4100)
 - The result exceeds the following range (Operation results in an overflow): $2^{1024} \leq | \text{ Operation result } |$ (Error code: 4141)

Program Example

(1) The following program seeks the inverse cosine of the 64-bit floating decimal point real number at D0 to D3, and outputs the angle to the 4 BCD digits at Y40 to Y4F. [Ladder Mode]

[List Mode]

Step	Instruction	Device			
0 1 4 7 10 12	LD ACOSD DEGD INTD BCD END	SM400 D0 D10 D20 D30	D10 D20 D30 K4Y40		

[Operations involved when the D0 to D3 value is 0.5]

7.12.11 TAN ⁻¹ operation on floating-point data (Single precision) (ATAN(P))

(1) Returns the TAN⁻¹ angle of the TAN value designated by (s), and stores operation results at word device designated by (b).

(2) The angle (operation result) stored at D is stored in radian units. For more information on the conversion between radian and angle data, see description of RAD and DEG instructions.

- (1) In any of the following cases, an operation error occurs, the error flag (SM0) turns ON, and an error code is stored into SD0.
 - The contents of the designated device or the result of the addition are not "0", or not within the following range(For the Universal model QCPU only): (Error code: 4140)
 0, 2⁻¹²⁶ ≤ | Contents of designated device | < 2¹²⁸
 - The value of the specified device is -0. *2
 (For the High Performance model QCPU, Process CPU, Redundant CPU)
 (Error code: 4100)

*2: There are CPU modules that will not result in an operation error if -0 is specified. Refer to 3.2.4 for details.

- The result exceeds the following range (Operation results in an overflow) (For the Universal model QCPU only)
 2¹²⁸ ≤ | Operation result | (Error code: 4141)
- The value of the specified device is -0, unnormalized number, nonnumeric, and $\pm \infty$. (For the Universal model QCPU only) (Error code: 4140)

Program Example

(1) The following program seeks the inverse tangent of the 32-bit floating decimal point real number at D0 and D1, and outputs the angle to the 4 BCD digits at Y40 to Y4F. [Ladder Mode]

[List Mode]

[Operations involved when D0 and D1 value is 1]

7.12.12 TAN ⁻¹ operation on floating-point data (Double precision) (ATAND(P))

(3) When the operation results in -0 or an underflow, the result is processed as 0.

Coperation Error

- (1) In any of the following cases, an operation error occurs, the error flag (SM0) turns ON, and an error code is stored into SD0.
 - The value of the specified device is not in the following range: (Error code: 4140) $0.2^{-1022} \leq |$ value of specified device $| < 2^{1024}$
 - The value of the designated device is -0.

(Error code: 4140)

- The result exceeds the following range (Operation results in an overflow):
 - $2^{1024} \leq |$ Operation result | (Error code: 4141)

Program Example

 The following program seeks the inverse tangent of the 64-bit floating decimal point real number at D0 to D3, and outputs the angle to the 4 BCD digits at Y40 to Y4F.
 [Ladder Mode]

[List Mode]

[Operations involved when D0 to D3 value is 1]

7.12.13 Conversion from floating-point angle to radian (Single precision) (RAD(P))

Grant Function

(1) Converts units of angle size from angle units designated by \odot to radian units, and stores result at device number designated by \odot .

(2) Conversion from degree to radian units is performed according to the following equation:

Radian unit = Degree unit x $\frac{\pi}{180}$

- (1) In any of the following cases, an operation error occurs, the error flag (SM0) turns ON, and an error code is stored into SD0.
 - The contents of the designated device or the result of the addition are not "0", or not within the following range(For the Universal model QCPU only): (Error code: 4140)
 0, 2⁻¹²⁶ ≤ | Contents of designated device | < 2¹²⁸
 - The value of the specified device is -0. *3
 (For the Basic model QCPU, High Performance model QCPU, Process CPU, Redundant CPU)
 (Error code: 4100)
 - *3: There are CPU modules that will not result in an operation error if -0 is specified. For details, refer to 3.2.4.
 The result exceeds the following range (Operation results in an overflow) (For the Universal model QCPU only)

 $2^{128} \leq |$ Operation result |

(Error code: 4141)

• The value of the specified device is -0, unnormalized number, nonnumeric, and $\pm \infty$. (For the Universal model QCPU only) (Error code: 4140)

Program Example

(1) The following program converts the angle set by the 4 BCD digits at X20 to X2F to radians, and stores results as 32-bit floating decimal point type real number at D20 and D21.
Il adder Model

[List Mode]

[Operations involved when X20 to X2F designate a value of 120]

①Conversion X2FX20 to BIN	D0 b15 b0	Conversion to floating-point	D11	D10	③Conversion to radian	D21	D20
0 1 2 0) 120 [1	20		2 094	1395…
BCD value BIN	BIN value	FLT			RAD		

7.12.14 Conversion from floating-point angle to radian (Double precision) (RADD(P))

Program Example

 The following program converts the angle set by the 4 BCD digits at X20 to X2F to radians, and stores results as 64-bit floating decimal point type real number at D20 to D23.
 [Ladder Mode]

[List Mode]

[Operations involved when X20 to X2F designate a value of 120]

7.12.15 Conversion from floating-point radian to angle (Single precision) (DEG(P))

Grant Function

(1) Converts units of angle size from radian units designated by (s) to angles, and stores result at device number designated by (b).

(2) The conversion from radians to angles is performed according to the following equation:

Degree unit = Radian unit x
$$\frac{180}{\pi}$$

- (1) In any of the following cases, an operation error occurs, the error flag (SM0) turns ON, and an error code is stored into SD0.
 - The value of the specified device is -0. *2

 (For the Basic model QCPU, High Performance model QCPU, Process CPU, Redundant CPU)
 (Error code: 4100)

*2: There are CPU modules that will not result in an operation error if -0 is specified. For details, refer to 3.2.4.

• The result exceeds the following range (Operation results in an overflow) (For the Universal model QCPU only)

 $2^{128} \leq$ | Operation result |

(Error code: 4141)

• The value of the specified device is -0, unnormalized number, nonnumeric, and $\pm \infty$. (For the Universal model QCPU only) (Error code: 4140)

Program Example

(1) The following program converts the radian value set with 32-bit floating decimal point type real number at D20 and D21 to angles, and stores the result as a BCD value at Y40 to Y4F. [Ladder Mode]

[List Mode]

Step	Instruction	D	Device			
0 1 4 7 10	LD DEG INT BCD END	SM400 D20 D10 D0	D10 D0 K4Y40			

[Operations involved when the values at D20 and D21 are 1.435792]

D21 D20	① Conversion	D11 D10	②Conversion to BIN	D0 b15 b0	③BCD operation	Y4FY40
1 435792		82 26482		82	$\square $	0 0 8 2
32-bit floating-point real number	DEG	32-bit floating-point real number	BIN	BIN value	BCD	BCD value
7.12.16 Conversion from floating-point radian to angle (Double precision) (DEGD(P))

(1) The unit expressing the size of an angle is converted into the degree unit from the radian unit specified by (s), and its result is stored into the device specified by (b).

(2) The conversion from radians to angles is performed according to the following equation:

Degree unit = Radian unit x $\frac{180}{\pi}$

(3) When the operation results in -0 or an underflow, the result is processed as 0.

Operation Error

- (1) In any of the following cases, an operation error occurs, the error flag (SM0) turns ON, and an error code is stored into SD0.
 - The value of the specified device is not in the following range: (Error code: 4140) $0.2^{-1022} \leq |$ value of specified device $| < 2^{1024}$
 - The value of the designated device is -0. (Error code: 4140)
 - The result exceeds the following range (Operation results in an overflow):
 - $2^{1024} \leq$ | Operation result |

7.12 Special function instructions 7.12.16 Conversion from floating-point radian to angle (Double precision) (DEGD(P))

7

(Error code: 4141)

(1) The following program converts the radian value set with 64-bit floating decimal point type real number at D20 to D23 to angles, and stores the result as a BCD value at Y40 to Y4F. [Ladder Mode]

[List Mode]

[Operations involved when the values at D20 to D23 are 1.435792]

D23 D22 D21 D20	① Conversion to angle	D13 D12 D11 D10 82.26482	⁽²⁾ Conversion to BIN	D0 b15b0 82	3 BCD operation	Y4FY40
64-bit floating-point real number	DEGD	64-bit floating-point real number	INTD	BIN value	BCD	BCD value

7.12.17 Exponentiation operation on floating-point data (Single precision) (POW(P))

QnU(D)(H)CPU: The serial number (first five digits) is "10102" or later. QnUDE(H)CPU: The serial number (first five digits) is "10102" or later.

POW	Command	POW	S	\$2	0 -	-
POWP	Command	POWP	S	\$2	D	

S: Exponentiation recipient data or head number of the devices where the exponentiation recipient data are stored (real number)

- 3 : Exponentiation data or head number of the devices where the data are stored (real number)
- D : Head number of the devices where the operation result will be stored (real number)

Setting	Internal Devices		Internal Devices		al Devices		\		7n	Constants	Other
Data	Bit	Word	нх, <u>с</u> нх	Bit Word		0:;\G:;	2.1	E	04101		
<u>(S1)</u>	_	(\supset	_		0	0	∆ *1	_		
S2		0				0	0	∆ *1			
D		0				0	0				

*1: Available only for real number

Grant Function

(1) This instruction raises the 32-bit floating-point data type real number specified by (1) to the number nth specified by (2) power, and then stores the operation result into the device specified by (1).

- (2) The following shows the values to be specified by and stored into (a) or (a). $0, 2^{-126} \leq |$ Set values (Storage values) $| < 2^{128}$
- (3) If the value resulted from the operation is -0 or an underflow occurs, the result will be processed as 0.

Coperation Error

- (1) In any of the following cases, an operation error occurs, the error flag (SM0) turns on, and an error code is stored into SD0.
 - The values specified by (s) or (s) are out of the ranges shown below. (Error code: 4140) $0, 2^{-126} \leq |$ Specified value (Storage value) $| < 2^{128}$
 - The value of \mathfrak{S} or \mathfrak{S} is -0.

(Error code: 4140)

• The values in the operation result is within the range shown below. (Error code: 4141) $2^{126} \le |$ Value resulted from operation |

Program Example

(1) The following program raises the 32-bit floating-point data type real number data specified by D0 and D1 to the data specified by (D10 and D11)th power, when X10 is turned on. Then the program stores the operation result into D20 and D21.

[Ladder Mode]

[List Mode]

SM402	EMOV E022 D0]-
	EMOV E1.2 D10]-
×10	POW D0 D10 D20 }
	{ END }

Step Instruction Device 0 LD SM402 1 EMOV E022 D0 4 EMOV E122 D10 7 LD X10 X10 8 PGW D0 D10 D20 12 END X10 X10 X10

[Operation]

	D11	D10		
	1.2			
D1	D0	Exponentiation	D21	D20
0.	22		0.1	63

7.12.18 Exponentiation operation on floating-point data (Single precision) (POWD(P))

Basic High performance Process Redundant Universal

QnU(D)(H)CPU: The serial number (first five digits) is "10102" or later. QnUDE(H)CPU: The serial number (first five digits) is "10102" or later.

POWD	Command	POWD	<u>S</u>	\$2	D	
POWDP	 Command	POWDP	<u>(S</u>)	S2		

S : Exponentiation recipient data or head number of the devices where the exponentiation recipient data are stored (real number)

- \circledast : Exponentiation data or head number of the devices where the data are stored (real number)
- (D) : Head number of the devices where the operation result will be stored (real number)

Setting	Internal Devices		R 7R	J	\		7n	Constants	Other
Data	Bit	Word	N, 2N	Bit Wo		0: <i>:</i> \G: <i>:</i>	2.1	E	Other
<u>(S1)</u>	_	C	\supset	_		0	0	∆ *1	_
S2		0				0	0	∆ *1	
D		0				0	0		

*1: Available only for real number

Function

(1) This instruction raises the 64-bit floating-point data type real number specified by (2) to the number nth specified by (2) power, and then stores the operation result into the device specified by (2).

Exponentiation data
(§) +3 (§) +2 (§) +1 (§) Exponentiation recipient data
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$
$ \underbrace{\textcircled{(3)}+3}_{64-bit} \underbrace{\textcircled{(3)}+2}_{64-bit} \underbrace{\textcircled{(3)}+1}_{64-bit} \underbrace{\textcircled{(3)}+2}_{64-bit} \underbrace{\underbrace{(3)}+2}_{64-bit} \underbrace{(3)}+2}_{64-bit} (3)$

- (2) The following shows the values to be specified by and stored into (s) or (a) $0, 2^{-1022} \le |$ Set values (Storage values) $| < 2^{1024}$
- (3) If the value resulted from the operation is -0 or an underflow occurs, the result will be processed as 0.

Operation Error

- (1) In any of the following cases, an operation error occurs, the error flag (SM0) turns on, and an error code is stored into SD0.
 - The values specified by ⑤ or ⑥ are out of the range shown below. (Error code: 4140)
 0, 2⁻¹⁰²² ≤ | Set values (Storage values) | < 2¹⁰²⁴
 - The value of \mathfrak{S} or \mathfrak{S} is -0. (Error code: 4140)
 - The values resulted from the operation is within the range shown below. $2^{1024} \leq |$ Value resulted from operation | (Error code: 4141)

Program Example

(1) The following program raises the 64-bit floating-point data type real number specified by D200 to D203 to the number nth specified by D0 to D3 power, when X10 is turned on. Then the program stores the operation result into D100 to D103.

[Ladder Mode]

[List Mode]

Device SM402 E15.6 D200 D0

X10 D200 D0 D100

SM402 EDMOV E15.6 D200	Step	Instruction
X10 [EDMOV 53 DO	H 0 1 4 7 8 12	LD EDMOV EDMOV LD POWD END

[Operation]

7.12.19 Square root operation for floating-point data (Single precision) (SQR(P))

Function

(1) Returns the square root of the value designated at (s), and stores the operation result in the device number designated at (b).

(2) Only positive values can be designated by \circledast . (Operation cannot be performed on negative numbers.)

Operation Error

- (1) In any of the following cases, an operation error occurs, the error flag (SM0) turns ON, and an error code is stored into SD0.
 - The value designated by (s) is a negative number. (Error code: 4100)
 - The contents of the designated device or the result of the addition are not "0", or not within the following range(For the Universal model QCPU only):
 (Error code: 4140)

0, $2^{-126} \leq$ | Contents of designated device | < 2^{128}

The value of the specified device is -0. *3
 (For the Basic model QCPU, High Performance model QCPU, Process CPU, Redundant CPU, and Q4ARCPU)
 (Error code: 4100)

*3: There are CPU modules that will not result in an operation error if -0 is specified. For details, refer to 3.2.4.

- The result exceeds the following range (Operation results in an overflow) (For the Universal model QCPU only)
 2¹²⁸ ≤ | Operation result | (Error code: 4141)
- The value of the specified device is -0, unnormalized number, nonnumeric, and $\pm \infty$. (For the Universal model QCPU only) (Error code: 4140)

Program Example

(1) The following program seeks the square root of the value set by the 4 BCD digits from X20 to X2F, and stores the result as a 32-bit floating decimal point type real number at D0 and D1.

[Ladder Mode]

[List Mode]

[Operations involved when value designated by X20 to X2F is 650]

7.12.20 Square root operation for floating-point data (Double precision) (SQRD(P))

(1) Returns the square root of the value designated at (s), and stores the operation result in the device number designated at (b).

- (2) Only positive values can be designated by s . (Operation cannot be performed on negative numbers.)
- (3) When the operation results in -0 or an underflow, the result is processed as 0.

Operation Error

- (1) In any of the following cases, an operation error occurs, the error flag (SM0) turns ON, and an error code is stored into SD0.
 - The value designated by (s) is a negative number. (Error code: 4100)
 - The value of the specified device is not in the following range: (Error code: 4140) $0.2^{-1022} \leq |$ value of specified device $| < 2^{1024}$
 - The value of the designated device is -0. (Error code: 4140)
 - The result exceeds the following range (Operation results in an overflow): $2^{1024} \leq | \text{ Operation result } |$ (Error code: 4141)

(1) The following program seeks the square root of the value set by the 4 BCD digits from X20 to X2F, and stores the result as a 64-bit floating decimal point type real number at D0 to D3. [Ladder Mode]

operation (1). Converts the input data into a 64-bit floating-point real number (2).

Executes square root operation (③).

[List Mode]

[Operations involved when value designated by X20 to X2F is 650]

X2F X20	1 Conversion to BIN	D20 b15 b0	② Conversion to floating-point	D13 D12 D11 D10 ③ SQR operation D3 D2 D1 D0	
0650		650		<u>650</u> <u>25.4951</u>	
BCD value	BIN	BIN value	FLTD	SQRD	

7.12.21 Exponent operation on floating-point data (Single precision) (EXP(P))

Basic model QCPU: The upper five digits of the serial No. are "04122" or larger.

Grant Function

(1) Returns the exponent of the value designated by (s), and stores the results of the operation at the device designated by (b).

(2) Exponent operations are calculated taking the base (e) to be "2.71828".

Operation Error

- (1) In any of the following cases, an operation error occurs, the error flag (SM0) turns ON, and an error code is stored into SD0.
 - Operation results are outside the range shown below: (Error code: 4100) $2^{-126} \leq |$ operation result $| \leq 2^{128}$ (For a High Performance model QCPU) $2^{-126} \leq |$ operation result $| < 2^{128}$ (For a Basic model QCPU/Process CPU/Redundant CPU)
 - - *3: There are CPU modules that will not result in an operation error if -0 is specified. For details, refer to 3.2.4.
 - The result exceeds the following range (Operation results in an overflow) (For the Universal model QCPU only)

 $2^{128} \leq$ | Operation result |

(Error code: 4141)

• The value of the specified device is -0, unnormalized number, nonnumeric, and $\pm \infty$. (For the Universal model QCPU only) (Error code: 4140)

(1) The following program performs an exponent operation on the value set by the 2 BCD digits at X20 to X27, and stores the results as a 32-bit floating decimal point real number at D0 and D1.

[List Mode]

Step	Instruction		Device	
0 1 4 5 8 11 14 15 16 19 22	LD BIN LD VC OR OUT LDI FLT EXP END	X0 K3X20 X1 D20 D20 D20 M1 M1 D10 D10 D10	D20 K-1 K89 K-88 D10 D0	D20

[Operations involved when value designated by X20 to X27 is 13]

*4: The operation result will be under 2¹²⁹ if the BCD value of X20 to X27 is less than 89, from the calculation loge 2¹²⁹ = 89.4.

Because setting a value of over 90 will return an operation error, turn M0 ON if a value of over 90 has been set to avoid the error.

Conversion from natural logarithm to common logarithm

In the CPU module, calculation is made using a natural logarithm.

To obtain a common logarithm value, enter in, \circledast a common logarithm value divided by 0.43429.

 $10^{x} = e^{\frac{x}{0.43429}}$

7.12.22 Exponent operation on floating-point data (Double precision) (EXPD(P))

Basic High herrormance Process Redundant Universal

Grant Function

(1) Returns the exponent of the value designated by (s), and stores the results of the operation at the device designated by (b).

- (2) Exponent operations are calculated taking the base (e) to be "2.71828".
- (3) When the operation results in -0 or an underflow, the result is processed as 0.

Coperation Error

- (1) In any of the following cases, an operation error occurs, the error flag (SM0) turns ON, and an error code is stored into SD0.
 - The value of the specified device is not in the following range: (Error code: 4140) $0.2^{-1022} \leq |$ value of specified device $| < 2^{1024}$
 - The value of the designated device is -0. (Error code: 4140)
 - The result exceeds the following range (Operation results in an overflow): $2^{1024} \leq |$ Operation result | (Error code: 4141)

(1) The following program performs an exponent operation on the value set by the 2 BCD digits at X20 to X31, and stores the results as a 64-bit floating decimal point real number at D0 to D3.

[List Mode]

[Operations involved when value designated by X20 to X31 is 13]

*1: The operation result will be under 2¹⁰²⁴ if the BCD value of X20 to X31 is less than 709, from the calculation loge 2¹⁰²⁴ = 709.7832.

Because setting a value of over 710 will return an operation error, turn M0 ON if a value of over 710 has been set to avoid the error.

Conversion from natural logarithm to common logarithm

In the CPU module, calculation is made using a natural logarithm.

To obtain a common logarithm value, enter in, (s) a common logarithm value divided by 0.43429.

 $10^{x} = e^{\frac{x}{0.43429}}$

7.12.23 Natural logarithm operation on floating-point data (Single precision) (LOG(P))

Basic model QCPU: The upper five digits of the serial No. are "04122" or larger.

(s) : Data of which the natural logarithm is obtained or head number of the devices where the data is stored (real number)

0 : Head number of the devices where the operation result will be stored (real number)

Settiing	Internal Devices		R 7R	R, ZRUUUU		7n	Constants	Other	
Data	Bit	Word	Ν, ΖΝ	Bit Word		0: <i>:</i> \G:	ΣΠ	E	Other
S	—	0		—	0		○ *2	0	—
D	_	(0			0	○ *2	_	_

*2: Applicable for the Universal model QCPU only.

Grant Function

(1) Returns the natural logarithm of the value designated by (s) taking (e) as base, and stores operation results at device designated by (p).

(2) Only positive values can be designated by \circledast . (Operation cannot be performed on negative numbers.)

Operation Error

- (1) In any of the following cases, an operation error occurs, the error flag (SM0) turns ON, and an error code is stored into SD0.
 - The value designated by (s) is negative. (Error code: 4100)
 - The value designated by (s) is 0. (Error code: 4100)
 - The contents of the designated device or the result of the addition are not "0", or not within the following range(For the Universal model QCPU only): (Error code: 4140)

0, $2^{-126} \leq$ | Contents of designated device | < 2^{128}

 The value of the specified device is -0. *³ (For the Basic model QCPU, High Performance model QCPU, Process CPU, Redundant CPU)
 (Error code: 4100)

*3: There are CPU modules that will not result in an operation error if -0 is specified. For details, refer to 3.2.4.

 The result exceeds the following range (Operation results in an overflow) (For the Universal model QCPU only)
 2¹²⁸ ≤ | Operation result | (Error code: 4141)

The value of the specified device is −0, unnormalized number, nonnumeric, and ±∞.
 (For the Universal model QCPU only)
 (Error code: 4140)

Program Example

(1) The following program seeks the natural logarithm of the value "10" set by D50, and stores the result at D30 and D31.

[Ladder Mode]

Sets data used for natural logarithm operation (①) Converts the operation data into a 32-bit floating-point real number (②) Executes natural logarithm operation (③)

[List Mode]

[Operation]

7.12.24 Natural logarithm operation on floating-point data (Double precision) (LOGD(P))

Basic High Redundant

Grant Function

(1) Returns the natural logarithm of the value designated by (s) taking (e) as base, and stores operation results at device designated by (b).

- (2) Only positive values can be designated by s . (Operation cannot be performed on negative numbers.)
- (3) When the operation results in -0 or an underflow, the result is processed as 0.

Operation Error

(1) In any of the following cases, an operation error occurs, the error flag (SM0) turns ON, and an error code is stored into SD0.

 The value designated by (s) is negative. 	(Error code: 4100)
 The value designated by (s) is 0. 	(Error code: 4100)
• The value of the specified device is not in the following range: $0,2^{-1022} \leq $ value of specified device $ < 2^{1024}$	(Error code: 4140)

- The value of the designated device is -0. (Error code: 4140)
- The result exceeds the following range (Operation results in an overflow): $2^{1024} \leq |$ Operation result | (Error code: 4141)

(1) The following program seeks the natural logarithm of the value "10" set by D50, and stores the result at D30 to D33.

[Ladder Mode]

Sets data used for natural logarithm operation (1). Converts the operation data into a 64-bit floating-point real number (2). Executes natural logarithm operation (3).

[List Mode]

[Operation]

	1	D50 2 b15 b0	Conversion to floating-point	D43 D42 D41 D40	③ LOG operation	D33 D32 D31 D30
10 🗆		二>		10		2.302585
	MOV	BIN value	FLTD	64-bit floating-point	LOGD	64-bit floating-point

7.12.25 Common logarithm operation on floating-point data (Single precision) (LOG10(P))

QnU(D)(H)CPU: The serial number (first five digits) is "10102" or later. QnUDE(H)CPU: The serial number (first five digits) is "10102" or later.

(s) : Data of which the common logarithm is obtained or head number of the devices where the data are stored (real number)

D : Head number of the devices where the operation result will be stored (real number)

Settiing Data	Internal Devices		R 7R	J			7n	Constants	Other
	Bit	Word	Ν, ΖΝ	Bit	Word	0:	211	E	Other
S		C	\supset	—		0	—	∆ *1	
D	_	()	_		0		_	

*1: Available only for real number.

Grant Function

(1) This instruction obtains the value specified by \odot for common logarithm (logarithm with base 10), and then stores the operation result into the device specified by \bigcirc .

- (2) Only positive values can be specified by $_{\textcircled{S}}$. (Operation cannot be performed on negative numbers.)
- (3) If the value resulted from the operation is -0 or an underflow occurs, the result will be processed as 0.

(Error code: 4140)

(Error code: 4140)

Operation Error

- (1) In any of the following cases, an operation error occurs, the error flag (SM0) turns on, and an error code is stored into SD0.
 - The value specified by (s) is negative. (Error code: 4100)
 - The value specified by (s) is 0. (Error code: 4100)
 - The value of the specified device is not in the following range. $0.2^{-126} \leq |$ value of specified device $| < 2^{128}$
 - The value specified by (s) is -0.
 - The value resulted from the operation is within the range shown below. (When an overflow occurs): (Error code: 4141)

```
2^{128} \leq | value of specified device |
```

Program Example

(1) The following program obtains the value for common logarithm of the 32-bit floating-point data type real number specified by D600 or D601, when X10 is turned on. Then the program stores the operation result into D123 or D124.

[Ladder Mode]

[List Mode]

[Operation]

7.12.26 Common logarithm operation on floating-point data (Double precision) (LOG10D(P))

QnU(D)(H)CPU: The serial number (first five digits) is "10102" or later. QnUDE(H)CPU: The serial number (first five digits) is "10102" or later.

(s) : Data of which the common logarithm is obtained or head number of the devices where the data are stored (real number)

 $\textcircled{D}\,$: Head number of the devices where the operation result will be stored (real number)

Settiing	Internal	Devices	R 7R	J	\	u: No E	7n	Constants	Other
Data	Bit	Word	π, Ζπ	Bit	Word	0::\G:!		E	Oulei
S		0				∆ *1	—		
D		()						_

*1: Available only for real number.

Grant Function

(1) This instruction obtains the value specified by \odot for common logarithm (logarithm with base 10),and then stores the operation result into the device specified by \odot .

- (2) Only positive values can be specified by $_{\textcircled{S}}$. (Operation cannot be performed on negative numbers.)
- (3) If the value resulted from the operation is -0 or an underflow occurs, the result will be processed as 0.

Operation Error

(1) In any of the following cases, an operation error occurs, the error flag (SM0) turns on, and an error code is stored into SD0.

• The value specified by ${}_{\textcircled{S}}$ is negative.	(Error code: 4100)
--	--------------------

- The value specified by (s) is 0. (Error code: 4100)
- The value of the specified device is not in the following range: (Error code: 4140) $0.2^{-1022} \leq |$ value of specified device $| < 2^{1024}$
- The value of the specified device is -0. (Error code: 4140)
- The value resulted from the operation is within the range shown below.
 (When an overflow occurs):
 (Error code: 4141)

 $2^{1024} \leq$ | value of specified device |

Program Example

(1) This following program obtains the value for common logarithm of the 64-bit floating-point data type real number specified by D600 to D603 when X10 is turned on. Then the program stores the operation result into D123 to D126.

[List Mode]

[Ladder Mode]

[Operation]

7.12.27 Random number generation and series updates (RND(P),SRND(P))

Basic model QCPU: The upper five digits of the serial No. are "04122" or larger.

RND	Command RND D	-
RNDP	Command RNDP D	-
SRND	Command SRND S	-
SRNDP	Command SRNDP S	-

 $\textcircled{D}\,$: Head number of the devices where random numbers will be stored (BIN 16 bits)

(s) : Random number serial data or the first number of the devices where the random number serial data is stored (BIN 16 bits)

Setting	Internal Devices		R 7R	J\		umem	Zn	Constants	Other
Data	Bit	Word	π, 2π	Bit	Word	0::\G::		К, Н	Oulei
D				0				—	—
S				0				0	

Grant Function

The random number generation instruction generates random numbers conforming to a certain calculation formula. In the calculation using the formula, the result of previous calculation is used as a coefficient.

The random series change instruction can change the random number generation pattern.

RND

Generates random number of from 0 to 32767, and stores at device designated by \odot .

SRND

Updates random number series according to the 16-bit BIN data being stored in device designated by (s).

✓ Operation Error

(1) There are no operation errors associated with the RND(P) or SRND(P) instructions.

Program Example

(1) The following program stores random number at D100 when X10 is turned ON.[Ladder Mode][List Mode]

(2) The following program updates a random number series according to the contents of D0 when X10 is turned ON.

7.12.28 BCD 4-digit and 8-digit square roots (BSQR(P),BDSQR(P))

		Basic High performance Process Redundant Universal
		BSQR/BDSQR
BSQR,BDSQR		(S) (D)
BSQRP,BDSQRP	Command	P (S) (D)

(S) : Data of which the square root is obtained or the number of the device where the data is stored (BSQR(P): BCD 4 digits, BDSQR(P): BCD 8 digits)

D	: Head number of the devices where the square root calculation result will be stored	(BCD 4 digits)
J	. The de final field of the devices where the square root calculation result will be stored	

 \leq

Setting	Internal	Devices	R 7R	J	\	UIII Zn		Constants	Other
Data	Bit	Word	Ν, ΖΝ	Bit	Word	0::\G::	2.1	К, Н	Other
S		0						0	—
D				0				_	

Granitical Function

BSQR

(1) Returns the square root of the value designated at (s), and stores the operation result in the device number designated at (p).

- (2) Values that can be designated at ${}_{\textcircled{S}}$ are BCD values with a maximum of 4 digits (from 0 to 9999).
- (3) The operation results of D and ^D+1 are stored as their respective BCD values of between 0 and 9999.
- (4) Operation results are rounded off from the fifth decimal place.

For this reason, the fourth decimal place has an error of ± 1 .

BDSQR

Calculates the square root of the values designated by
 s and s +1 and stores the results at the device designated by
 .

- (2) BCD value of a maximum of 8 digits (0 to 99999999) can be designated by (s) and (s)+1.
- (3) The operation results of \bigcirc and \bigcirc +1 are stored as their respective BCD values of between 0 and 9999.
- (4) Operation results are rounded off from the fifth decimal place.

For this reason, the fourth decimal place has an error of ± 1 .

Operation Error

- (1) In the following case, an operation error occurs, the error flag (SM0) turns ON, and an error code is stored into SD0.
 - The data designated by (s) is not a BCD value.

(Error code: 4100)

Program Example

(1) The following program calculates the square root of BCD value 1325 and outputs the integer part to the 4 BCD digits from Y50 to Y5F, and the decimal fraction part to the 4 BCD digits from Y40 to Y4F.

[List Mode]

[Operation]

(2) The following program calculates the square root of BCD value 74625813 and outputs the integer part of the result to the 4 BCD digits at Y50 to Y5F, and the decimal fraction part to the 4 BCD digits from Y40 to Y4F.

[Ladder Mode]

[List Mode]

[Operation]

7.12.29 BCD type SIN operation (BSIN(P))

Grant Function

(1) Calculates the SIN (sine) value of value (angle) designated by (s), and stores the sign of the operation result in the device designated at (p), and the operation result in the devices designated at (p)+1 and (p)+2.

- (2) The value designated at ${}_{\textcircled{S}}$ is a BCD value which can be between 0 and 360 degrees (in units of degrees).
- (3) The sign for the operation result stored in \bigcirc will be "0" if the result is a positive value, and "1" if the result is a negative value.
- (4) The operation results stored in \bigcirc +1 and \bigcirc +2 are BCD values between -1.000 and 1.000.
- (5) Operation results are rounded off from the fifth decimal place.

Operation Error

- (1) In any of the following cases, an operation error occurs, the error flag (SM0) turns ON, and an error code is stored into SD0.
 - The data designated by (s) is not a BCD value. (Error code: 4100)
 - The data designated by (s) is not in the range of from 0 to 360. (Error code: 4100)

7.12 Special function instructions 7.12.29 BCD type SIN operation (BSIN(P))

(1) The program example below calculates the SIN of 3-digit BCD data designated by X20 to X2B, and outputs a 1-digit BCD part to the integer part from Y50 to Y53, and a 4-digit BCD fraction part from Y40 to Y4F.

Y60 is turned ON if the results of the operation are negative. (If a value has been set at X20 to X2F that is greater than 360, it will be adjusted to be in the range from 0 to 360.) [Ladder Mode]

[List Mode]

Step	Instruction)evice	
0 1 5 8 11 13 14 15	LD B/ BSIN MOV MOV LD OUT END	SM400 K3X20 D11 D21 D22 D20.0 Y60	H360 D20 K1Y50 K4Y40	D10

[Operations involved when value designated by X20 to X2B is 590]

7.12.30 BCD type COS operations (BCOS(P))

Grant Function

(1) Calculates COS (cosine) value of value (angle) designated by (s), then stores the sign for the operation result in the word device designated by (b), and the operation result in the word device designated by (b)+1 and (b)+2.

- (2) The value designated at \odot is a BCD value which can be between 0 and 360 degrees (in units of degrees).
- (3) The sign for the operation result stored in \bigcirc will be "0" if the result is a positive value, and "1" if the result is a negative value.
- (4) The operation results stored in \bigcirc +1 and \bigcirc +2 are BCD values between -1.000 and 1.000.
- (5) Operation results are rounded off from the fifth decimal place.

Operation Error

- (1) In any of the following cases, an operation error occurs, the error flag (SM0) turns ON, and an error code is stored into SD0.
 - The data designated by (s) is not a BCD value. (Error code: 4100)
 - The data designated by (s) is not in the range of from 0 to 360. (Error code: 4100)
 - The device specified by D exceeds the range of the corresponding device. (For the Universal model QCPU only.) (Error code: 4101)

7.12 Special function instructions 7.12.30 BCD type COS operations (BCOS(P))

(1) The following program calculates the cosine of the data designated by the 3 BCD digits from X20 to X2B and outputs the integer part of the result to 1 BCD digit from Y50 to Y53, and the decimal fraction part of the result to the 4 BCD digits from Y40 to Y4F.

Y60 is turned ON if the results of the operation are negative.

[List Mode]

Step	Instruction		Device	
0 1 5 8 11 13 14 15	LD B/ BCOS MOV LD OUT END	SM400 K3X20 D11 D21 D22 D20. 0 Y60	H360 D20 K1Y50 K4Y40	D10

[Operations involved when value designated by X20 to X2B is 430]

7.12.31 BCD type TAN operation (BTAN(P))

(5) Operation results are rounded off from the fifth decimal place.

Coperation Error

- (1) In any of the following cases, an operation error occurs, the error flag (SM0) turns ON, and an error code is stored into SD0.
 - The data designated by (s) is not a BCD value. (Error code: 4100)
 - The data designated by \odot is not in the range of from 0 to 360. (Error code: 4100)
 - The data designated by (s) is 90° or 270°. (Error code: 4100)

(1) The following program calculates the tangent of the data stored in the 3 BCD digits from X20 to X2B, and stores the integer part of the results in the 4 BCD digits from Y50 to Y53, and the decimal fraction part in the 4 BCD digits from Y40 to Y4F.

Y60 is turned ON if the results of the operation are negative.

Processes so that the input angle is within 360° (\bigcirc) Uses MI as an interlock so that operation will not be executed if an input angle is 90° or 270°

Executes TAN operation (2)

Outputs the integer part of the operation result to a display device (3)

Outputs the decimal fraction part of the operation result to a display device (④)

Outputs the sign of the operation result by ON or OFF ((5))

[List Mode]

Γ	Sten		Instruction		Device			
Otop		1	Instruction			DEVICE		
	0 1 5 8 11 12 13 16 19 21 22 23		LD B/ LD= OR= OUT LD I BTAN MOV LD OUT END		SM400 K3X20 D11 D11 M1 D11 D21 D22 D20.0 Y60	H360 H90 H270 D20 K1Y50 K4Y40	D10	

[Operations involved when X20 to X2B designate a value of 390]

7.12.32 BCD type SIN ⁻¹ operations (BASIN(P))

				Basic	High performance Proc	ess Redundant	Universal		
BASIN		Commar	nd	BASIN	Ś				
BASINP		-		BASINP	S				
 (s) : Number of the device where data of which the SIN⁻¹ (inverse sine) value is obtained is stored (BCD 4 digits) (d) : Head number of the devices where the operation result will be stored (BCD 4 digits) 									
Setting Data	Internal Dev	vices R, ZR	J\ Bit Word	U\G	Zn	Constants K, H	Other		
S		\bigcirc							
D	0	0		0		—			

Grant Function

(1) Returns the SIN⁻¹ (inverse sine) value of the value designated by (s) and stores operation results (angles) at device designated by (b).

- (2) A sign for the operation data is set at (s).
 If the operation data is a positive value, this is set at "0", and if it is a negative value, it is set at "1".
- (3) The part before the decimal point and fraction part are stored at (s) +1 and (s) +2 respectively, as BCD values.
 (Settings can be between 0 and 1.0000.)
- (4) Operation results stored at ^(D) are BCD values between 0 and 90 degrees, and 270 and 360 degrees (degree units).
- (5) Calculation results are a value from which the decimal fraction part has been rounded.

Operation Error

- (1) In any of the following cases, an operation error occurs, the error flag (SM0) turns ON, and an error code is stored into SD0.
 - The data designated by (s) is not a BCD value. (Error code: 4100)
 - Data designated by ${\scriptstyle{(s)}}$ is not in the range of from -1.0000 to 1.0000.

(Error code: 4100)

• The device specified by (s) exceeds the range of the corresponding device. (For the Universal model QCPU only.) (Error code: 4101)

(1) The following program performs a SIN⁻¹ operation on the sign (positive when X0 is OFF, and negative when X0 is ON), the BCD 1-digit integer part from X30 to X33 and the BCD 4-digit decimal fraction part from X20 to X2F, and outputs the calculated angle in 4 BCD digits from Y40 to Y4F.

[Operations involved when X20 to X33 designates value of 0.4753]

7.12.33 BCD type COS ⁻¹ operation (BACOS(P))

- (2) A sign for the operation data is set at (s).
 If the operation data is a positive value, this is set at "0", and if it is a negative value, it is set at "1".
- (3) The part before the decimal point and fraction part are stored at (s) +1 and (s) +2 respectively, as BCD values.
 (Settings can be between 0 and 1.0000.)
- (5) Calculation results are a value from which the decimal fraction part has been rounded.

Coperation Error

- (1) In any of the following cases, an operation error occurs, the error flag (SM0) turns ON, and an error code is stored into SD0.
 - The operation data designated by (s) is not a BCD value. (Error code: 4100)
 - The operation data designated by \odot is not in the range of from -1.0000 to 1.0000. (Error code: 4100)
 - The device specified by (s) exceeds the range of the corresponding device. (For the Universal model QCPU only.) (Error code: 4101)

Program Example

(1) The following program performs a COS⁻¹ operation on the sign (positive when X0 is OFF, and negative when X0 is ON), the BCD 1-digit integer part from X30 to X33 and the BCD 4-digit decimal fraction part from X20 to X2F, and outputs the calculated angle in 4 BCD digits from Y40 to Y4F.

[Ladder Mode]

[List Mode]

[Operations involved if X0 and X20 to X33 designate a value of -0.7650]

7.12.34 BCD type TAN ⁻¹ operations (BATAN(P))

Process Redundant Universal Command BATAN BATAN (S) ┥┝ Command BATANP (S) BATANP (\$) : Number of the device where data of which the TAN-1 (inverse tangent) value is obtained is stored (BCD 4 digits) (D) : Head number of the devices where the operation result will be stored (BCD 4 digits) Setting Internal Devices R, ZR Constants Other U....\G.... Zn Data Word Rif Wor S ____ \bigcirc \bigcirc \bigcirc 0 Function (1) Performs TAN⁻¹ (inverse tangent) on value designated by (s) and stores operation results

Performs TAN⁻¹ (inverse tangent) on value designated by (s) and stores operation results (angles) at device designated by (b).

- (2) A sign for the operation data is set at (s).
 If the operation data is a positive value, this is set at "0", and if it is a negative value, it is set at "1".
- (3) The part before the decimal point and fraction part are stored at (s) +1 and (s) +2 respectively, as BCD values.

(Values from 0 to 9999.9999 can be set.)

- (4) Operation results stored at <a>b are BCD values between 0 and 90 degrees, and 270 and 360 degrees (degree units).
- (5) Calculation results are a value from which the decimal fraction part has been rounded.

Operation Error

- (1) In any of the following cases, an operation error occurs, the error flag (SM0) turns ON, and an error code is stored into SD0.
 - The operation data designated by (s) is not a BCD value. (Error code: 4100)
 - The device specified by (s) exceeds the range of the corresponding device.
 (For the Universal model QCPU only.)
 (Error code: 4101)

Program Example

(1) The following program performs a TAN-1 operation on the sign (positive when X0 is OFF, and negative when X0 is ON), the BCD 4-digit integer part from X20 to X2F and the BCD 4-digit decimal fraction part from X30 to X3F, and outputs the calculated angle in 4 BCD digits from Y40 to Y4F.

[Ladder Mode]

[List Mode]

Step	Instruction	E	Device
0 1 3 4 6	LD MOV LDI MOV LD	X0 K1 X0 K0 SM400	DO DO
7 9 11 14	MOV MOV BATANP END	K4X20 K4X30 D0	D1 D2 K4Y40

[Operations involved when X0 and X20 to X2F designate a value of 1.2654]

7.13 Data Control Instructions

7.13.1 Upper and lower limit controls for BIN 16-bit and BIN 32-bit data (LIMIT(P),DLIMIT(P))

					Basic	High Performance Proc	ess Redundant	t Universal
	limit, dlimit Limitp, dlimitp	- _ _ -	Command Command	P	dicates an instr S) (S) S) (S)	uction symbo 2 S3 2 S3	of LIMIT/D	DLIMIT.]]
		 ⑤ : Lower lim ∞ : Upper lim Si : Input valu ⑦ : Head nur stored (B 	hit value (minimum o hit value (maximum ue to be controlled b nber of the devices IN 16/32 bits)	output threshold valu output threshold valu by the upper and low where the output val	e) (BIN 16/32 bits ie) (BIN 16/32 bits er limit control (BI ue controlled by t) s) N 16/32 bits) he upper and le	ower limit con	trol will be
	Setting Data (S)	Internal Device Bit Wo	rd R, ZR	J Word	U\G	Zn	Constants K, H	Other —
	© 33 ©			0			0	
्रे F	unction							
	LIMIT							
	 (1) Controls t the input v values spectrum Output va When (he output va value (BIN 10 ecified by lue is contro (Lower limit)	lue to be store 6 bits) designa and ⁶² or no lled in the way value > ₆₃ [nr	ed at the devic ated by sis w t. / shown below put value	e designated rithin the ran : 	d by D by ge of uppe	checking er and low ⊮ → D	whether rer limit

7

(2) Values in the range from -32768 and 32767 can be designated at \mathfrak{S}_{0} , \mathfrak{S}_{2} , and \mathfrak{S}_{3} .

Value designated by S2

Input value(\$3)

• When \mathfrak{S}_{1} Lower limit value $\leq \mathfrak{S}_{2}$ Input value $\leq \mathfrak{S}_{2}$ Upper \mathfrak{S}_{3} Input value \mathfrak{S}_{1}

Output value ((D))

Value designated

by §1

Output value

- (3) When control based only on upper limit values is performed, the lower limit value designated at ST is set at "-32678".
- (4) When control based only on lower limit values is performed, the upper limit value designated at <a>st set at "32767".

DLIMIT

(1) The function controls the output value to be stored at the device designated by (0, 0+1) by checking whether the input value (BIN 32 bits) designated by ((s), (s) +1) is within the range of upper and lower limit values specified by $(\mathfrak{S}_1, \mathfrak{S}_1+1)$ and $(\mathfrak{S}_2, \mathfrak{S}_2+1)$ or not.

Value designated by (St)+1, (St)

- (2) The values designated by $(\mathfrak{S}, \mathfrak{S}^{+1}), (\mathfrak{S}, \mathfrak{S}^{+1}), or (\mathfrak{S}, \mathfrak{S}^{+1})$ are within the range of -2147483648 to 2147483647.
- (3) To perform controls based only on the upper limit value, set the lower limit value designated by (S1, S1+1) to "-2147483648".
- (4) To perform controls based only on the lower limit value, set the upper limit value designated by (S2, S2+1) to "2147483647".

Operation Error

- (1) In the following case, an operation error occurs, the error flag (SM0) turns ON, and an error code is stored into SD0.
 - The lower limit value designated by si is larger than the upper limit value designated by (Error code: 4100) \$2.

Program Example

(1) The following program conducts limit controls from 500 to 5000 on the data set as BCD values from X20 to X2F, and stores the result at D1 when X0 is turned ON.

[Operation]

- D1 becomes 500 if D0 \leq 500.

Example D0=400→D1=500

- D1 becomes the value of D0 when 500 \leq D0 \leq 5000.

Example D0=1300→D1=1300

- D1 becomes 5000 when 5000 < D0.

Example D0=9600→D1=5000

(2) The following program conducts limit value controls from 10000 to 1000000 on the data set as BCD values from X20 to X3F when X0 is turned ON.

[Ladder Mode]

[List Mode]

[Operation]

• (D11, D10) become 10000 if (D1, D0) are less than 10000.

Example (D1,D0)=400→(D11,D10)=10000

• (D11, D10) become the value of (D1, D0) if $10000 \le (D1, D0) \le 1000000$.

Example (D1,D0)=345678→(D11,D10)=345678

• (D11, D10) become 1000000 if 1000000 < (D1, D0).

Example (D1,D0)=9876543→(D11,D10)=1000000

7.13.2 BIN 16-bit and 32-bit dead band controls (BAND(P),DBAND(P))

Basic High

Process Redundant Universal

				[] inc	licates an ins	truction symbol	ol of BAND/E	DBAND.
	BAND,DBAND		Command	-	S1	\$2 \$3) D	
	BANDP,DBANDF		Command	– P	\$1	<u>©</u> ©) D	
		 S) : Lower limit S) : Upper limit S) : Input value D) : Head numb (BIN 16/32) 	value of dead band value of dead band to be controlled by a er of the devices wh bits)	(no output band) (E (no output band) (E a dead band contro ere the output valu	BIN 16/32 bits) BIN 16/32 bits) I (BIN 16/32 bit le controlled by	s) the dead band	control will be	stored
	Setting Data	Internal Devices Bit Word	R, ZR	J\ Bit Word	U\G	Zn	Constants K, H	Other
	SI			0			0	
	\$2			0			0	
	\$3			0			0	_
	D			0			_	—
F	unction	_						

BAND

• When St Lower limit value > \otimes Input value \otimes \otimes Input value = \otimes \otimes Lower \rightarrow \otimes Output value When S2 Upper limit value < _{©3} Input value (S3) Input value Upper \rightarrow (D) Output value \$2 • When \mathfrak{S} Lower limit value $\leq \mathfrak{S}$ Input value $\leq \mathfrak{S}$ Upper $\ldots 0 \rightarrow \mathfrak{D}$ Output value Output value ((D)) Dead band lower limit value () Input value (S2) 0 Dead band upper limit value (\$3)

(2) The values that can be designated by ${\rm sp}$, ${\rm sp}$, and ${\rm sp}$ are in the range of from -32768 to 32767.

DBAND

- (2) The values designated by $(\mathfrak{S}_1, \mathfrak{S}_1+1)$, $(\mathfrak{S}_2, \mathfrak{S}_2+1)$, or $(\mathfrak{S}_3, \mathfrak{S}_3+1)$ are within the range of from -2147483648 to 2147483647.
- (3) The output value stored at _D, _D+1 is a signed 32-bit BIN value. Therefore, if the operation results exceed the range of from −2147483648 to 2147483647, the following takes place:

When :

Dead band lower limit value (\mathfrak{S}), \mathfrak{S})+1).....1000 Input value (\mathfrak{S}), \mathfrak{S})+1).....-2147483648

Output value $= -2147483648 - 1000 = 80000000_{H} - 000003E8_{H}$

=7FFFC18_H=2147482648

Operation Error

- (1) In the following case, an operation error occurs, the error flag (SM0) turns ON, and an error code is stored into SD0.
 - The lower limit value designated by (s) is greater than the upper limit value designated by (Error code: 4100)

Program Example

(1) The following program performs the dead band control by applying the lower and upper limits of 0 and 1000 for the data set in BCD at X20 to X2F and stores the result of control at D1 when X0 is turned ON.

[Operation]

• "0" is stored at D1 if $0 \leq D0 \leq 1000$.

Example D0=500→D1=0

- The value of (D0) — 1000 is stored at D1 if 1000 \leq D0.

```
Example D0=7000→D1=6000
```

(2) The following program performs the dead band control by applying the lower and upper limits of -10000 and 10000 for the data set at D0 and D1 and stores the result of control at D10 and D11 when X0 is turned ON

[Ladder Mode]

```
[List Mode]
```


[Operation]

- The value (D1, D0) (-10000) is stored at (D11, D10) if (D1, D0)<(-10000).
 Example (D1, D0)=-12345→(D11, D10)=-2345
- The value 0 is stored at (D11, D10) if -10000 ≤ (D1, D0) ≤ 10000. **Example** (D1, D0)=6789→(D11, D10)=0
- The value (D1, D0) 10000 is stored at (D11, D10) if 10000 \leq (D1, D0).
 - **Example** (D1, D0)=50000→(D11, D10)=40000

7.13.3 Zone control for BIN 16-bit and BIN 32-bit data (ZONE(P), DZONE(P))

- (2) The values that can be designated by \mathfrak{S}_{0} , \mathfrak{S}_{0} , and \mathfrak{S}_{3} are in the range of from -32768 to 32767.
- (3) The output value stored at $_{\bigcirc}$ is a signed 16-bit BIN value. Therefore, if the operation results exceed the range of -32768 to 32767, the following will take place:

 When :
 Negative bias value
 -100

 Input value
 -32768

Output value = $-32768 + (-100) = 8000_{H} + FF9C = 7F9C_{H} = 32668$

DZONE

(1) Adds bias value designated by $(\textcircled{s}, \textcircled{s}^{+1})$ or $(\textcircled{s}, \textcircled{s}^{+1})$ to input value designated by $(\textcircled{s}, \textcircled{s}^{+1})$, and stores the result at device number designated by $(\textcircled{D}, \textcircled{D}^{+1})$.

- (2) The values designated by (𝔄), 𝔄+1), (𝔄, 𝔄+1), or (𝔄, 𝔄+1) are within the range of from -2147483648 to 2147483647.
- (3) The value stored at (D, D+1) is a signed 32-bit BIN value.

Therefore, if the operation results exceed the range of from -2147483648 to 2147483647, the following takes place:

When : {

Negative bias value (၍, ၍+1).....-1000 Input value (၍, ୠ+1).....-2147483648

Output value = $-2147483648 + (-1000) = 80000000_{H} + FFFFC18_{H}$ = 7FFFFC18 = 2147482648.

Operation Error

(1) There are no operation errors associated with the ZONE(P) or DZONE(P) instructions.

Program Example

(1) The following program performs zone control by applying negative and positive bias values of -100 to 100 for the data set at D0 and stores the result of control at D1 when X0 is turned ON.

[Operation]

- The value (D0) + (-100) is stored at D1 if D0 < 0. **Example** $D0 = -200 \rightarrow D1 = -300$
- The value 0 is stored at D1 if D0 = 0.
- The value of (D0) + 100 is stored at D1 if 0 < D0.
 Example D0=700→D1=800
- (2) The following program performs zone control by applying negative and positive bias values of -10000 to 10000 for the data set at D0 and D1 and stores the result of control at D10 and D11 when X1 is turned ON.

[Ladder Mode]

[List Mode]

0			K-10000	K10000	DO		Step	Instruction		Device		
v		Lozonei	10000	RICCCC	50		0	LD DZONEP	X1 K-10000	K10000	DO	D10
8						[END]	8	END				

[Operation]

- The value (D1, D0) + (-10000) is stored at (D11, D10) if (D1, D0) < 0.
 Example (D1,D0)=-12345→(D11,D10)=-22345
- The value 0 is stored at (D11, D10) if (D1, D0) = 0.
- The value (D1, D0) + 10000 is stored at (D11, D10) if 0 < (D1, D0).

Example (D1,D0)=50000→(D11,D10)=60000

7.13.4 Scaling (Point-by-point coordinate data) (SCL(P),DSCL(P))

QnU(D)(H)CPU: The serial number (first five digits) is "10102" or later. QnUDE(H)CPU: The serial number (first five digits) is "10102" or later.

(s) : Input values for scaling or head number of the device where input values are stored(BIN 16/32 bits)

 \circledast : Head number of the devices where scaling conversion data are stored(BIN 16/32 bits)

(D) : Head number of the devices where output values depending on scaling are stored (BIN 16/32 bits).

Setting	Internal	Devices	R 7R	J			7n	Constants	Other
Data	Bit	Word	, <u>2</u> , 1	Bit	Word	0	20	К, Н	Othor
<u>S1</u>	_	0	0			0		0	
S2	_	0	0					_	—
D		0	0			0		_	

Function

SCL(P)

The scaling conversion is executed based on the scaling conversion data stored in the device specified by $_{\odot}$ and up.

- (2) If the value does not result in an integer, this instruction rounds the value to the whole number.
- (3) Set the X coordinate of the scaling conversion data in ascending order.
- (4) Set the input value (5) within the range of the scaling conversion data (within the range of (52) devices).

- (5) If some specified points have same X coordinates, the Y coordinate data of the highest point number will be output.
- (6) Specify the number of coordinate points of scaling conversion data from 1 to 32767.

DSCL(P)

(1) This instruction executes scaling for the scaling conversion data (32-bit data units) specified by (2) with the input value specified (3), and then stores the operation result into the devices specified by (2).

The scaling conversion is executed based on the scaling conversion data stored in the device specified by (s) and up.

- (2) If the value does not result in an integer, this instruction rounds the value to the whole number.
- (3) Set the X coordinate of the scaling conversion data in ascending order.
- (4) Set the input value (s) within the range of the scaling conversion data (within the range of (s) and (s) +1 devices).
- (5) If some specified points have same X coordinates, the Y coordinate data of the highest point number will be output.
- (6) Specify the number of coordinate points of scaling conversion data from 1 to 32767.

(1) There are two searching methods that depend on whether SM750 is on or off.

SM750	Searching method	Range of number of searches
OFF	Sequential search	$1 \cong$ Number of times \cong 32767
ON	Binary search	$1 \cong$ Number of times $\cong 15$

- (2) When the scaling conversion data are set in ascending order, the searching methods change from one to the other depending on the SM750 status. Therefore, the processing speed also changes. The number of searches determines the processing speed. Fewer number of serches make the processing run faster.
 - (a) If the data processing speed with the sequential search rises:

If the number of coordinates is highest and the input value (s) is within the coordinate range from 1 to 15 point, the number of sequential searches will be 15 or smaller. Therefore, the data processing speed with the sequential search will rise.

(b) If the data processing speed with the binary search rises:

f the maximum number of searches is 15 and the input value so is out of the coordinate range, 16 or over, the number of binary searches will be equal to the number of sequential numbers or smaller. Therefore, the data processing speed with the binary search will rise.

Operation Error

- (1) In any of the following cases, an operation error occurs, the error flag (SM0) turns on, and an error code is stored into SD0.
 - The X coordinates of the scaling conversion data positioned before the point specified by (are not set in ascending order. (However, this error is not detected when SM750 is on.) (Error code: 4100)
 - The input value specified by $_{\mbox{\scriptsize (s)}}$ is out of the range of the scaling conversion data set. (Error code: 4100)
 - The number of X and Y coordinates of the device specified by (2) is out of the range from 1 to 32767. (Error code: 4100)
 - The number of X and Y coordinates of the device specified by <a>by specified is out of the specified range. (Error code: 4101)

Program Example

(1) The following program executes scaling for the scaling conversion data of which the devices specified at D100 and up are set with the input value specified at D0, and then outputs the data at D20.

[Ladder Mode]

)	Fool	DO	D100	Dao	-	Step	Instruction	ו	Device	
	[30L	DO	DIOO	D20	1	0	LD SCL	M1 00 D0	D100	D20
				-LEND	Ľ	5	END			

[Operation]

M100

7.13.5 Scaling (Point-by-point coordinate data) (SCL2(P),DSCL2(P))

QnU(D)(H)CPU: The serial number (first five digits) is "10102" or later. QnUDE(H)CPU: The serial number (first five digits) is "10102" or later.

(S) : Input values for scaling or head number of the device where input values are stored (BIN 16/32 bits)

See : Head number of the devices where scaling conversion data are stored (BIN 16/32 bits)

D :	Head number	of the devices wh	ere output values	depending on	n scaling are	stored(BIN	16/32 bits).
-----	-------------	-------------------	-------------------	--------------	---------------	------------	--------------

Setting	Internal	Devices	R 7R	J			Zn	Constants	Other
Data	Bit	Word	N, 2N	Bit	Word	0	20	К, Н	Other
<u>(S1)</u>		0	0			0		0	_
S2		0	0		—				
D		0	0			0		_	

SCL2

The scaling conversion is executed based on the scaling conversion data stored in the device specified by (s) and up.

- (2) If the value does not result in an integer, this instruction rounds the value to the whole number.
- (3) Set the X coordinate of the scaling conversion data in ascending order.

- (4) Set the input value (s) within the range of the scaling conversion data (within the range of (s) devices).
- (5) If some specified points have same X coordinates, the Y coordinate data of the highest point number will be output.

DSCL2(P)

(1) This instruction executes scaling for the scaling conversion data (32-bit data units) specified by ☺ with the input value specified ⑤, and then stores the operation result into the devices specified by ⑤.

The scaling conversion is executed based on the scaling conversion data stored in the device specified by (s) and up.

- (2) If the value does not result in an integer, this instruction rounds the value to the whole number.
- (3) Set the X coordinate of the scaling conversion data in ascending order.
- (4) Set the input value (s) within the range of the scaling conversion data (within the range of (s) and (s) +1 devices).
- (5) If some specified points have same X coordinates, the Y coordinate data of the highest point number will be output.
- (6) Specify the number of coordinate points of scaling conversion data from 1 to 32767.

When the coordinates of the scaling conversion data are set in ascending order, the searching methods change from one to the other depending on the SM750 status. Therefore, the processing speed also change. The number of searches determines the processing speed. Fewer number of searches make the processing run faster.

For details, refer to Section 7.13.4.

Operation Error

- (1) In any of the following cases, an operation error occurs, the error flag (SM0) turns on, and an error code is stored into SD0.
 - The X coordinates are not set in ascending order.
 (Error code: 4100)
 - The input value specified by \mathfrak{S} is out of the range of the scaling conversion data set.

(Error code: 4100)

- The number of X and Y coordinates of the device specified by (s) is out of the range from 1 to 32767. (Error code: 4100)
- The number of X and Y coordinates of the device specified by (2) is out of the specified range. (Error code: 4101)

Program Example

(1) The following program executes scaling for the scaling conversion data of which the devices specified at D100 and up are set with the input value specified at D0, and then outputs the data at D20.

[Operation]

7.14 File register switching instructions

7.14.1 Switching file register numbers (RSET(P))

				Basic	High performance Proce	ess Redundant	Universal
RSE	T _	Command			RSET	S	_
RSE	ETP _	Command			RSETP	<u>s</u>	
	⑤ :B d	lock number data used to ata is stored (BIN 16 bits	o change the block numb)	per or the numb	er of the device	where the blo	ck number
	Setting Internal Data Bit	I Devices Word R, ZR	J∷∖∷ Bit Word	U∭\G∭	Zn	Constants K, H	Other
	S		0				

Function

(1) Changes the file register block number used in the program to the block number stored in the device designated at (s).

Following the block number change, all file registers used in the sequence program are processed to the file register of the block number after the change.

Example

When switching block number from block No. 0 to block No. 1

When a file register (R) is refreshed and the block No. of the file register is switched with the RSET instruction, follow restrictions. For the restrictions on file registers, refer to Section 3.10.

Operation Error

- (1) In any of the following cases, an operation error occurs, the error flag (SM0) turns ON, and an error code is stored into SD0.
 - The block number designated by (s) does not exist. (Error code: 4100)
 - There is no file register for the specified block No. (Error code: 4101)

Program Example

 The following program compares R0 of block No. 0 and block No. 1. [Ladder Mode]

[List Mode]

Step	Instruction	C)evice
0		SM400	
3	MOVP	RO	DO
5 7	MOVP	K I RO	D1
9 12	LD= OUT	D0 Y40	D1
13	LD< OUT	D0 Y41	D1
17	LD>	DO	D1
20	END	142	

[Operation]

7.14.2 Setting files for file register use (QDRSET(P))

File name of

the presently

used file register

File name of file

register used after the execution of

execution of

(2) Drive number can be designated from 1 to 4.

(The drive number cannot be designated as drive 0 (program memory/internal memory).) Note that available drives vary depending on the CPU module used. Refer to the manual of the CPU module and check the drives that can be specified.

- (3) It is not necessary to designate the extension (.QDR) with the file name.
- (4) A file name setting can be deleted by designating the NULL character (00_H) for the file name.
- (5) File names designated with this instruction will be given priority even if a drive number and file name have been designated in the parameters.

- If the file name is changed with the QDRSET instruction, the file name returns to the name specified by the parameter when the CPU module is switched from STOP to RUN. To maintain the file name even after the CPU mode is changed from STOP to RUN, execute the QDRSET instruction with the SM402 special relay, which turns ON during one scan when the CPU enters from STOP to RUN mode.
- 2. For refreshing a file register, do not change the file name of the file register with the QDRSET instruction. For restrictions on file registers, refer to Section 3.10.

Operation Error

- (1) In the following case, an operation error occurs, the error flag (SM0) turns ON, and an error code is stored into SD0.
 - File name does not exist at the drive number designated by (s). (Error code: 2410)

Program Example

(1) The following program compares R0 of ABC in block No. 1 and R0 of DEF in block No. 1. [Ladder Mode]

[List Mode]

Step	Instruction	D	evice
0	LD	X0 "1 + PO"	
6	MOVP	RO RO "1 · DEE"	DO
13	MOVP	RO	D1
15	LD=	DO	D1
18	OUT	Y40	
19	LD<	DO	D1
22 23		141 D0	D1
26 27	OUT END	Y42	

[Operation]

7.14.3 File setting for comments (QCDSET(P))

				Bašic	performance Proc	Redundant	Universal
QCDSET	лŀ	Command			QCDSET	<u>s</u>	\neg
QCDSETP	⊢	Command			QCDSET	> (\$)	\neg
	⊚ : Chara devic	acter string data of the swhere the charact	e drive No./file name in er string data is stored (which the comm character string)	ent file is set, c)	or head numbe	r of the
Setting Data	Internal Dev Bit	vices R, ZR	J∷:∖:::] Bit Word	U∭\G∭	Zn	Constants \$	Other
S		0				0	

Function

(1) Changes the file register file name used in the program to the file name being stored at the device designated by (s).

 \mathbf{X}

After the file name change, comment data being used by the sequence program perform processing in relation to the comment data of the file name after the change.

Example

When switching from Drive No. 1/File name B to Drive No. 3/File name A

- (2) Drive number can be designated from 1 to 4. (The drive number cannot be designated as drive 0 (program memory/internal memory).) Note that available drives vary depending on the CPU module used. Refer to the manual of the CPU module and check the drives that can be specified.
- (3) It is not necessary to designate the extension (.QCD) with the file name.

- (4) A file name setting can be deleted by designating the NULL character $(00_{\rm H})$ for the file name.
- (5) File names designated with this instruction will be given priority even if a drive number and file name have been designated in the parameters.
- (6) This instruction cannot be executed while SM721 is ON for the Universal model QCPU. No operation if executed.

If the file name is changed with the QCDSET instruction, the file name returns to the name specified by the parameter when the CPU module is switched from STOP to RUN.

To maintain the file name even after the CPU mode is changed from STOP to RUN, execute the QCDSET instruction with the SM402 special relay, which turns ON during one scan when the CPU enters from STOP to RUN mode.

Operation Error

- (1) In the following case, an operation error occurs, the error flag (SM0) turns ON, and an error code is stored into SD0.
 - File name does not exist at the drive number designated by (s). (Error code: 2410)

Program Example

(1) The following program switches object file to file name ABC. QCD at drive No. 0 when X0 is ON, and to DEF. QCD at drive No. 1 when X1 is ON.
[Ledder Mede]

[Ladder Mode]

[List Mode]

Step	Instruction	Device
0 1 6 7 12	LD QCDSETP LD QCDSETP END	X0 ″1:ABC″ X1 ″3:DEF″

(1) This instruction will not be executed even when the execution command of this instruction is ON while SM721 (file access in execution) is ON for the Universal model QCPU only. Execute this instruction when SM721 is OFF.

7.15 Clock instructions

7.15.1 Reading clock data (DATERD(P))

				Basic	performance Proc	cess Redundant	Universal
DATERD	лŀ	Command			DATERD	D	_
DATERDP	<u> </u>	Command			DATERDF	<u>></u> D-	_
	D : Head	I number of the device	es where the read clock	data will be sto	red (BIN 16 bits	;)	
Setting Data	Internal De Bit	Wices R, ZR	J Bit Word	U\G	Zn	Constants	Other
D		0					
Function	_						

(1) Reads "year, month, day, hour, minute, second, and day of week" from the clock element of the CPU module and stores it as BIN value to the device designated by
o or later device.

- (2) The "year" at D is stored as 4-digit year indication.
- (3) The "day of week" at D+6 is stored as 0 to 6 to represent the days Sunday to Saturday.

Day of week	Sun	Mon	Tue	Wed	Thu	Fri	Sat
Stored data	0	1	2	3	4	5	6

(4) Compensation is made automatically for leap years.

Operation Error

- (1) In the following case, an operation error occurs, the error flag (SM0) turns ON, and an error code is stored into SD0.
 - The device specified by D exceeds the range of the corresponding device. (For the Universal model QCPU only.) (Error code: 4101)

Program Example

(1) The following program outputs the following clock data as BCD values:

```
Year .......Y70 to Y7F
Month ......Y68 to Y6F
Day ......Y60 to Y67
Hour ......Y58 to Y5F
Minute ......Y50 to Y57
Second .....Y48 to Y4F
Week ......Y44 to Y47
```

[Ladder Mode]

[List Mode]

[[]Operation]

7.15 Clock instructions 7.15.1 Reading clock data (DATERD(P))

7.15.2 Writing clock data (DATEWR(P))

Command DATEWR DATEWR (S) Command DATEWRP (\mathbf{S}) DATEWRP (s) : Head number of the devices where clock data to be written into the clock device is stored (BIN 16 bits) Internal Devices Setting J....\.... R, ZR Constants Other U....\G.... Zn Data Bit Word Bit Word S \bigcirc Grantion

(1) Writes clock data stored in the device number designated by (s) or later device number to the clock element of the CPU module.

Basic High

Process Redundant

Universal

- (2) Each item is set as a BIN value.
- (3) The "year" at (s) is designated by using four-digit year indication between 1980 to 2079.
- (4) (s) +1 designates the "month" in values of from 1 to 12 (January to December).
- (5) (s) + 2 designates the "day" in values of from 1 to 31.
- (6) (s) +3 designates the "hour" in values of from 0 to 23 (using 24-hour clock, from 0 hours to 23 hundred hours). (Uses the 24-hour clock.)
- (7) (s) +4 designates the "minute" in values of from 0 to 59.
- (8) (s) +5 designates the "second" in values of from 0 to 59.
- (9) (s) +6 designates the "day of week" in values of from 0 to 6 (Sunday to Saturday).

Day of week	Sun	Mon	Tue	Wed	Thu	Fri	Sat
Stored data	0	1	2	3	4	5	6

- (1) In any of the following cases, an operation error occurs, the error flag (SM0) turns ON, and an error code is stored into SD0.
 - Individual items of data have been set outside the setting range.

(Error code: 4100)

 The device specified by s exceeds the range of the corresponding device. (For the Universal model QCPU only.)
 (Error code: 4101)

Program Example

(1) The following program writes the following clock data to the clock element as BCD values when X40 is turned ON.

Year	X30 to X3F	Hour	X18 to X1F
Month	X28 to X2F	Minute	X10 to X17
Day	X20 to X27	Second	X8 to XF
Week	X4 to X7		

[Ladder Mode]

[List Mode]

7.15.3 Clock data addition operation (DATE+(P))

Basic High Process Redundant Universal

Set : Head number of the devices where the time data to be added for adjustment is stored (BIN 16 bits)

(D) : Head number of the devices where the result of addition of clock (time) data will be stored (BIN 16 bits)

Setting	Internal	Devices			7n	Constants	Other		
Data	Bit	Word	R, ZR	Bit	Word	U:;\G:;	<u> </u>	Constants	Othor
S1		C	$\mathbf{)}$						
62		C	\mathbf{C}						
D		C	\mathbf{C}						

(1) Adds the time data designated by (s) to the clock data designated by (s), and stores the result into the area starting from the device designated by (b).

		Data range		I	Data range		D	ata range
S1)	Hour	(0 to 23)	S2	Hour	(0 to 23)	D	Hour	(0 to 23)
S1)+1	Minute	(0 to 59) +	<u>\$2</u> +1	Minute	(0 to 59)	(D)+1	Minute	(0 to 59)
S1)+2	Second	(0 to 59)	<u>\$</u> 2+2	Second	(0 to 59)	(D)+2	Second	(0 to 59)

For example, adding the time 7:48:10 to 6:32:40 would result in the following operation:

S1)	Hour: 6		S2	Hour: 7		D	Hour: 14
S1+1	Minute: 32	+	<u>\$2</u> +1	Minute: 48	\square	(D)+1	Minute: 20
S1+2	Second: 40		S2 +2	Second: 10		(D)+2	Second: 50

(2) If the results of the addition of time exceed 24 hours, 24 hours will be subtracted from the sum to make the final operation result.

For example, if the time 20:20:20 were added to 14:20:30, the result would not be 34:40:50, but would instead be 10:40:50.

✓ Operation Error

- (1) In any of the following cases, an operation error occurs, the error flag (SM0) turns ON, and an error code is stored into SD0.
 - The data set by (s) and (s) is outside the setting range. (Error code: 4100)
 - The device specified by (s) or (s) or (b) exceeds the range of the corresponding device. (For the Universal model QCPU only.) (Error code: 4101)

Program Example

 The following program adds 1 hour to the clock data read from the clock element, and stores the results in the area starting from D100 when X20 is ON.
 [Ladder Mode]

[List Mode]

Step	Instruction		Device	
0 1 3 5 8 12	LD DATERDP MOVP DMOVP DATE+P END	X20 D0 K1 K0 D3	D10 D11 D10	D100

[Operation]

• Time data read operation triggered by DATERDP instruction.

Clock element		95	Year	
	D1	5	Month	
	D2	15	Day	
	D3	10	Hour	
	D4	23	Minute	Fime data
	D5	41	Second	
	D6	2	Day of w	eek

Addition triggered by DATE+P instruction.

7.15.4 Clock data subtraction operation (DATE-(P))

Basic High Process Universal Command DATE-\$2 ┥┝ (\$1) DATE-D Command DATE-P DATE-P (\$1) \$2) D (s) : Head number of the devices where the clock time data to be adjusted by substraction is stored (BIN 16 bits) See : Head number of the devices where time data to be subtracted for adjustment is stored (BIN 16 bits) D : Head number of the devices where the result of subtraction of clock (time) data will be stored (BIN 16 bits) Setting Internal Devices 1 R. ZR U...\G.... 7n Constants Other Data Bit Word Word (\$1) ____ \bigcirc ____ (\$2) \bigcirc \bigcirc ____

Redundant

Grant Function

(1) Subtracts the time data designated by (2) from the clock data designated by (3), and stores the result into the area starting from the device designated by (D).

	C	Data range		Γ	Data range		D	ata range
S1)	Hour	(0 to 23)	S2	Hour	(0 to 23)	D	Hour	(0 to 23)
<u></u> (\$1)+1	Minute	(0 to 59) —	<u>\$2</u> +1	Minute	(0 to 59)) D+1	Minute	(0 to 59)
S1)+2	Second	(0 to 59)	<u>\$2</u> +2	Second	(0 to 59)	(D)+2	Second	(0 to 59)

For example, if the clock time 3:50:10 were subtracted from the clock time 10:40:20, the operation would be performed as follows:

S1)	Hour: 10		S2	Hour: 3		D	Hour: 6
S1) +1	Minute: 40	_	S2 +1	Minute: 50	\square	(D)+1	Minute: 50
S1) +2	Second: 20		S2 +2	Second: 10		(D)+2	Second: 10

(2) If the subtraction results in a negative number, 24 will be added to the result to make a final operation result.

For example, if the clock time 10:42:12 were subtracted from 4:50:32, the result would not be -6:8:20, but rather would be 18:8:20.

✓ Operation Error

- (1) In any of the following cases, an operation error occurs, the error flag (SM0) turns ON, and an error code is stored into SD0.
 - The data set by so and so is outside the setting range. (Error code: 4100)
 - The device specified by (s) or (a) or (b) exceeds the range of the corresponding device. (For the Universal model QCPU only.) (Error code: 4101)

Program Example

(1) The following program subtracts the time data stored in devices starting from D10 from the clock data read from the clock element when X1C is turned ON, and stores the result at devices starting from R10.

[Ladder Mode]

[List Mode]

[Operation]

• Time data read operation triggered by DATERDP instruction.

• Subtraction as triggered by DATE-P instruction (when 10 hours, 40 minutes, and 10 seconds have been designated by D10 to D12).

7.15 Clock instructions 7.15.4 Clock data subtraction operation (DATE-(P))

7.15.5 Time data conversion (from Hour/Minute/Second to Second) (SECOND(P))

Grant Function

 Converts the time data stored in the area starting from the device designated by s to seconds and stores the conversion result into the device designated by s.

For example, if the value were 4 hours, 29 minutes, and 31 seconds, the conversion would be made as follows:

Operation Error

- (1) In any of the following cases, an operation error occurs, the error flag (SM0) turns ON, and an error code is stored into SD0.
 - The data set by (s) and is outside the setting range. (Error code: 4100)
 - The device specified by (s) exceeds the range of the corresponding device.
 (For the Universal model QCPU only.)
 (Error code: 4101)
Program Example

(1) The following program converts the clock time data read from the clock element into second when X20 is turned ON, and stores the result at D100 and D101.

[Operation]

• Time data read operation triggered by DATERDP instruction.

· Conversion to seconds as triggered by the SECONDP instruction.

7.15.6 Time data conversion (from Second to Hour/Minute/Second) (HOUR(P))

Setting	Internal Devices		R 7R	J::\::		U C G	Zn	Constants	Other
Data	Bit	Word	N, 2N	Bit	Word	0		К, Н	
S	0		\supset	0			0	—	
D		(\supset						_

Grant Function

For example, if 45325 seconds were the value designated, the conversion operation would be conducted as follows:

Operation Error

- (1) In any of the following cases, an operation error occurs, the error flag (SM0) turns ON, and an error code is stored into SD0.
 - The data set by \odot and is outside the setting range. (Error code: 4100)
 - The device specified by

 exceeds the range of the corresponding device.
 (For the Universal model QCPU only.)
 (Error code: 4101)

Program Example

(1) The following program converts the seconds stored at D0 and D1 into an hour, minute, second format, and stores the result at devices starting from D100 when X20 is turned ON.
 [Ladder Mode]
 [List Mode]

[Operation]

• Conversion to hour minute, and second format by the HOURP instruction (when the value 40000 seconds has been designated by D1 and D0).

7.15.7 Date comparison (DT=,DT<>,DT>,DT<=,DT<,DT>=)

QnU(D)(H)CPU: The serial number (first five digits) is "10102" or later. QnUDE(H)CPU: The serial number (first five digits) is "10102" or later.

(1): Head number of the devices where the data to be compared are stored (BIN 16 bits)

(S2) : Head number of the devices where the data to be compared are stored (BIN 16 bits)

n : Value of the data to be compared or the number of the stored data to be compared (BIN 16 bits)

Setting	Internal	Devices	R 7R	J	\		7n	Constants	Other
Data	Bit	Word	, ∠ IX	Bit	Word	0::\G::		К, Н	Othor
§1		0		—			—	—	
<u>\$2</u>		C	0		_				
n			\supset		0			0	

Grant Function

- (1) This instruction compares the date data specified by ⑤ with those specified by ⑥ , or the date data specified by ⑥ with current date data. Setting n can determine the data to be compared.
 - (a) Comparison of given date data
 - This instruction treats the date data specified by (s) and (s) as a normally open contact, and then compares the data in accordance with the value of n.

- (b) Comparison of current date data
 - This instruction treats the date data specified by so and the current date data as a normally open contact, and then compares the data in accordance with the value of n.

When either S or S corresponds to any of the following in comparing given or current date data with given date data, the operation error (error code: 4101) or a malfunction may occurs.

- The range of the devices to be used for the index modification is specified over
- the range of the device specified by sp or sp .
- \bullet File registers are specified by ${\rm sp}$ or ${\rm sp}$ without a register set.
- (2) This instruction sets BIN values for each item.
- (3) This instruction sets the year of four digits selected from 1980 to 2079 with the BIN value specified by (s) or (s2).
- (4) This instruction sets the month selected from 1 to 12 (January to December) with the BIN value specified by (s) +1 or (s₂ +1.
- (5) This instruction sets the day selected from 1 to 31 (1st to 31st) for with the BIN value specified by (s) +2 or (s₂ +2.
- (6) This instruction specifies the following values at n so that the data to be compared can be specified.

- (a) Date data to be compared (from 0 to 2nd bit)
 - 0: Does not compare specified date data (year/month/day).
 - 1: Compares specified date data (year/month/day).
- (b) Operation data to be compared (15th bit)
 - 0: Compares the date data specified by \mathfrak{S} with the date data specified by \mathfrak{S} .
 - 1: Compares the date data specified by (s) with the current date data.
 - Ignores the date data specified by $\textcircled{3}{2}$.

(c) The following table shows processing details of bits to be compared.

n value for comparison of specified date data with given date data	n value for comparison of specified date data with current date data	Date to be compared	Processing details	
0001н	8001H	Day	Comparison of days ()+2)	
0002н	8002н	Month	Comparison of months (S1+1)	
0003н	8003н	Month, day	Comparison of months ((1) +1) and days ((1) +2)	
0004н	8004н	Year	Comparison of years ((S))	
0005н	8005н	Year, day	Comparison of years (S) and days (S)+2)	
0006н	8006н	Year, month	Comparison of years (\mathfrak{S}) and months (\mathfrak{S} +1)	
0007н 8007н		Year, month, day	Comparison of years (⑤), months (⑥+1), and days (⑥+2)	
Other than 0001н to 0007н,8001н to 8007н		No objects	No comparison of years (\mathfrak{S}), months (\mathfrak{S} +1), and days (\mathfrak{S} +2) (Non-conductive)	

(7) If the data stored in the devices to be compared are not recognized as date data, SM709 will be turned on after the instruction execution and no-conductive status will be made. Even if they are not recognized as date data but the range of the devices is within the setting range, SM709 will not be turned on.

Moreover, if the range of devices specified by \mathfrak{S} to \mathfrak{S} +2 or \mathfrak{D} to \mathfrak{S} +2 exceeds the range of specified devices, SM709 will be turned on after the instruction execution and no-conductive status will be made.

Once SM709 is turned on, on-status will be retained till when the CPU modules are reset or powered off. Therefore, turn off SM709 if necessary.

Instruction	Condition	Comparison operation result	Instruction	Condition	Comparison operation result	
DT=	§1 = §2		DT=	S1 ≠ S2		
DT<>	S1 ≠ S2		DT<>	§2 = §1		
DT>	<u>\$1</u> > <u>\$2</u>	Conductivo status	DT>	$(s) \leq (s)$	No-conductive	
DT<=	$(s) \leq (s)$		DT<=	<u>61</u> > <u>6</u> 2	status	
DT<	§1 < §2		DT<	$(s) \ge (s)$		
DT>=	\$1 ≧ \$2		DT>=	§1 < §2		

(8) The following table shows the comparison operation results for each instruction.

(a) The following figure shows the comparison example of dates.

The following table shows the conductive states resulting from performing the comparison operation of the dates A, B, and C shown above.

Even if the objects to be compared are under the same condition, the comparison operation results vary depending on the objects selected.

Comparison	(Comparison condition	n
objects	A <b< th=""><th>B<c< th=""><th>A<c< th=""></c<></th></c<></th></b<>	B <c< th=""><th>A<c< th=""></c<></th></c<>	A <c< th=""></c<>
Day	0	×	×
Month	×	0	×
Month, day	×	0	×
Year	0	0	0
Month, day	0	0	0
Year, month	0	0	0
Year, month, day	0	0	0
No objects	×	×	×

 \bigcirc : Conductive $~\times$: No-conductive

- (b) Even if the dates to be compared do not exist practically, this instruction executes the comparison operation for the objects with the settable dates in accordance with the following condition.
 - Date A: 2006/02/30 (This date is settable, though it does not exist.)
 - Date B: 2007/03/29
 - Date C: 2008/02/31 (This date is settable, though it does not exist.)

Comparison	(Comparison condition						
objects	A <b< th=""><th>B<c< th=""><th>A<c< th=""></c<></th></c<></th></b<>	B <c< th=""><th>A<c< th=""></c<></th></c<>	A <c< th=""></c<>					
Day	×	×	0					
Month	×	×	×					
Month, day	0	×	0					
Year	0	0	0					
Month, day	0	0	0					
Year, month	0	0	0					
Year, month, day	0	0	0					
No objects	×	×	×					

 \bigcirc : Conductive \times : No-conductive

Coperation Error

(1) Any operation errors do not occur in DT=,DT<>,DT>,DT<=,DT<,DT>= instruction.

Program Example

(1) The following program compares the data stored in D0 with the data (year, month, and day) stored in D10, and makes Y33 be conductive status when the data stored in D0 meet the data stored in D10.

(2) The following program compares the data stored in D0 with the current date data (year and month), and makes Y33 be conductive status when the data stored in D0 do not meet the current date data, when M0 is turned on.

(3) The following program compares the data stored in D0 with the data (year and day) stored in D10, and makes Y33 be conductive status when the data value stored in D10 is smaller than the data value stored in D0, when M0 is turned on.

[Ladder	Mode]	
	model	

[List Mode]

0	MO	DO	D10	K5	۲ <u>ــــــــــــــــــــــــــــــــــــ</u>		Step	Instruction	De	evice	
Č		00	DIO	No			0 1 5	LD ANDDT> OUT	M0 D0 Y33	D10	K5
6					LEND	ľ	ĕ	END	100		

(4) The following program compares the data stored in D0 with the current date data (year), and makes Y33 be conductive status when the value of the current date data is the data value stored in D0 or larger.

[Ladder Mode]

7.15.8 Clock comparison (TM=,TM<>,TM>,TM<=,TM<,TM>=)

QnU(D)(H)CPU: The serial number (first five digits) is "10102" or later. QnUDE(H)CPU: The serial number (first five digits) is "10102" or later.

 \circledast : Head number of the devices where the data to be compared are stored (BIN 16 bits)

 \circledast : Head number of the devices where the data to be compared are stored (BIN 16 bits)

 $n\ :$ Value of the data to be compared or the number of the stored data to be compared (BIN 16 bits)

Set	etting	Internal	Devices	R 7R	J		Zn	Constants	Other	
D	lata	Bit	Word	N, 2N	Bit	Word	0:		К, Н	0 1101
(<u>S1</u>	_	0					—		
(S2		(0		_				
	n	_	(\supset	0				0	

Given Function

- (1) This instruction compares the clock data specified by (5) with those specified by (5), or the clock data specified by (5) with the current time data. Setting n determines the data to be compared.
 - (a) Comparison of given clock data
 - This instruction treats the clock data specified by (s) and the clock data specified by
 (s) as a normally open contact, and compares the data in accordance with the value of n.

- (b) Comparison of current time data
 - This instruction treats the clock data specified by (s) and the current time data as a normally open contact, and compares the data in accordance with the value of n.

When either or corresponds to any of the following conditions in comparing given or current time data with specified clock data, the operation error (error code: 4101) or a malfunction may occurs.

The range of the devices to be used for the index modification is specified over

the range of the device specified by (s) or (s).

- File registers are specified by (s) or (s) without a register set.
- (2) This instructions set BIN values for each item.
- (3) This instructions sets the time selected from 0 to 23 (midnight to 23 o'clock) with the BIN value specified by ⑤ or ⑥. (Uses the 24-hour clock.)
- (4) This instructions sets the minute selected from 0 to 59 (0 to 59 minutes) with BIN value specified by (s) +1 or (s) +1.
- (5) This instructions sets the second selected from 0 to 59 (0 to 59 seconds) with BIN value specified by (s) +2 or (s) +2.
- (6) This instructions specifies the following values at n so that the data to be compared can be specified.

The bit configuration specified at n is as follows.

- (a) Clock data to be compared (from 0 to 2nd bit)
 - 0: Does not compare specified clock data (hour/minute/second).
 - 1: Compares specified clock data (hour/minute/second).
- (b) Operation data to be compared (15th bit)
 - 0: Compares the clock data specified by (s) with the clock data specified by (s).
 - 1: Compares the clock data specified by (s) with the current time data.
 Ignores the clock data specified by (s).

n value for comparison of pecified clock data with given clock data	n value for comparison of specified clock data with current time data	Time to be compared	Processing details
0001н	8001H	Second	Comparison of seconds (⑤)+2)
0002н	8002н	Minute	Comparison of minutes (S)+1)
0003н	8003н	Minute, second	Comparison of minutes $(\textcircled{9}+1)$ and seconds days $(\textcircled{9}+2)$
0004н	8004н	Hour	Comparison of hours (S)
0005н	8005н	Hour, second	Comparison of hours () and seconds () +2)
0006н	8006н	Hour, minute	Comparison of hours ((S)) and minutes ((S)+1)
0007н	8007H	Hour, minute, second	Comparison of hours ((S)), minutes ((S)+1), and seconds ((S)+2)
Other than 00 8001н to	01н to 0007н, о 8007н	No objects	No comparison of hours ((\$), minutes ((+1), and seconds ((+2) (Non-conductive)

(c) The following table shows processing details of bits to be compared.

(7) If the data stored in the devices to be compared are not recognized as date data, SM709 will be turned on after the instruction execution and no-conductive status will be made. Once SM709 is turned on, on-status will be retained till when the CPU modules are reset or powered off. Therefore, turn off SM709 if necessary.

Moreover, if the range of devices specified by \mathfrak{S} to \mathfrak{S} +2 or \mathfrak{S} to \mathfrak{S} +2 exceeds the range of specified devices, SM709 will be turned on and no-conductive status will be made.

Instruction	Condition	Comparison operation result	Instruction	Condition	Comparison operation result
TM=	§) = §2		тм=	S1 ≠ S2	
TM<>	S1 ≠ S2		TM<>	§2 = §1	
TM>	5 5	Conductive status	TM>	\$1 \le \$2	No-conductive
TM<=	© ©		TM<=	S1 > S2	status
TM<	S1 < S2		TM<	\$1 ≧ \$2	
TM>=	$(51) \ge (52)$		TM>=	§1 < §2	

(8) The following table shows the comparison operation results for each instruction.

(a) The following figure shows the comparison example of time.

The following table shows the conductive states resulting from performing the comparison operation of the dates A, B, and C shown above.

Even if the objects to be compared are under the same condition, the comparison operation results vary depending on the objects selected.

Comparison objects		Comparison conditio	n
Companson objects	A <b< th=""><th>B<c< th=""><th>A<c< th=""></c<></th></c<></th></b<>	B <c< th=""><th>A<c< th=""></c<></th></c<>	A <c< th=""></c<>
Second	0	×	×
Month	×	0	×
Month, day	×	0	×
Hour	0	0	0
Hour, second	0	0	0
Hour, minute	0	0	0
Hour, minute, second	0	0	0
No objects	×	×	×

 \bigcirc : Conductive \times : No-conductive

(1) Any operation errors do not occur in TM=,TM<>,TM>,TM<=,TM<,TM>=instruction.

Program Example

(1) The following program compares the data stored in D0 with the data (hour, minute, and second) stored in D10, and makes Y33 be conductive status when the data stored in D0 meet the data stored in D10.

(2) The following program compares the data stored in D0 with the current time data (hour and minute), and makes Y33 be conductive status when the data stored in D0 do not meet the current date data, when M0 is turned on.

(3) The following program compares the data stored in D0 with the data (hour and second) stored in D10, and makes Y33 be conductive status when the data value stored in D10 is smaller than the data value stored in D0, when M0 is turned on.

(4) The following program compares the data stored in D0 with the current time data (hour), and makes Y33 be conductive status when the value of the current time data is the data value stored in D0 or larger.

7.16 Expansion Clock Instructions

7.16.1 Reading expansion clock data (S(P).DATERD)

(1) Reads "year, month, day, hour, minute, second, day of the week, and millisecond" from the clock element of the CPU module, and stores it as BIN value into the device specified by or later device.

- (2) The "year" at D is stored as 4-digit year indication.
- (3) The "day of the week" at \bigcirc +6 is stored as 0 to 6 to represent the days Sunday to Saturday.

Day of week	Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
Stored data	0	1	2	3	4	5	6

(4) Compensation is made automatically for leap years.

Operation Error

- (1) In the following case, an operation error occurs, the error flag (SM0) turns ON, and an error code is stored into SD0.
 - The device specified by

 exceeds the range of the corresponding device.
 (For the Universal model QCPU only.)
 (Error code: 4101)

Program Example

(1) The following program outputs the following clock data as BCD values:

Year	Y70 to Y7F
Month	Y68 to Y6F
Day	Y60 to Y67
Hour	Y58 to Y5F
Minute	Y50 to Y57
Second	Y48 to Y4F
Week	Y44 to Y47
Millisecond	Y38 to Y43

[Ladder Mode]

[List Mode]

[Operation]

- This instruction reads clock data and stores those to a specified device even if a wrong clock data is set to the CPU module. (example: Feb. 30th)
 When setting clock data with the DATEWR instruction or GX Developer, make sure to set a correct data.
- (2) Time error of reading a clock data of millisecond is a maximum of 2ms. (Difference between the data memorized by clock element inside of the CPU module and the data read by this function.)
- (3) Specifying digit for the bit device can be used only when the following conditions (a) and (b) are met.
 - (a) Digit specification: K4

(b) Head of device: multiple of 16When the above conditions (a) and (b) are not met, INSTRCT CODE ERR.(error code: 4004) will occur.

7.16.2 Expansion clock data addition operation (S(P).DATE+)

The first 5 digits of the serial No. are "07032" or higher.

S.DATE+		Cor	mmand	S.DATE+	§1)			
SP.DATE+		Cor	mmand	SP.DATE+	<u>(1)</u>	<u>©</u>		
	© : He © : He	ead number of the ead number of the ead number of the	e devices e devices e devices	s where the clock data s where the time data t s where the result of ac	to be adjusted o be added for ddition of clock	by addition is st adjustment is st (time) data will t	ored (BIN 16 b ored (BIN 16 b oe stored (BIN	oits) oits) 16 bits)
Setting Data	Internal Bit	Devices R, Word	ZR	J∷∷∖∷∷ Bit Word	UI.G	Zn	Constants	Other
<u>(5)</u>	-	0				—		
\$2		0				_		
D	-	0				_		

Grant Function

(1) Adds the time data designated by (2) to the clock data designated by (3), and stores the result into the area starting from the device designated by (2).

For example, adding the time 7:48:10:500 to 6:32:40:875 would result in the following operation:

(2) If the results of the addition of time exceed 24 hours, 24 hours will be subtracted from the sum to make the final operation result.

For example, when the time 20:20:20:500 is added to 14:20:30:875, the result is not 34:40:51:375, but 10:40:51:375.

Devices, 3+3, 2+3, and D+3 are not used for operation. A clock data read by the S(P).DATERD instruction can be directly added.

When the clock data is read by the S(P).DATERD instruction, day of week is inserted between "second" and "millisecond".

If the S(P).DATE+ instruction is used to read the clock data, the data can be directly used for addition since it does not perform the calculation for the day of a week.

Operation Error

- (1) In any of the following cases, an operation error occurs, the error flag (SM0) turns ON, and an error code is stored into SD0.
 - The data set by (s) and (s) is outside the range. (See Function (1).) (Error code: 4100)
 - The device specified by (s), (s2 or ()) exceeds the range of the corresponding device. (For the Universal model QCPU only.) (Error code: 4101)

Caution

- (1) Specifying digit for the bit device can be used only when the following conditions (a) and (b) are met.
 - (a) Digit specification: K4
 - (b) Head of device: multiple of 16

When the above conditions (a) and (b) are not met, INSTRCT CODE ERR. (error code:4004) will occur.

Program Example

(1) The following program adds 1 hour to the clock data read from the clock element, and stores the results into the area starting from D100 when X20 is turned ON.

[List Mode]

Step	Instruction		Device	
0 1 7 9 11 13 15 23	LD SP.DATERD MOVP MOVP MOVP SP.DATE+ END	X20 K1 K0 K0 K0 D3	D0 D10 D11 D12 D14 D10	D100

[Operation]

Clock element

· Time data read operation by the SP.DATERD instruction

Addition by the SP.DATE+ instruction

D3	Hour: 10	D10	Hour: 1	D1	00 Hour: 11
D4	Minute: 23	D11	Minute: 0	D1	01 Minute: 23
D5	Second: 41	+ D12	Second: 0	> D1	02 Second: 41
D6	2 (Tuesday)	D13	-	D1	03 -
D7	Millisecond: 100	D14	Millisecond: 0	D1	04 Millisecond: 100

7.16.3 Expansion clock data subtraction operation (S(P).DATE-)

(Ver.) Ver. Ver. Universal Baši Process Redundant The first 5 digits of the serial No. are "07032" or higher. Command S.DATE-┥┝ (\$1) S2) D S.DATE-Command SP.DATE-┥┝ (\$1) (S2) SP.DATE-(S) : Head number of the devices where the clock time data to be adjusted by substraction is stored (BIN 16 bits) (S) : Head number of the devices where time data to be subtracted for adjustment is stored (BIN 16 bits) (D) : Head number of the devices where the result of subtraction of clock (time) data will be stored (BIN 16 bits) Setting Internal Devices J....\ R, ZR U...\G... Zn Constants Other Data Word Bit Word Bit S1) \bigcirc S2) \bigcirc 0

Grant Function

For example, when the clock time 3:50:10:500 is subtracted from the clock time 10:40:20:875, the operation is performed as follows:

(2) If the subtraction results in a negative number, 24 will be added to the result to make a final operation result.

For example, when the clock time 10:42:12:500 is subtracted from 4:50:32:875, the result is not 6:8:20:375, but 18:8:20:375.

POINT

Devices, §) +3, g_2 +3, and g_2 +3 are not used for operation. A clock data read by S(P).DATERD instruction can be directly subtracted.

When the clock data is read by the S(P).DATERD instruction, day of week is inserted between "second" and "millisecond". If the S(P).DATE- instruction is used to read the clock data, the data can be directly used for subtraction since it does not perform the calculation for the day of the week.

Operation Error

- (1) In any of the following cases, an operation error occurs, the error flag (SM0) turns ON, and an error code is stored into SD0.
 - The data set by (s) and (s) is outside the range. (See Function (1).) (Error code: 4100)
 - The device specified by (s), (s) or (b) exceeds the range of the corresponding device. (For the Universal model QCPU only.) (Error code: 4101)

Caution

- (1) Specifying digit for the bit device can be used only when the following conditions (a) and (b) are met.
 - (a) Digit specification: K4
 - (b) Head of device: multiple of 16

When the above conditions (a) and (b) are not met, INSTRCT CODE ERR. (error code:4004) will occur.

Program Example

(1) The following program subtracts the time data stored in the area starting from D10 from the clock data read from the clock element when X1C is turned ON, and stores the result into the area starting from D100.

[List Mode]

Step	Instruction	I	Device	
0 1 7 9 11 13 15 23	LD SP.DATERD MOVP MOVP MOVP MOVP SP.DATE- END	X1C K10 K40 K10 K500 D3	D0 D10 D11 D12 D14 D10	D100

[Operation]

Clock element

· Time data read operation by the SP.DATERD instruction

· Subtraction by the SP.DATE- instruction

D3	Hour: 8	D10	Hour: 10	D100	Hour: 22
D4	Minute: 42	D11	Minute: 40	D101	Minute: 1
D5	Second: 1	– D12	Second: 10	□> D102	Second: 51
D6	3 (Wednesday)	D13	-	D103	-
D7	Millisecond: 997	D14	Millisecond: 500	D104	Millisecond: 497

-<u>2:</u>1:51:497 Adds 24 to this value $\overline{\mathbf{v}}$ 22:1:51:497

7.17 Program control instructions

(1) Processing when the execution type is converted with the program control instruction is as follows.

Execution type before change	Executed Instruction						
	PSCAN	PSTOP	POFF	PLOW			
Scan execution type	No change-remains scan type execution.		Output turned OFF in next scan.				
Initial execution type	Becomes scan	Becomes stand-by type.	Becomes stand-by type from the next scan after that.	Becomes low speed execution type.			
Stand-by type	execution type.	No change-remains stand-by type	Ignored				
Low speed execution type	Low speed execution type execution is stopped, becomes scan execution type from the next scan. (Execution from step 0)	Low speed execution type execution is stopped, becomes stand-by type from next scan.	Low speed execution type execution is stopped, and output is turned OFF in the next scan. Becomes stand-by type from the next scan after that.	No change -remains low speed execution type.			
Fixed scan execution type	Becomes scan execution type.	Becomes stand-by type.	Output turned OFF in next scan. Becomes stand-by type from the next scan after that.	Becomes low speed execution type.			

Once the fixed scan execution type program is changed to another execution type, it cannot be returned to the fixed scan execution type.

(2) As program execution type conversions by PSCAN and PSTOP instructions occur at the END processing, such conversions are impossible during program execution. When different execution types have been set for the same program in the same scan, the execution type will be that specified by the execution switching command that was executed last.

*1: The order of "GHI" and "DEF" program execution is determined by the program settings parameters. Switching from the fixed scan execution type program to the execution type program is performed in the following timing.

- (a) For the Universal model QCPU The execution type is changed when the execution of the fixed scan execution type is stopped at the END processing after the program control instruction execution.
- (b) For the CPU modules other than the Universal model QCPU The execution of the fixed scan execution type is stopped at the execution of the program control instruction, and the execution type is changed at the END processing.
- (3) When the POFF instruction is executed, the output is turned OFF at the next scan, and the execution type will be the stand-by type at the second next scan and later. If executed prior to the output OFF processing, the program control instruction is ignored.

7.17.1 Program standby instruction (PSTOP(P))

						Basic H	igh erformance Proce	ss Redundant	Universal
	PST PST	OP OPP	- Con	nmand 		[PSTOP PSTOPP	<u> </u>	
		Setting Inte Data Bi S –) : Character strin devices where ernal Devices t Word	g for the name of the the character string R, ZR Bit	e program file to data is stored (c	be set in the sta character string) U∭\G∭	nd-by status or Zn	Constants	er of the Other
्रे F	unctio	1							
	(1) (2)	Places the file Only the progr the stand-by t	e name progr rams stored ype.	am stored in t	he device d b. 0 (progra	lesignated t m memory/	by ⊚ in the internal RA	e stand-by M) can b	y status. e set as
	(3) (4) (5)	This instructio designated in It is not neces (Only .QPG fil	n will be give the paramet sary to designed will be ac	placed in the s en priority ever ers. gnate the exten ited on.)	tand-by sta n in cases w nsion (.QP0	(us when El (hen a prog G) with the f	ram execut iile name.	tion type	has been
\mathcal{S} c	Operatio	n Error							
	. (1)	In any of the fi an error code • The program • The program • The file nar device.	following cas is stored into m with the fil m type of the me storage c	es, an operation o SD0. le name specif e file name spe lestination dev	ied by s d ecified by s d rice of s ex	curs, the err loes not exis is the SFC xceeds the l	ror flag (SM st. C program. range of th	10) turns (Error co (Error co e corresp (Error co	ON, and de: 2410) de: 2412) ponding de: 4101)
∠ F	Program	Example							
	(1)	The following when X0 goes [Ladder Mode]	program pla s ON.]	Ces the progra	am with the [List I] Step] 1 5	file name A Mode] p Instruct PSTOPP END	BC in the s	stand-by s	status]

7.17.2 Program output OFF standby instruction (POFF(P))

					Basic	High performance Proc	ess Redundant	Universal
	POFF POFFP		Command Command			POFF	<u> (s </u> -	
		⑤ : Fil file	e name of the program t e name is stored (charac	to be set in the standby ster string)	status by turning	g OFF the outpu	ut, or the devic	e where the
	Setting Data	Bit	Devices R, ZR	J∷N∷] Bit Word	U[[]\G[[]	Zn	Constants \$	Other
्रे F	unction							

(1) Changes the execution type of the program with the file name stored in the device designated by (s).

 Scan execution type: 	Turns OFF outputs at the next scan (Non-execution processing). Programs are set as the stand-by type after the subsequent scan.
• Low speed execution type:	Stops the execution of the low speed execution type

- Low speed execution type: Stops the execution of the low speed execution type program and turns OFF outputs at the next scan. Programs are set as the stand-by type after the subsequent scan.
- (2) Only the programs stored in the drive No. 0 (program memory) can be set as the stand-by type.
- (3) This instruction will be given priority even in cases when a program execution type has been designated in the parameters.
- (4) It is not necessary to designate the extension (.QPG) with the file name. (Only .QPG files will be acted on.)

Operation Error

- (1) In any of the following cases, an operation error occurs, the error flag (SM0) turns ON, and an error code is stored into SD0.
 - The program with the file name specified by $\underline{(s)}$ does not exist.

(Error code: 2410)

The file name storage destination device of (s) exceeds the range of the corresponding device.
 (Error code: 4101)

(1) The following program makes the program with the file name ABC non-executionable and places it in the standby status when X0 is turned ON.
 [Ladder Mode]
 [List Mode]

[]		[
0 X0 0 POFFI	P ″ABC″]	Step	Instruction	Device	
5	[END]	0 1 5	LD POFFP END	X0 "ABC"	

7.17.3 Program scan execution registration instruction (PSCAN(P))

 \otimes

				Basic	High performance Proc	ess Redundant	Universal	
PSCAN		Command		[PSCAN	<u> </u>	-	
PSCANP	_ _	Command		[PSCANP	<u>s</u>	-	
 (§) : File name of the program to be set as a scan execution type, or head number of the devices where the file name is stored (character string) 								
Setting Data	Internal Bit	Devices Word R, ZR	J∖. Bit Word	U\G	Zn	Constants \$	Other	
S		0		_		0	—	

Function

- (1) Sets the program whose file name is being stored at the device designated by (s) in the scan execution type.
- (2) Only the programs stored in the drive No. 0 (program memory/internal RAM) can be set as the scan execution type.
- (3) Designated programs assume the scan execution type with END processing.

Example

When programs A, B, and C exist and program A performs "PSCAN" of program D.

- (4) This instruction will be given priority even in cases when a program execution type has been designated in the parameters.
- (5) It is not necessary to designate the extension (.QPG) with the file name.(Only .QPG files will be acted on.)

✓ Operation Error

- (1) In any of the following cases, an operation error occurs, the error flag (SM0) turns ON, and an error code is stored into SD0.
 - The program with the file name specified by (s) does not exist.

(Error code: 2410)

- The file name storage destination device of (s) exceeds the range of the corresponding device.
 (Error code: 4101)
- The specified file name is the SFC program, and the SFC program for the other file name has been already started. (Dual activation error of the SFC program)
 (For the Universal model QCPU)
 (Error code: 4131)

(For the High Performance model QCPU, Process CPU, Redundant CPU)

(Error code: 2504)

Program Example

(1) The following program sets the program with file name ABC as scan execution type when X0 is turned ON.

7.17.4 Program low speed execution registration instruction (PLOW(P))

						Dasie	performance FIOC	Reduitdant	Universal
	PL	OW		Command		[PLOW	S -	-
	PL	OWP		Command		[PLOWP	S	-
			⑤:File	e name of the program e name is stored (chara	to be set as a low spee cter string)	ed execution type,	, or head numbe	er of the device	es where the
		Setting Data	Internal Bit	Devices R, ZR	Jiii\iii Bit Word	U∭\G∭	Zn	Constants \$	Other
		S		0				0	—
Function									
	 Sets the program whose file name is being stored at the device designated by s in low-speed execution type. 							า	
	(2) Only the programs stored in the drive No. 0 (program memory/internal RAM) can be set as the low speed execution type.							e set as	

(3) Designated programs assume the low speed execution type with END processing.

Example

When programs A, B, and C exist and program A performs "PLOW" of program D. (Assume that the constant scan has been set.)

- (4) This instruction will be given priority even in cases when a program execution type has been designated in the parameters.
- (5) It is not necessary to designate the extension (.QPG) with the file name.(Only .QPG files will be acted on.)

Coperation Error

- (1) In any of the following cases, an operation error occurs, the error flag (SM0) turns ON, and an error code is stored into SD0.
 - The program with the designated file name does not exist. (Error code: 2410)
 - There is a CHK instruction contained within the program whose file name has been designated.
 (Error code: 4235)

Program Example

(1) The following program sets the program with file name ABC as low-speed execution type when X0 is turned ON.

7.17.5 Program execution status check instruction (PCHK)

Process Redunda l Iniv **LDPCHK** PCHK File name Command ANDPCHK ┥┝ PCHK File name Command **ORPCHK** - 1 PCHK File name (s) : File name of the program whose execution status will be checked (character string) Setting Internal Devices Constants R, ZR U....\G.... Zn Other Data \$ Bit Word Word Bit S \bigcirc Grant Function (1) Checks whether the program of the specified file name is in execution or not (non-execution).

- (2) The instruction is in conduction when the program of the specified file name is in execution, and the instruction is in non-conduction when the program is in non-execution.
- (3) Specify the file name without an extension (.QPG).For example, specify "ABC" when the file name is ABC.QPG.

Operation Error

- (1) In the following case, an operation error occurs, the error flag (SM0) turns ON, and an error code is stored into SD0.
 - The program with the designated file name does not exist. (Error code: 2410)

Program Example

(1) Program that keeps Y10 ON when the program file "ABC.QPG" is being executed.

Remark

Non-execution indicates that the program execution type is a stand-by type. Execution indicates that the program execution type is a scan execution type (including during output OFF (during non-execution processing)), low speed execution type or fixed scan execution type.

The PCHK instruction is in conduction when the program of the specified file name (target program) is in execution, and the instruction is in non-conduction when the program is in non-execution.

When the target program is set to non-execution (stand-by type) with the POFF instruction, the PCHK instruction is in conduction while the non-execution processing of the target program is being performed.

At the END processing of the scan where the non-execution processing is completed, the target program is put into non-execution (stand-by type), and the PCHK instruction is brought into non-conduction.

Therefore, note that if the PCHK instruction is executed for the program where the non-execution processing has been completed by the POFF instruction, the PCHK instruction may be brought into conduction.

The following chart shows the operation performed when program A executes the POFF instruction of program B and program C executes the PCHK instruction of program B with the programs being executed in order of program A, program B and program C.

7.18 Other instructions

7.18.1 Resetting watchdog timer (WDT(P))

		Basic High performance	Process Redundant Universal
WDT WDTP	Command Command		WDT
Settin Data	ng Internal Devices R, ZR	U∭\G∭ Bit Word	Constants Other

Grant Function

- (1) Resets watchdog timer during the execution of a sequence program.
- (2) Used in cases where the scan time exceeds the value set for the watchdog timer due to prevailing conditions.

If the scan time exceeds the watchdog timer setting value on every scan, change the watchdog timer settings at the peripheral device parameter settings.

(3) Make sure that the setting for t1 from step 0 to the WDT instruction and the setting for t2 from the WDT instruction to the END (FEND) instruction do not exceed the setting value of the watchdog timer.

- (4) The WDT instruction can be used two or more times during a single scan, but care should be taken in such cases, because of the time required until the output goes OFF during the generation of an error.
- (5) Scan time values stored at the special register will not be cleared even if the WDT or WDTP instruction is executed.

Accordingly, there are times when the value for the scan time for the special register is greater than the value of the watchdog timer set at the parameters.

Operation Error

(1) There are no operation errors associated with the WDT(P) instruction.

Program Example

(1) The following program has a watchdog timer setting of 200 ms, when due to the execution conditions program execution requires 300 ms from step 0 to the END (FEND) instruction.

7.18.2 Timing pulse generation (DUTY)

							_	
DUTY		Command	C	OUTY n1	n2	D -	-	
 n1 : Number of scans for ON (BIN 16 bits) n2 : Number of scans for OFF (BIN 16 bits) (D) : User timing clock (SM420 to SM424, SM430 to M434) (bits) 								
Set Di	tting Internal ata Bit	R, ZR	J:\ Bit Word	U∭\G∭	Zn	Constants K, H	Other	
r	1 🔿		(С				
r	12 🔿		(С				
	D ()*1							
				*1: Only SM420	to SM424, SM	1430 to SM434	can be used	

Grant Function

(1) Turns the user timing clock (SM420 to SM424, SM430 to M434), designated by _D, ON for the duration equivalent to the number of scans specified by n1, and OFF for the duration equivalent to the number of scans specified by n2.

- (2) Scan execution type programs use SM420 to SM424, and low speed execution type programs use SM430 to SM434.
- (3) The following will take place if both n1 and n2 have been set for 0:
 - (a) n1=0, $n2\ge 0$ SM420 to SM424 and SM430 to SM434 will stay OFF.
 - (b) n1>0, n2=0 SM420 to SM424 and SM430 to SM434 will stay ON.
- (4) The data designated by n1, n2, and D is registered with the system when the DUTY instruction is executed, and the timing pulse is turned ON and OFF by END processing.

Coperation Error

- (1) In any of the following cases, an operation error occurs, the error flag (SM0) turns ON, and an error code is stored into SD0.
 - The device designated by ${}_{\textcircled{}}$ is not from SM420 to SM424 or SM430 to SM434.

(Error code: 4101)

Basic High

• The values of n1 and n2 are less than 0. (Error code: 4100)
Program Example

(1) The following program turns SM420 ON for 1 scan, and OFF for 3 scans if X0 is ON.[Ladder Mode][List Mode]

7.18.3 Time check instruction (TIMCHK)

Ver. Basic High Process Redundant Universal

Basic model QCPU: The upper five digits of the serial No. are "04122" or larger.

⑤ : Device where the measured current value will be stored (BIN 16 bits) ⑥ : Device where the set value of measurement is stored (BIN 16 bits) ⑥ : Device to be turned ON at time-out (bits) ⑧ : Device to be turned ON at time-out (bits) Ø : Device to be turned ON at time-out (bit	ТІМСНК	TIMCHK command TIMCHK \$1 \$2 D									
Setting Data Internal Devices R, ZR JIIIII UIIIGII Zn Constants K, H Other Image: Simple s		ଞା : D ହୋ : D ତା : D	vevice where the measure vevice where the set valu vevice to be turned ON at	ed current value will be s e of measurement is sto time-out (bits)	stored (BIN 16 b	bits)					
(i) - (i) - - - (ii) (iii) (iiii) (iiii) - - (iiii) (iiiii) (iiiii) (iiiii) - - (iiiii) (iiiiiiii) (iiiiiiiiii) (iiiiiiiiiiii) - - (iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii	Setti Dat	ng Interna ^a Bit	I Devices R, ZR Word	J∖ Bit Word	U∭\G∭	Zn	Constants K, H	Other			
Image: Second	§1		0								
	(52	0	0		0						
	D	0			_						

Grantion

- (1) Measures the ON time of the device used as a condition, and turns ON the device specified by ☺ if the condition device remains ON for longer than the time set to the device specified by ⑤.
- (2) The current value of the device specified by (5) is cleared to 0 and the device specified by (2) is turned OFF at the leading edge of the execution command.

The current value of the device designated by \mathfrak{S} and the ON status of the device designated by \mathfrak{D} are retained after the execution command turns OFF.

(3) Set the set value of measurement in units of 100ms.

Operation Error

- (1) In the following case, an operation error occurs, the error flag (SM0) turns ON, and an error code is stored into SD0.
 - The device that cannot be specified has been specified. (Error code: 4100)

Program Example

 Program where the ON time of X0 is set to 5s, the current value storage device to D0, and the device that will turn ON at time-out to Y10.

[Ladder Mode]

[List Mode]

7.18.4 Direct 1-byte read from file register (ZRRDB(P))

		Basic High performance Proc	ess Redundant Universal
ZRRDB	Command	ZRRDB n	
ZRRDBP	Command	ZRRDBP n	
	 n : Serial byte number for the file register to be read (E D : Number of the device where the read data will be s 	BIN 32 bits) tored (BIN 16 bits)	
Setting Data	Internal Devices R, ZR Jiii\\iii Bit Word Bit Word	U∭\G∭ Zn	Constants K, H Other
n	0		0 –
D	0		

Function

 Reads the serial byte number designated by n that does not signify a block number, and stores at the lower 8 bits of the device designated by

 .

The upper 8 bits designated by $_{\ensuremath{\mathbb{D}}}$ will become 00H.

(2) The correspondence between file register numbers and serial byte numbers is as indicated below:

(a) If the value of n has been designated as 23560, the data at the lower 8 bits of ZR11780 will be read.

(b) If the value of n has been designated as 43257, the data at the upper 8 bits of ZR21628 will be read.

Operation Error

- (1) In the following case, an operation error occurs, the error flag (SM0) turns ON, and an error code is stored into SD0.
 - A device number (serial byte number) that exceeds the range of allowable designations has been designated. (Error code: 4101)

Program Example

(1) The following program reads the lower bits of ZR16000 and the upper bits of R16003, and stores results at D100 and D101 when X0 is ON.

[Ladder	Mode]				[List Mo	de]		
			K32000	D1007	Step	Instruction	D	evice
		[ZRRDBP	K32007	D101]	0 1 5 9	LD ZRRDBP ZRRDBP END	X0 K32000 K32007	D100 D101
9				[END]				

[Operation]

0	k	o15 b8	b7 b0	b	15 b8	3b7 b0
Serial byte No. 32000	>R16000	8FH	25н	D100	00н	25н
(Lower bits of R16000)	R16001	42н	32н	D101	00н	93н
	R16002	12н	34н			
Serial byte No. 32007	>R16003	93н	00н			
(Opper bits of R 16003)	Į					

7.18.5 File register direct 1-byte write (ZRWRB(P))

				Basic	performance Proc	cess Redundant	Universa
ZRWRB		nmand		ZRWRB	; n	<u> </u>	_
ZRWRBP	Cor	nmand		ZRWRB	P n	<u> </u>	-
	n : Serial byte num (D): Number of the	ber for the	file register to be written re the data to be written	(BIN 32 bits) is stored (BIN 16	6 bits)		
Setting Data	Internal Devices Bit Word	R, ZR	Ji\	U∭\G∭	Zn	Constants K, H	Other
n			0				
S			0				

Function

(1) Writes the lower bits of data stored in the device designated by (s) that does not signify a block number to the file register of the serial byte number designated by n.

The upper 8 bits of data in the device designated by are ignored. (s)

(2) The correspondence between file register numbers and serial byte numbers is as indicated below:

If n = 12340 is specified, the data will be written to the lower 8 bits of ZR11170.

If n=43257 is specified, the data will be written to the upper 8 bits of ZR21628.

✓ Operation Error

- (1) In the following case, an operation error occurs, the error flag (SM0) turns ON, and an error code is stored into SD0.
 - A device number (serial byte number) that exceeds the range of allowable designations has been designated. (Error code: 4101)

Program Example

(1) The following program writes the data at the lower bits of D100 and D101 to the lower bits of R16000 and the upper bits of R16003 when X0 is turned ON.

[Ladder Mode]

[List Mode]

[Operation]

7.18.6 Indirect address read operations (ADRSET(P))

	Basic High performance Process Redundant Universal
	ADRSETCommandADRSETADRSETADRSETPADRS
	 S : Number of the device whose indirect address is read out (Device name) D : Number of the device where the indirect address of the device designated by S will be stored (BIN 32 bits)
	Setting Data Internal Devices R, ZR J:! U:!Ci:: Zn Constants Other S O
	-unction
	(1) Stores the indirect address of the device designated by \mathfrak{S} at \mathfrak{D} +1 and \mathfrak{D} .
	The address stored at the device designated by ${}_{(D)}$ is used when an indirect device address is performed by the sequence program.
	ADRSET W100 D100 Stores the address of W100 address to D101 and D100.
	Writes 1234 to the address specified by D100 and D101.
	D0 D1
	D100 D101 Address of W100 W100 1234
	(2) A bit device designation cannot be made at \odot .
\mathcal{S}	Operation Error
	(1) There are no operation errors associated with the ADRSET(P) instruction.
	Remark
	See Section 3.4 for further information on indirect designations.
	• • • • • • • • • • • • • • • • • • • •

					Basic	performance Proc	Redundant			
KEY	,		Command	KEY	(<u>S</u> n	0)	02	-		
	 (s) : Head number of the devices (X) to which a numeral will be input (bits) n : Number of digits of the numeral to be input (BIN 16 bits) (f) : Head number of the devices where the input numeral will be stored (BIN 16 bits) (g) : Number of the bit device to turn ON at the completion of input (bits) 									
	Setting Data	Internal Bit	Devices Word R, ZR	J <u>∭∖</u> ∭ Bit Word	U\G	Zn	Constants K, H	Other		
	S	(Only X)				_				
	n	0	0	0		C)			
	D1		\bigcirc	_		-	-			
	62	0	0	0		-				

 \sim

 \checkmark

 Fetches ASCII data from the 8 points of input (X) designated by (S), converts it to hexadecimal values and stores the result in the area starting from the device designated by (D).

For example, in a case where the number of digits (n) has been set at 5, and the values "31", "33", "35", "37" and "39" have been input through X10 to X18 of the input module, the following will take place:

(2) Numerical input to input (X) designated by (s) undergoes bit development at (s) through (s) +7 and is input as the ASCII code corresponding to the numbers.

ASCII code which can be input is from 30H (0) to 39H (9), and from 41H (A) to 46H (F).

(3) After ASCII code is input to (s) to (s) +7, the strobe signal at (s) +8 goes ON to incorporate the designated numbers internally.

The strobe signal should be held at its ON or OFF status for more than one scan of the sequence program.

If this time is less than 1 scan, there will be cases when the data is correctly incorporated.

(4) Be sure to keep the execution command (condition contact for the KEY instruction) ON until the specified number of digits has been input.

The KEY instruction cannot be executed if the execution command turns OFF.

(6) The number of digits that can be designated by n is from 1 to 8.

- · When the number of digits specified by n has been input
- When the "0DH" code has been input

For example, the operations at the location designated if n = 5 will be as indicated below:

If input processing is to be performed a second time, it is necessary to clear the number of digits input and the input data stored at (p), and turn OFF the designated device at the user program.

If on is not cleared and on not turned OFF, the next input processing cannot be performed.

Operation Error

- (1) In any of the following cases, an operation error occurs, the error flag (SM0) turns ON, and an error code is stored into SD0.
 - The device designated by D is not an input (X) device. (Error code: 4100)
 - The number of digits designated by n are outside the range of from 1 to 8.

(Error code: 4100)

Program Example

(1) The following program fetches data of the 5 or fewer digits from the numerical key pad connected to X20 to X28, and stores it to the area starting from D0 when X0 is turned ON. [Ladder Mode]

[List Mode]

Step	Instruction		Dev	ice	
0	LD	XO			
1	ANI	MO			
3	FMOVP	KO	DO	K3	
7	LD	MO			
8	MOVP	K5	D10		
10	KEY	X20	D10	DO	M10
15	LD	M10			
16	RST	MO			
17	RST	M10			
18	END				

[Operation]

7.18.8 Batch save or recovery of index register (ZPUSH(P),ZPOP(P))

		Basic High performance Process Redundant Univers
ZPUSH, ZPOP	Command Command	indicates an instruction symbol of ZPUSH/ZPOP.
D Setting Inte	: Head number of the devices	s to/from which contents of an index register are saved/recovered (BIN 16 bi
Data Bit	Word R, ZR	Bit Word Uii\Gii Zn Constants Othe

ZPUSH

C Function

- (1) Saves the contents of the following index registers to after the device specified by D.
 (When contents of an index register are saved, D + 0 (the number of saves made) is increased by 1.)
 - Basic model QCPU: Z0 to Z9
 - High Performance model QCPU/Process CPU/Redundant CPU: Z0 to Z15
 - Universal model QCPU: Z0 to Z19
- (2) The ZPOP instruction is used for data recovery. Nesting is possible within the ZPUSH to ZPOP cycle.
- (3) If nesting has been done, each time the ZPUSH instruction is executed, the field used following
 will be added to, so a field large enough to accommodate the number of times the instruction will be used should be maintained from the beginning.
- (4) The composition of the field used following \bigcirc is as shown below:
 - · When Basic model QCPU is used

• When using a High Performance model QCPU/Process CPU/Redundant CPU

• When Universal model QCPU is used

ZPOP

Recovers the contents saved in the area starting from the device designated by

 D to the index register. (When the saved content is read out to the index register, D + 0 (the number of saves made) is decreased by 1.)

Operation Error

- (1) In any of the following cases, an operation error occurs, the error flag (SM0) turns ON, and an error code is stored into SD0.
 - The range for the number of points to be used at <a>b and later by the ZPUSH(P) instruction exceeds the corresponding device range. (Error code: 4101)

(Error code: 4100)

Program Example

(1) The following program saves the contents of the index register to the fields following D0 before calling the subroutine following P0 that uses the index register.

7.18 Other instructions
7.18.8 Batch save or recovery of index register (ZPUSH(P),ZPOP(P))

7.18.9 Reading Module Information (UNIRD(P))

Command **UNIRD** UNIRD ┥┝ n1 n2 Command UNIRDP UNIRDP (D)n1 n2 n1: Value obtained by dividing the head I/O number of the reading module information source by 16 (0 to FFn) (BIN 16 bits) (D): Head number of the devices where the module information will be stored (device name) n2: The number of points of read data (0 to 256) (BIN 16 bits) Setting Internal Devices Constants J....\.... R, ZR Zn Other U....\G.... Data К, Н Word Word Ri n1 \bigcirc \bigcirc \bigcirc ____ ____ ____ 0 ____ n2 0 0 \bigcirc Grant Function

(1) Reads the module information as much as designated by n2 from the module designated by n1 (value obtained by dividing the head I/O number by 16), and stores that information into the area starting from the device designated by (D).

(Reads the status of the actually installed modules instead of the module type designated by I/O assignment.)

Remark

The value of n1 is designated by the higher 3 digits of the head I/O number of the slot from which the module information is read, when it is expressed in 4 digits in hexadecimal notation.

Basic High

Process

Redundant

Universal

7-402

The details of the module information are described as follows	3:
--	----

Bit	b15	b14	b13	b12	b11	b10	b9	b8	b7	b6	b5	b4	b3	b2	b1	b0
Individual module																
information																

Bit	Item	Mea	aning		
b0		000: 16 points	001: 32 points		
b1	Number of I/O points	010: 48 points	011: 64 points		
		100: 128 points	101: 256 points		
b2		110: 512 points	111: 1024 points		
b3		000: Input module			
b4	Module type	001: Output module			
	modulo type	010: I/O mixed module			
b5		011: Intelligent function module			
b6	External supply power status	1: External supply power is connected.	0: External supply power is not connected.		
	(For future expansion)	,			
b7	Presence/absence of fuse	1: Some modules have fuse blown.	0: Normal		
	Online medule replacement	1: Module information on the extension by	ase unit is tried to be read during online		
	offine module replacement	module change or from the CPU modu	le of standby system in the redundant		
b8	Sidius/	sustant *1	ie of standby system in the redundant		
		system.			
	system	0: Other than above			
b9	Minor/medium error status	1: Minor/medium error occurred	0: Normal		
b10		00: No module error	01: Minor error		
b11	Module error status	10: Medium error	11: Serious error		
	· · · · · · · · · · · · · · · · · · ·				
b12	Module standby status	1: Normal	0: Module error occurred		
b13	Empty	Fixe	d to 0		
b14	Q module		0: Q series module		
b15	Module installation status	1: Modules are installed.	0: No modules are installed.		

*1: The Universal model QCPU used in the multiple CPU system is turned ON during the online module change of the module controlled by the other CPU.

Operation Error

(1) In any of the following cases, an operation error occurs, the error flag (SM0) turns ON, and an error code is stored into SD0.

[High Performance model QCPU, Process CPU, Redundant CPU and Universal model QCPU]

- When n1 is other than 0 to FFн
- When n2 is other than 0 to 256

• When a total of n1 and n2 is equal to or greater than 257 [Q00/Q01CPU]

- When n1 is other than 0 to 3FH
- When n2 is other than 0 to 64
- When a total of n1 and n2 is equal to or greater than 65 [Q00JCPU]
- When n1 is other than 0 to FH (Error code: 4100)
- When n2 is other than 0 to 16
- When n1 and n2 is equal to or greater than 17

(Error code: 4100)

Program Example

(1) The following program stores the module information at I/O numbers 10_H to 20_H into the devices starting from D0 when X10 is turned ON.

Readout result (When read to D0)

(a) 32-point intelligent function module for Q series

• With a 48- or 64-point module, the same contents as those of D1 are stored in D2 or D2 and D3 respectively.

(b) 32-point module for A series

(c) Empty slot

	b1	5	b14	b13	b12	b11	b10	b9	b8	b7	b6	b5	b4	b3	b2	b1	b0
D0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1																

For an empty slot, all of these bits turn 0.

(d) Performing online module replacement

	b15	b14	b13	b12	b11	b10	b9	b8	b7	b6	b5	b4	b3	b2	b1	b0	
D0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	
										— F	Perfo	rmin	g on	line	mod	ule r	eplacemer

(e) Module information on the extension base unit is tried to be read from the standby system of the redundant system in separate mode.

7.18.10 Reading module model name(TYPERD(P))

Universal model QCPU: The serial number (first five digits) is "11043" or later.

TYPERD	Command	TYPERD n D
	Command	TYPERDP n D

Setting	Interna	l device	D 7D	J			Constant	Othors	
data	Bit	Word ^{*6}	Ν, ΖΝ	Bit	Word	U:)(G:)	211	К, Н	Others
n	—	0)					0	
D		C)					—	

Set Data

Setting data		Description	Setting range	Set by	Data type
n	Value obtained by whose model nam	/ dividing the start I/O number of a module ne is to be read by 16	0 to FFH, 3E0 to 3E3H	User	BIN 16 bits
	D +0	Execution result of the instruction	Within each	System	BIN 16 bits
	D +1 to D +9	Module model name	device range	Cystem	Character string

Grant Function

- (1) This instruction reads the module information stored in the area starting from the I/O number specified by "n", and stores it in the area starting from the device specified by D. The following 6 modules (Q series only) support the instruction.
 - CPU module
 - Input module
 - Output module
 - I/O combined module
 - Intelligent function module
 - GOT (bus connection)

- (2) Specify the start I/O number of a module whose model name is to be read by "n" as follows:
 - Specify the value obtained by dividing the start I/O number of the target module by 16.

When the target module occupies two slots
 The start I/O number to be specified may differ from that of the mounted module.
 For the start I/O number, refer to the manual of each module.
 Specify the value obtained by dividing the start I/O number of the target module by 16.

Example) QJ71GP21S-SX

Specify a value to which 0010H, start I/O number of the mounted module, is added.

				•					
Power supply module	CPU module	QJ71G	P21S-SX	Empty	Empty	Empty	Empty	Empty	Empty
	3Е00н	0000н	0010н	0030н	0040н	0050н	0060н	0070н	0080н
				- Sp	ecify the	e start I/	O numb	er by K1	or H1.

 When the target module is a CPU module in multiple CPU systems Specify the value obtained by dividing the start I/O number of the target CPU module by 16.

Or, the model name can be read by specifying the start I/O number of a module controlled by another CPU.

(3) (b) +0 and (b) +1 to (b) +9 store the execution result of the instruction and module model name, respectively.

A value stored in D is as follows:

(a) When the model name has been written to the target module (example: QJ71GP21-SX)

The following table shows the examples of model names stored in (D) +1 to (D) +9.

Target module	Stored model name
CPU module	Q06UDEHCPU
Intelligent function module	QJ71GP21-SX
GOT	GOT1000

(b) When the model name has not been written to the target module (example: QX40)

		b15	to	b8	b7	to	b0	
	©+0			1	l			- <u>S</u> tores 1.
	(D+1		4Ан (N)			49н (I)		Indicates that the character
Nine words are used.≺	D +2		55н (U)			50н (P)		the number of points is stored.
	©+3		5Fн (_)			54н (Т)		Stores the character string consists
	©+4		36н (6)			31н (1)		(stored in ASC II).
	©+5		00н			00н		
	©+6		00н			00н		
	©+7		00н			00н		
	©+8		00н			00н		Stores the remaining model name and
	D+9		00н			00н		the 18th device, respectively.

The following table shows the examples of character strings stored in \bigcirc +1 to \bigcirc +9..

Target module	Stored character string
Input module	INPUT_16
Output module	OUTPUT_32
I/O combined module	MIXED_64
Intelligent function module	INTELLIGENT_128

[Character string indicating module type]

• Input module: INPUT

- Output module: OUTPUT
- I/O combined module: MIXED
- Intelligent function module*1: INTELLIGENT
- 1: Includes the QI60 and GOT.

[Character string indicating the number of points]

- 16 points:_16
- 32 points:_32
- 48 points:_48
- 64 points:_64
- 128 points:_128
- 256 points:_256
- 512 points:_512
- 1024 points:_1024
- (c) Others
 - The specified slot is empty or the target module is during online module change.
 - The specified value (n) is not the start I/O number.
 - The specified value (n) is within the allowable setting range, but cannot be set in the I/O assignment setting screen of the PLC parameter dialog box.

	b15	to	b8 b7	' to	b0	_
D+(-1			${1}$ Stores -1.
(D+	1	00н		00н		Indicates that the model
Nine words are used.	2	00н		00н		
D+:	3	00н		00н		
D+4	1	00н		00н		
©+:	5	00н		00н		
D+(6	00н		00н		
©+	7	00н		00н		◄
©+;	3	00н		00н		Stores 00н.
+		00н		00н		
	·					3

Operation Error

- (1) In any of the following cases, an operation error occurs, the error flag (SM0) turns on, and an error code is stored into SD0.
 - The target module cannot be communicated due to a failure. (Error code: 2110)
 - Devices by 10 words starting from the device specified by D exceed the device range.

(Error code: 4101)

• The specified value (n) is except 0 to FFH and 3E0 to 3E3H. (Error code: 4101)

Program Example

 \propto

7.18.11 Trace Set/Reset (TRACE, TRACER)

								Basic	High performance Pro	cess Redundant	Universal
	TRACE		- -	Com	mand				[TRACE	-
	TRACER		- -	Com	mand				[TRACER	-
		Setting Data	Internal I Bit	Devices Word	R, ZR	J Bit	Word	UIII\GIII	Zn	Constants	Other
्रे F	unction										

The sampling trace function collects the specified device data of a CPU module consecutively at the specified timing.

With the sampling trace function, the traced results obtained through the specified number of trace operations will be stored in the trace file of the memory card when SM800, SM801, and SM802 are turned ON.

		TRACE	Tra	ce ends by ber of trace	TRACER
	Trace start reques	st Trigger condition	n enabled af	ter trigger	Trace reset
	↓	↓		1	•
	Total nu	umber of traces	Number of trace after trigger		
		1			
SM800 (Preparation for trace)					
SM801 (Starting trace)					
SM802 (During the execution of trace)					
SM803 (Trigger for trace)					
SM804 (After the execution of trace trigger)					
SM805 (Completion of trace)	I			<u>_</u>	

TRACE

- (1) The TRACE instruction turns ON SM803, executes sampling by the number of times set for "After trigger number of times" in the Trace condition settings, latches the data and stops sampling trace.
- (2) The sampling is stopped if SM801 is turned OFF during the trace execution.
- (3) After the TRACE instruction is executed and the trace is completed, SM805 is turned ON.
- (4) Once the TRACE instruction is executed, the second and the subsequent TRACE instructions are ignored.

When the TRACER instruction is executed, the TRACE instruction is enabled again.

TRACER

- (1) The TRACER instruction resets the TRACE instruction. When the TRACER instruction is executed, the TRACE instruction is enabled again.
- (2) When the TRACER instruction is executed, SM803 to SM805 are turned OFF.

Remark

- 1. For details of the trace, refer to the QnUCPU User's Manual (Function Explanation, Program Fundamentals) or Qn(H)/QnPH/QnPRHCPU User's Manual (Function Explanation, Program Fundamentals).
- 2. For trace execution with GX Developer, refer to the GX Developer Operating Manual.

Operation Error

(1) There are no operation errors associated with the TRACE or TRACER instruction.

Program Example

 (1) The following program executes the TRACE instruction when X0 is turned ON, and resets the TRACE instruction with the TRACER instruction when X1 is turned ON.
 [Ladder Mode]
 [List Mode]

	-		-	-	
C	X0 	TRACE]	Step	Instruction	Device
	X1	-	0	LD TRACE	XO
2	<u>├</u> -1 [TRACER]	23	LD TRACER	X1
4	ſ	FND 7	4	END	
	L				

7.18.12 Writing Data to Designated File (SP.FWRITE)

SP.FWRIT	E_		Com	mand	s	P.FWRITI	E U0 👀	00 (\$1)	S2	0)-	-
Se	etting Data	Internal Bit	Devices Word	R, ZR	J∭∖ Bit	 Word	U∭\G∭	Zn	Cons K. H	stants \$	Other
	<u>S0</u>	0	С)					0	-	
	00		О)			_		-		
	S1		С)					—		—
	S2		С)					—	0	_
	D1	*1	\bigtriangleup^*	'1					—		
*1: Local devices and the devices designated for individual programs cannot be used											

Setting Data			Meaning	Setting Range	Set by	Data Type	
U0	Dummy			_			
<u>S0</u>	Drive desig	Ination		2	User		
	Head numb	per of the devic	es storing the control data. The following control	data is required.			
	Device	Item	Contents/Setting Data	Setting Range	Set by		
	DO	Execution/ completion type	Designate the execution type. 0000н : Write binary data 0100н : Write data after CSV format conversion	0000н 0100н	User		
	<u>0</u> 0+1	(Not used)	Used by system	_	System		
	D0+2 Writing result (No of written data)	Writing result (No. of written data)	Contains the number of actually written data against the data designated by \textcircled{O} . The unit of the value depends on data type specified at \textcircled{O} +7.	System			
	00+3	(Not used)		_	_		
0	00+4 00+5	File position	Set the file position when binary data writing is specified by 0000000H :Starting at the beginning of the file 00000001H to FFFFFFEH: From the specified position The unit of the value depends on data type specification. FFFFFFFH : Addition starts from the end of the file. When CSV format write is specified at • For the High Performance model QCPU of which the first 5 digits of the serial number are "01111" or lower, always set the beginning (0H) of the file. • For the High Performance model QCPU/ Process CPU/Redundant CPU/Universal model QCPU of which the first 5 digits of the serial number are "01112" or higher, set the file position. 0000000H to FFFFFFEH : Starting at the beginning of the file FFFFFFFH : Addition starts at the end of the file.	0000000н to FFFFFFF	User	BIN 16 bits	

Setting Data			Meaning	Setting Range	Set by	Data Type	
D	Dimension No. of columns designation Data type		 When binary write is specified at ^(D), always set 0. When CSV format write is specified at ^(D), set the number of columns where data will be written. 0 : No columns. Regarded as one row. Other than 0 : Set to the specified number of columns. 0: Word 	0н to FFFFн (0 to 65535)	User		
		specification	1: Byte	o, i	0361		
			Contonto/Soffice Deta	as IUIIUWS:	Pot by		
	Device	item	Contents/Setting Data	Setting Range	Set by		
6)	©) to ©)+∏	File name character string	 Designate the character string of a file name. When omitting an extension, also omit the "." (Period). Limit the file name within 8 characters + period + 3 characters. When 9 or more characters are used, the extension is ignored regardless of its presence, and "BIN" or "CSV" is automatically assigned as an extension. 	Character string	User	BIN 16 bits	
	Head numb	per of the devic	es storing the data. Written data is expressed as	s follows:			
	Device	Item	Contents/Setting Data	Setting Range	Set by		
\$2	9	No. of request write data	Designate the number of data to request writing (word units). This data should be designated in units of words even when byte is designated by DO+7.	1 to 480 1 to 32767 ^{*2}	User		
	©2 +1 to ©2 +□	Write data	Data to request writing.	0000н to FFFFн			
	Bit device that turned ON at the completion of the processing.						
	(01)+1 is a	lso turned ON a	at error completion.)				
	Device	Item	Contents/Setting Data	Setting Range	Set by		
01	©1)	Completion signal	Indicates the completion of the processing. ON: Completed OFF: Not completed			Bit	
	D1+1	Error completion signal	Indicates whether the processing is normally completed or abnormally completed. ON: Error completion OFF: Normal completion	_	System		

*2: Indicates the range applicable only for the Universal model QCPU.

Caution

- At (1) At (2) (drive designation), only the ATA card drive (2) can be set.
 Note that when the Flash card is loaded, the SP.FWRITE instruction cannot be used to perform writing.
 The SRAM card, standard RAM or standard ROM drive cannot be set.
- (2) For CSV setting, the data written are decimal values.

Example Character "A" $(41H) \rightarrow$ "65" is written. Handling range: -32768 to 32767

(3) For binary write, the word-specified file position setting range is 00000000H to 7FFFFFFH and FFFFFFH.

Grant Function

- The designated number of data is written to the designated file.
 Set the execution/completion type in the control data to designate whether to write binary data without any conversion or to convert binary data into CSV format data before writing it. (The writing target is the ATA card only.)
- (2) The execution completion bit device ((b)) is automatically turned ON at the END processing after the completion of the instruction is detected. The bit device is turned OFF at the execution of the END instruction in the next scan.

Use this bit device as the execution completion flag for the SP.FWRITE instruction.

When this instruction is completed abnormally, the error completion device (O+1) is turned ON/OFF in synchronization with the processing complete (O) device. Use this device as the error completion flag for this instruction.

SM721 is turned ON during the execution of the instruction.

This instruction cannot be executed while SM721 is ON. (If an attempt is made, no processing is performed.)

When an error is detected at the execution of the instruction (before SM721 is turned ON),

the processing complete device (\bigcirc), the error completion device (\bigcirc)+1), and SM721 are not turned ON.

(3) Be sure to use in units of words to designate the No. of request write data (☺) and the file position (⊚+4 and ⊚+5).

The following shows the method for writing binary data when No. of request write data and file position are specified.

- (4) When writing binary data
 - (a) If the extension of the target file is omitted, ".BIN" is used as an extension.
 - (b) When the designated file does not exist, a new file is created and the data is added/ saved from the beginning of the file. The attributes of this new file are set using the archive attributes.
 - (c) When the size of the data exceeds that of the existing area in the file during the writing, the excess data is added/saved.
 - (d) If the file position specified is greater than the existing file size:
 - The High Performance model QCPU of which the first 5 digits of the serial number are "01111" or lower results in an error.
 - The High Performance model QCPU/Process CPU/Redundant CPU/Universal model QCPU of which the first 5 digits of the serial number are "01112" or higher performs writing at point 0 and is completed normally.
 - (e) An error occurs when the saving space becomes full while data is added and saved. In such a case, the data that is successfully added/saved remains in the medium. The error completion is indicated after as much data as possible is added/saved.
- (5) When writing data after CSV format conversion
 - (a) If the extension is omitted, ".CSV" is used as an extension.
 - (b) When the existing file is specified: [High Performance model QCPU of which the first 5 digits of the serial number are "01111" or lower]
 File contents are all deleted and data are saved, starting at the beginning.
 [High Performance model QCPU/Process CPU/Redundant CPU/Universal model QCPU of which the first 5 digits of the serial number are "01112" or higher]
 - When other than FFFFFFFH is set at (⑩+4, ⑩+5), file contents are all deleted and data are saved, starting at the beginning.
 - When FFFFFFFH is set at (⑩+4, ⑩+5), data are saved, starting at the end of the file.
 - (c) When the designated file does not exist, a new file is created and the data is added/ saved from the beginning of the file. The attributes of this new file are set using the archive attributes.
 - (d) An error occurs when the saving space becomes full while data is added and saved. In such a case, the data that is successfully added/saved remains in the medium. The error completion is indicated after as much data as possible is added/saved.

(e) When the designated number of columns is "0", the data is stored as single-row data in CSV format file.

Example

When data is written after CSV format conversion and the designated No. of columns is "0":

(f) When data is written after CSV format conversion and the designated number of columns is other than "0", the data is stored as table data with designated number of columns in a CSV format file.

Example

When data is written after CSV format conversion and the designated No. of columns is other than "0":

(g) When data is added by the High Performance model QCPU/Process CPU/Redundant CPU/Universal model QCPU of which the first 5 digits of the serial number are 01112 or higher:

[Specify the file to which data will be written.] (If a file exists, delete it and create a new file again.)

[In the addition mode, make addition from the end of the file.]

Operation Error

- (1) In any of the following cases, an operation error occurs, the error flag (SM0) turns ON, and an error code is stored into SD0.
 - Drive specified by drive designation device
 contains the medium other than the ATA card.
 (Error code: 4100)
 - Values specified in control data

 and the subsequent devices are out of the setting range.
 (Error code: 4100)
 - Value designated by "No. of request write data" (☺) is out of the setting range, or exceeds the device range designated by (☺)+1) or the subsequent devices.
 - Empty space in the ATA card is insufficient. (Error code: 4101) No face appear is found when an ethernet is mode to enout file
 - No free space is found when an attempt is made to create a new file.

	(Error code: 4100)
Invalid device is designated.	(Error code: 4004)
Access error occurred in the ATA card.	(Error code: 4100)
 An unusable value is set for a file name ((Error code: 4100)
 The attribute of a file name ((s)) is "read only". 	(Error code: 4100)

The device specified by
 or
 or
 exceeds the range of the corresponding device.
 (For the Universal model QCPU only.)
 (Error code: 4101)

Program Example

- (1) When X10 is turned ON, the following program adds four bytes of binary data (00H, 01H, 02H, and 03H) to file "ABCD.BIN" in the memory card inserted to drive 2.
 - Assume that 8 points from $_{\bigcirc}$ are reserved for the control data devices.

[Ladder Mode]

[List Mode]

(2) When X10 is turned ON, the following program creates a file named "ABCD.CSV" in the memory card inserted to drive 1, and writes four bytes of data (00H, 01H, 02H, and 03H) as two-column table data in CSV format.

• The written file is displayed as follows:

[Ladder Mode]

[List Mode]

• Assume that 8 points from 💿 are reserved for the control data devices.

7.18.13 Reading Data from Designated File (SP.FREAD)

SP.FREAD Command SP.FREAD U0 \$0 0 \$1 0 02							-		
Setting	Internal	Devices	R, RZ	J\	U ^{EE} IGEE	Zn	Cons	stants	Other
Data	Bit	Word	,	Bit Word	0		К, Н	\$	
<u>S0</u>	0	C)		_		0		
00		С)						
SI	-	С)				—		
DI	-	С)				-	0	_
02	*1	*	*1				-	_	
*1: Local devices and the devices designated for individual programs cannot be used.									

Setting Data			Meaning	Setting Range	Set by	Data Type		
U0	Dummy				_			
<u>S0</u>	Drive desig	Ination		2	User			
	Head numb The followi	per of the devic ng control data	es storing the control data is required.					
	Device	Item	Contents/Setting Data	Setting Range	Set by			
	00	Execution/ completion type	Designate the execution type. 0000н: Read binary data 0100н: Read data after CSV format conversion	0000н 0100н	User			
	00+1	(Not used)	Used by system		System	BIN 16 bits		
0	Doi +2 Doi +2 Doi +2 No. of request read data Designa (Unit: W Even with type spect words (Designate the number of data to request reading. (Unit: Word) Even when byte is specified at 00+7 by data type specification, specify the value in units of words (16 bits), not in units of bit devices.	1 to 480 1 to 32767 ^{*2}	User				
	00+3	(Not used)						

*2: Indicates the range applicable only for the Universal model QCPU.
Setting Data			Meaning	Setting Range	Set by	Data Type	
0	100 +4 100 +5	File position	 Designate the file position to start reading when binary data reading is designated by ^(D). 00000000H: Starting at the beginning of the file 00000001H to FFFFFEH :From the designated position The unit for the value is determined by word/byte unit designation. FFFFFFFH: Setting disabled When CSV format read is specified at ^(D) For the High Performance model QCPU of which the first 5 digits of the serial number are "01111" or lower, always set the beginning (0H) of the file. For the High Performance model QCPU/ Process CPU/Redundant CPU/Universal model QCPU of which the first 5 digits of the serial number are "01112" or higher, set the file position (Row). 00000000H: Read starts at the beginning of the file. 00000001H to FFFFFFEH :Read starts at the specified row. FFFFFFFH: Read continues, starting at the previous read position. 	0000000н to FFFFFFF	User		
	@+6	No. of columns designation	 When binary read is specified at ^(D), always set 0. When CSV format read is specified at ^(D), set the number of columns from where data will be read. 0: No columns. Regarded as one row. Other than 0: Regarded as the specified number of columns. 	Он to FFFFн (0 to 65535) User		BIN 16 bits	
	<u>0</u> 0+7	Data type specification	0: Word 1: Byte	0,1	User		
	Head num	per of the devic	es storing a file name. A file name is expressed	as follows:			
	Device	Item	Contents/Setting Data	Setting Range	Set by		
9	 (§1) to (S1) to (Character (S1) + □ (S1) + □ (S1) + □ 		 Designate the character string of a file name. When omitting an extension, also omit the "." (Period). Limit the file name within 8 characters + period + 3 characters. When 9 or more characters are used, the extension is ignored regardless of its presence, and "BIN" or "CSV" is automatically assigned as an extension. 	Character string	haracter User string		
	Head num	per of the devic	es for storing the read data.	·]	
	Device	Item	Contents/Setting Data	Setting Range	Set by		
Ð	©1)	Reading result (No. of read data)	Contains the number of actually read data against the data designated by) +2. The unit on the value depends on data type specification.	_	System		
	©1)+1 to ©1)+□	Reading data	Read data	_	System		

Setting Data			Meaning	Setting Range	Set by	Data Type			
	Bit device t								
	(©2+1 is al	(102)+1 is also turned ON at error completion.)							
62	Device	Item	Contents/Setting Data	Setting Range	Set by				
	02	Completion signal	Indicates the completion of the processing. ON: Completed OFF: Not completed	_		Bit			
	(D2) +1 Error completion signal Indicates whether the completed or abnormation on the completion on the completion of		Indicates whether the processing is normally completed or abnormally completed. ON: Error completion OFF: Normal completion	_	System				

(1) At $_{\odot}$ (drive designation), only the ATA card drive (2) can be set.

Note that when the Flash card is loaded, the SP.FREAD instruction cannot be used to perform read.

The SRAM card, standard RAM or standard ROM drive cannot be set.

(2) For CSV setting, the data written are decimal values.

Example

Character "A" $(41H) \rightarrow$ "65" is written. Handling range: -32768 to 32767

(3) For binary read, the word-specified file position setting range is 00000000H to 7FFFFFFH.

Grant Function

(1) Data is read from the designated file.

Set the execution/completion type in the control data to designate whether to read binary data without any conversion or to convert binary data into CSV format data before reading it. (The reading target is the ATA card only.)

(2) The execution completion bit device (
) is automatically turned ON at the END processing after the completion of the instruction is detected. The bit device is turned OFF at the execution of the END instruction in the next scan.

Use this bit device as the execution completion flag for the SP.FWRITE instruction. When this instruction is completed abnormally, the error completion device (D+1) is turned ON/OFF in synchronization with the execution completion (D) device. Use this device as the error completion flag for this instruction.

SM721 is turned ON during the execution of the instruction.

This instruction cannot be executed while SM721 is ON. (If an attempt is made, no processing is performed.)

When an error is detected at the execution of the instruction (before SM721 is turned ON), the processing complete device (D), the error completion device (D+1), and SM721 are not turned ON.

(3) Be sure to use word units to designate the number of request read data (∞ +2), file position (∞ +4 and ∞ +5), and read data device size (∞).

The following shows how the individual device data is read in binary data reading operation.

- (4) When reading binary data
 - (a) If the extension of the target file is omitted, ".BIN" is used as an extension.
 - (b) When the designated file does not exist, an error occurs.
 - (c) If the position specified is greater than the existing file size:
 - The High Performance model QCPU of which the first 5 digits of the serial number are "01111" or lower results in an error.
 - The High Performance model QCPU/Process CPU/Redundant CPU/Universal model QCPU of which the first 5 digits of the serial number are '01112' or higher will perform reading at point 0 and will be completed normally.
- (5) When reading data after CSV format conversion
 - (a) The elements in CSV format file (cells for EXCEL) are read by each row. The numerical value and character strings are converted into binary data and stored in the device.
 - (b) If the extension is omitted, ".CSV" is used as an extension.
 - (c) When the designated file does not exist, an error occurs.
 - (d) The elements designated by the number of request read data (00+2) are read from the beginning of the file.
 When the last data of the file is reached before the specified number of data are read:
 - The High Performance model QCPU of which the first 5 digits of the serial number are "01111" or lower results in an error.
 - The High Performance model QCPU/Process CPU/Redundant CPU/Universal model QCPU whose the first 5 digits of the serial number are '01112' or higher reads the data up to the point where the reading is possible.

(e) When the designated number of columns is 0, the data is read by ignoring the rows in CSV format file.

Example When data is read after CSV format conversion and the designated No. of columns is 0:

Data created by EXCEL A В С Main / sub item Measured value 2 Length 1 З 3 Temperature -21 Data saved in the CSV format Main / sub item , Measured value CR LF 3 CR LF Length 1 CR LF Temperature -21 Data to be read into devices SP.FREAD U0 K2 D10 D20 D99 M0 Data that was read File name → Control data Control data D10 H0100 Execution/completion type D11 _ Number of unused read data D12 K9 Request Not used D13 _ D14 K0 D15 K0 D16 K0 Designation of the number of columns D17 K0 Data type specification D20 H4241 File name D21 H4443 "ABCDE" D22 H0045 Loaded data Stores the number of read data ► D099 K9 - Number of read result data Main/sub item ► D100 K0 --- Conversion data (0) is stored since "Main/sub item" is nonnumeric data. Data between , and , -> D101 K0 - Conversion data (0) is stored since " " is nonnumeric data. Measured value → D102 K0 ---- Conversion data (0) is stored since "Measured value" is nonnumeric data. Length → D103 K0 Conversion data (0) is stored since "Length" is nonnumeric data. Read 1 → D104 K1 Since "1" is a numeric value, it is converted to a binary value. data Since "3" is a numeric value, it is converted to a binary value. 3 → D105 K3 → D106 K0 ---- Conversion data (0) is stored since "Temperature" is nonnumeric data. Temperature --> D107 K-21 -21 ----- Since " -21 " is a numeric value, it is converted to a binary value. Data between , and CR → D108 K0 ----- Conversion data (0) is stored since " " is nonnumeric data.

If the number of columns varies in each row, the data is also read by ignoring the rows.

POINT

Such file cannot be created using EXCEL. This happens when CSV file is modified by a user.

Example If the number of columns varies in each row when the data is read:

(f) When data is read after CSV format conversion and the designated number of columns is other than 0, the data is read as the table with designated number of columns in CSV format file. The elements outside of the designated columns are ignored.

Example When data is read after CSV format conversion and the designated No. of columns is other than "0":

Data created by EXCEL A В С 1 Main / sub item Measured value 2 Length 1 З 3 Temperature -21 Data saved in the CSV format Main / sub item , Measured value CR LF Length , 3 CR LF 1 Temperature CR LF -21 Elements outside the designated number of columns are ignored. Data to be read into devices SP.FREAD U0 K2 D10 D20 D99 M0 Data that was read File name Control data Control data D10 H0100 Execution/completion type D11 _ Not used D12 K6 Number of request read data D13 Not used _ D14 K0 D15 K0 D16 K2 Designation of the number of columns K0 Data type specification D17 File name D20 H4241 "ABCD" D21 H4443 D22 H0000 Loaded data Stores the number of read data D099 K6 Number of read result data Main/sub item D100 K0 Conversion data (0) is stored since "Main/sub item" is nonnumeric data. Data between , and , -► D101 K0 Conversion data (0) is stored since " " is nonnumeric data. Length D102 K0 Conversion data (0) is stored since "Length" is nonnumeric data. Read data 1 ► D103 ---- Since " 1 " is a numeric value, it is converted to a binary value. K1 Temperature · → D104 K0 Conversion data (0) is stored since "Temperature" is nonnumeric data. -21 ► D105 K-21 Since " -21 " is a numeric value, it is converted to a binary value.

If the number of columns varies in each row, the elements outside of the designated columns are ignored and "0" is added to the places where elements do not exist.

Example

If the number of columns varies in each row when the data is read:

(g) With the High Performance model QCPU/Process CPU/Redundant CPU/Universal model QCPU whose first 5 digits of the serial number are "01112" or later, it is possible to divide read operation into multiple times. [Specify the row desired to start read.]

Execution type = CSV format Starting row number = 2H Column designation Read head device = D0 = 4H = 6н Data type specification = Word Number of data Device data (Data to be read out) Column Column Column Column K6 D0 ←Number of read points 1 2 ٦ K5 D1 Row 1 2 CR LF 1 3 4 K6 D2 K7 D3 K8 D4 Starting row Row 2 5 6 CR LF 8 K9 D5 K10 D6 D7 10 12 CR LF Row 3 9 11 D8 D9 Next starting position D10 D11 D12 Row 4 13 14 15 16 CR LF D13 18 19 CR LF Row 5 17

[In the continuation mode, read continues from the end of the previous read position.]

- When read is performed in the continuation mode, the previous addition cannot be made normally if the "execution type", "column designation" and "Data type specification" settings differ from those at the previous time.
- The previous addition cannot be made normally if the SP.FREAD instruction or SP.FWRITE instruction with another setting is executed while data is being read continuously in the continuation mode.

- (h) When data is read after CSV format conversion, the numerical values that are out of range or the elements other than numerical values in the object CSV format file are converted into 0H.
- (i) When data is read after CSV format conversion, numerical values are read and converted as follows:

Numerical Values in CSV Format		-32768 to -1	0 to 32767	32768 to 65535
Word	Without a sign	32768 to 65535	0 to 32767	32768 to 65535
device	With a sign	-32768 to -1	0 to 32767	-32768 to -1

⁽j) Do not execute this instruction in an interrupt program. (Otherwise, a malfunction may result.)

Invalid device is designated.

Operation Error

- (1) In any of the following cases, an operation error occurs, the error flag (SM0) turns ON, and an error code is stored into SD0.
 - Drive specified by drive designation device (
 (Error code: 4100)
 - Values designated in control data (⁽ⁱⁿ⁾) and the subsequent devices are out of the setting range. (Excluding ⁽ⁱⁿ⁾+2) (Error code: 4100)
 - Value designated by number of data blocks to be read (+2) is out of the setting range.

(Error code: 4101) (Error code: 4004)

- File name designated by file name character string ((s)) or the subsequent devices does not exist in the designated drive. (Error code: 2410)
- Size of read data exceeds the size of reading device. (Error code: 4101)
- When binary data is read, the number of data in the file is less than the size designated by the number of request read data (20 +2).
 (High Performance model QCPU of which the first 5 digits of the serial number are '01111' or lower)
- Access error occurred in the ATA card.
 (Error code: 4100)
- The device specified by
 ^(D) or
 ^(D) exceeds the range of the corresponding device.
 (For the Universal model QCPU only.)
 (Error code: 4101)

Program Example

- (1) The following program reads 4 bytes of binary data from the beginning of file "ABCD.BIN" in the memory card inserted to drive 2 when X10 is turned ON.
 - Assume that 8 points from (D0) are reserved for the control data devices.
 - Assume that 100 bytes from D20 are reserved for the reading devices.

[Ladder Mode]

[List Mode]

- (2) The following program reads file "ABCD.CSV" in the PC card inserted to slot 0 as two-column table data in CSV format when X10 is turned ON.
 - Assume that 8 points from (D0) are reserved for the control data devices.
 - Assume that 100 bytes from D20 are reserved for the reading devices.

• Assume that the target CSV format file contains numerical values only. [Ladder Mode]

[List Mode]

7.18.14 Writing Data to Standard ROM (SP.DEVST)

Grant Function

(1) Writes device data for the number of points specified at n2 of the device (s) to the write offset, which is specified for n1, of the device data storage file in the standard ROM. n1 is the offset from the head of device data storage file and specified by word offset (in units of 16-bit words).

- (2) Since the device data write position completion device (^D+0) in the standard ROM automatically turns ON at execution of the END instruction, which detects the completion of this instruction, and turns OFF with the END instruction of next scan, it is used as an execution completion flag of this instruction.
- (3) When this instruction is completed in error, the error completion device (^D +1) turns ON/ OFF at the same timing with the completion device (^D +0). This device is used as an error completion flag of this instruction.

- (4) SM721 turns ON during execution of this instruction.
 When SM721 has already turned ON, this instruction can not be executed. (If executed, no processing is performed.)
- (5) When an error is detected at execution of this instruction, the completion device (+0), error completion device (+1) and SM721 do not turn ON.

Operation Error

- (1) In any of the following cases, an operation error occurs, the error flag (SM0) turns ON, and an error code is stored into SD0.
 - The write offset specified at n1 is out of the device data storage file range.

(Error code: 4100)

- The number of n2 points from the write offset specified at n1 is out of the device data storage file range.
 (Error code: 4100)
- The range for the number of n2 points from the device (s) exceeds the corresponding device. (Error code: 4141)
- The device data storage file is not set at "PLC file" of PLC parameter on GX Developer.

(Error code: 2410)

• The device specified by $_{\bigcirc}$ exceeds the range of the corresponding device.

(Error code: 4101)

Program Example

(1) The program which writes the ten points of data from D100 to the device data storage file in the standard ROM when M0 turns ON.

[Ladder Mode]

-SP DEVST

D100

K3

K10

M1

FIN

[List Mode]

- (1) The value written to the standard ROM is the value at execution of this instruction.
- (2) The standard ROM write count index (SD687 and SD688) is increased by the execution of the SP.DEVST instruction. If the standard ROM write count index exceeds hundred thousand times, FLASH ROM ERROR (error code: 1610) occurs.
- (3) To prevent the number of ROM writes from increasing due to executing instruction carelessly, set the specification of writing to standard ROM instruction count (SD695) to restrict the number of writes a day.

Exceeding the number of writes (the default values are 36 times.) set causes OPERATION ERROR (error code: 4113).

7.18.15 Read Data from Standard ROM (S(P).DEVLD)

(1) Reads device data for the number of points specified at n2 from the read offset, which is specified for n1, of the device data storage file in the standard ROM, and stores the data to the device specified for ().

n1 is the offset from the head of device data storage file and specified by word offset (in units of 16-bit words).

High performance Process

Universal

Basic

Poperation Error

- (1) In any of the following cases, an operation error occurs, the error flag (SM0) turns ON, and an error code is stored into SD0.
 - The address specified at n1 is out of the standard ROM range. (Error code: 4100)
 - The number of n2 points from the address specified at n1 is out of the standard ROM range.
 (Error code: 4100)
 - The range for the number of n2 points from the device <a>b exceeds the corresponding device. (Error code: 4101)
 - The device data storage file is not set at "PLC file" of PLC parameter on GX Developer.

(Error code: 2410)

Program Example

(1) The program which reads the ten points of data from D100 to the device data storage file in the standard ROM when M0 turns ON.

[Ladder Mode]

[List Mode]

7.18.16 Load Program from Memory Card (PLOADP)

				Basic High	ance Process	Redundant) Un	iversal
PLOADP		Command		PLOAI	DP (S)		
	 S : Drive I device D : Device 	No. storing the program t is storing the character s e that turns ON for 1 scar	to be loaded, character s string data (BIN 16 bits) [*] n by the instruction comp	tring data of the 1 oletion (bits)	file name, or h	ead number o	f the
	Setting Internal Data Bit	Devices Word R, ZR	J∏\∏ Bit Word	U\G	Zn	Constants \$	Other
	s –	0				0	
	D _^*2	—					—
			*1: Designate	ed as " <drive no<="" td=""><td>.>:<file name<br="">*2: Local d</file></td><td>". Example evices cannot</td><td>e) 1:MAIN be used</td></drive>	.>: <file name<br="">*2: Local d</file>	". Example evices cannot	e) 1:MAIN be used

Grant Function

(1) The program stored in the memory card or standard ROM is transferred to the program memory (drive 0).

If the transferred program is not registered to the program setting of the PLC parameter dialog box, its program setting in the CPU module is set to the standby type. At this time, the program setting of the PLC parameter dialog box does not change. (To transfer a program with the PLOADP instruction, a continuous free space is required in the program memory.)

(2) The program added using the PLOADP instruction is assigned the lowest number among the unused program Nos.

(To assign a program number manually, store the program number to be assigned in SD720.)

The following example assumes that "MAIN6" is added by the PLOADP instruction.

(a) When the program Nos. have been set consecutively, the new program is added at the end of the preset program Nos.

When programs No. 1 to 5 have been set, the new program is added as program No. 6.

← Added at the end.

(b) When there are multiple open program Nos., the program designated by the PLOADP instruction is added to the lowest number among them to be added. (The open program Nos. are made when programs are deleted by the PUNLOADP instruction.)

When programs No. 2 and 4 are open, the new program is added as program No. 2.

Program No.	Program name		Program No.	Program name	
1	MAIN1	N	1	MAIN1	
2	Empty	Adds "MAIN6" by the	2	MAIN6	<i>←</i>
3	MAIN3	PLOADP instruction.	3	MAIN3	
4	Empty		4	Empty	
5	MAIN5		5	MAIN5	

Added to the smallest program number which is empty.

- (3) Drive Nos. 1, 2, and 4 can be specified. (Drive 3 cannot be specified.)
 - Drive 1: Memory card (RAM)
 - Drive 2: Memory card (ROM)
 - Drive 4: Standard ROM
- (4) An extension (.QPG) need not be specified for the file name.
- (5) The bit device specified by (b) is turned ON during the END processing of the scan where this instruction is completed. The bit device is turned OFF at the next END processing.
- (6) The PLOADP, PUNLOADP and PSWAPP instructions cannot be executed simultaneously. If two or more of the above instructions are executed simultaneously, the instruction executed later will not be executed. When using the above instructions, provide interlocks manually to avoid simultaneous execution.
- (7) Do not execute this instruction in an interrupt program.(Otherwise, a malfunction may result.)
- (8) To execute the program that was transferred to the program memory with the PLOADP instruction, execute the scan execution type with the PSCAN instruction (See Section 7.17.3).
- (9) The PLC file settings of the loaded program are set as follows:
 - (a) File usage for each program

All the usage of file register, device initial value, comment, and local device of the program transferred by this instruction are set as "Use PLC file setting". However, an error will be returned if both of the conditions below are met when the program is transferred using this instruction.

- · Setting is made so that local devices are used in the PLC file setting.
- The number of programs in the program memory exceeds the number of programs set at the parameters.

To use local devices in the program transferred by this instruction, register a dummy program file in the parameter, delete the dummy file with the PUNLOADP instruction, and then load the program with the PLOADP instruction.

(b) I/O refresh setting

Nothing is set for both input and output for the I/O refresh setting of the program transferred by this instruction.

- (10) The "PLOADP instruction" and "Write during RUN" processing cannot be executed simultaneously.
 - (a) When a write during RUN request is given during processing of the PLOADP instruction, write during RUN is delayed.
 Write during RUN is started after the processing of the PLOADP instruction is completed.
 - (b) When the PLOADP instruction is executed during write during RUN, the processing of the PLOADP instruction is delayed.
 The processing of the PLOADP instruction is started after completion of write during RUN.

Operation Error

- (1) In any of the following cases, an operation error occurs, the error flag (SM0) turns ON, and an error code is stored into SD0.
 - File name does not exist at the drive number designated by (s). (Error code: 2410)
 - The drive No. designated by (s) is invalid.
 - There is not enough memory to load the specified program in drive 0.

(Error code: 2413)

(Error code: 4100)

- The number of files registered in the program memory is as much number as the one indicated in the table below.
 (Error code: 4101)
- The program No. stored in SD720 is already used, or larger than the largest program number shown in the table below. (Error code: 4101)
- The program file which has the same name as the program file to be loaded already exists.
 (Error code: 2410)
- The file size of the local devices cannot be reserved. (Error code: 2401)

CPU Model Name	Program Memory (No. of Files)	Largest Program No.
Q02 (H) CPU	28	28
Q06HCPU	60	60
Q12HCPU	124	124
Q25HCPU	124	124
Q12PHCPU	124	124
Q25PHCPU	124	124

Program Example

(1) The following program transfers "ABCD.QPG" stored in drive 4 to drive 0 and places the program in standby status when M0 is turned ON.

[Ladder Mode]

[List Mode]

7.18.17 Unload Program from Program Memory (PUNLOADP)

(1) The standby program stored in the program memory (drive 0) is deleted from the program memory.

(The program set as the "scan execution type" with the PSCAN instruction or the program set as the "low speed execution type" with the PLOW instruction cannot be deleted.)

(2) The program No. deleted by the PUNLOADP instruction is made "Empty".

When programs No. 1 to 5 have been set in the program setting of the PLC parameter dialog box, deleting program No. 2 with this instruction makes program No. 2 open.

Program No.	Program name		Program No.	Program name	
1	MAIN1	N	1	MAIN1	
2	MAIN2	Deletes "MAIN2" by the	2	Empty	← Program No. 2
3	MAIN3	PUNLOADP instruction.	3	MAIN3	is deleted.
4	MAIN4		4	MAIN4	
5	MAIN5		5	MAIN5	

- (3) An extension (.QPG) need not be specified for the file name.
- (5) The PLOADP, PUNLOADP and PSWAPP instructions cannot be executed simultaneously. If two or more of the above instructions are executed simultaneously, the instruction executed later will not be executed. When using the above instructions, provide interlocks manually to avoid simultaneous execution.

- (6) When the Programmable Controller is powered OFF, then ON or the CPU module is reset after execution of the PUNLOADP instruction, the following operation is performed.
 - (a) When boot setting has been made in the PLC parameter dialog box, the program where the boot setting has been made is transferred to the program memory.
 When the program deleted by the PUNLOADP instruction is not to be executed, delete the corresponding program name from the boot setting and program setting of the PLC parameter dialog box.
 - (b) When boot setting has not been made in the PLC parameter dialog box, "FILE SET ERROR (error code: 2400)" occurs.
 - When the program deleted by the PUNLOADP instruction is not to be executed, delete the corresponding program name from the program setting of the PLC parameter dialog box.
 - 2) When the program deleted by the PUNLOADP instruction is to be executed again, write the corresponding program to the CPU module.
- (7) Do not execute this instruction in an interrupt program.(Otherwise, a malfunction may result.)
- (8) The program to be deleted from the program memory by this instruction should be set to the "standby execution type" with the PSTOP instruction beforehand. (See Section 7.17.1)
- (9) The "PUNLOADP instruction" and "write during RUN" processing cannot be executed simultaneously.
 - (a) When a write during RUN request is given during processing of the PUNLOADP instruction, write during RUN is delayed.
 Write during RUN is started after the processing of the PUNLOADP instruction is completed.
 - (b) When the PUNLOADP instruction is executed during write during RUN, the processing of the PUNLOADP instruction is delayed. The processing of the PUNLOADP instruction is started after completion of write during RUN.

✓ Operation Error

- (1) In any of the following cases, an operation error occurs, the error flag (SM0) turns ON, and an error code is stored into SD0.
 - The file name designated by (s) does not exist. (Error code: 2410)
 - The program designated by \circledast is not in standby status or is being executed.

(Error code: 4101)

Program Example

(1) The following program deletes "ABCD.QPG" stored in drive 0 from the memory when M0 turns from OFF to ON.

[Ladder Mode]

[List Mode]

7.18.18 Load + Unload (PSWAPP)

P	SWAPP			Comman	d			PSWAPP	<u>S)</u> <u>S</u>		
	 Sin : Character string data of the file name of the program to be unloaded, or head number of the devices storing the character string data (BIN 16 bits) Sin : Drive No. storing the program to be loaded, character string data of the file name, or head number of the devices storing the character string data (BIN 16 bits) *1 Device turned ON for 1 scan on completion of the instruction (bits) 							s storing			
		Setting Data	Internal Bit	Devices Word	R, ZR	J∭ Bit	\ Word	U\G	Zn	Constants \$	Other
		S1		(\supset					0	
							0				
		D	∆*2	-	-			_			
	*1: Designated as " <drive no.="">:<file name="">". Example) 1:MAIN</file></drive>										

Local devices cannot be used.

Grant Function

(1) The standby type program stored in the program memory (drive 0) designated by (s) is deleted from the program memory, and at the same time, the program stored in the memory card or standard ROM designated by (2) is transferred to the program memory and placed in standby status.

(When the program is transferred to the program memory, the program must have a continuous free space.)

The program set as the "scan execution type" with the PSCAN instruction or the program set as the "low speed execution type" with the PLOW instruction cannot be deleted.

(2) The program to be transferred to the program memory by the PSWAPP instruction will have the program No. of the program to be deleted from the program memory.

(If there is an open program No. before the program to be deleted from the program memory, the program to be transferred to the program memory will not have the open program No.)

When program No. 2 is "Empty", the program transferred to the program memory is registered as program No. 3 by the program swapping of program No. 3 with this instruction.

Program No.	Program name		Program No.	Program name	
1	MAIN1	N	1	MAIN1	
2	Empty	Swaps "MAIN3" with "MAIN6"	2	Empty	
3	MAIN3	by the PSWAPP instruction.	3	MAIN6	←MAIN6 enters
4	MAIN4		4	MAIN4	
5	MAIN5		5	MAIN5	

- (3) Drive Nos. 1, 2, and 4 can be specified. (Drive 3 cannot be specified.)
 - Drive 1: Memory card (RAM)
 - Drive 2: Memory card (ROM)
 - Drive 4: Standard ROM
- (4) An extension (.QPG) need not be specified for the file name.
- (5) The bit device specified by (b) is turned ON during the END processing of the scan where this instruction is completed. The bit device is turned OFF at the next END processing.
- (6) The PLOADP, PUNLOADP and PSWAPP instructions cannot be executed simultaneously. If two or more of the above instructions are executed simultaneously, the instruction executed later will not be executed. When using the above instructions, provide interlocks manually to avoid simultaneous execution.
- (7) When the Programmable Controller is powered OFF, then ON or the CPU module is reset after execution of the PSWAPP instruction, the following operation is performed.
 - (a) When boot setting has been made in the PLC parameter dialog box, the program where the boot setting has been made is transferred to the program memory. When the program replaced by the PSWAPP instruction is to be executed, change the boot setting and program setting of the PLC parameter dialog box for the corresponding program name.
 - (b) When boot setting has not been made in the PLC parameter dialog box, "FILE SET ERROR (error code: 2400)" occurs.
 - When the program replaced by the PSWAPP instruction is to be executed, change the program setting of the PLC parameter dialog box for the corresponding program name.
 - 2) To execute the program set in the program setting of the PLC parameter dialog box, write the corresponding program to the CPU module again.
- (8) Do not execute this instruction in an interrupt program.(Execution of this instruction in an interrupt program can cause a malfunction.)
- (9) The PLC file settings of the program on which the PSWAPP instruction has been conducted are set as follows:
 - (a) File usage for each program

All the usage of file register, device initial value, comment, and local device of the program after the execution of the PSWAPP instruction are set as "Use PLC file setting".

- (b) I/O refresh setting Nothing is set for both input and output for the I/O refresh setting of the program after the PSWAPP instruction has been executed.
- (10) The "PSWAPP instruction" and "write during RUN" processing cannot be executed simultaneously.
 - (a) When a write during RUN request is given during processing of the PSWAPP instruction, write during RUN is delayed.
 Write during RUN is started after the processing of the PSWAPP instruction is completed.
 - (b) When the PSWAPP instruction is executed during write during RUN, the processing of the PSWAPP instruction is delayed.

The processing of the PSWAPP instruction is started after completion of write during RUN.

Operation Error

- (1) In any of the following cases, an operation error occurs, the error flag (SM0) turns ON, and an error code is stored into SD0.
 - The drive No. or the file name designated by ${}_{\textcircled{3}}$ or ${}_{\textcircled{3}}$ does not exist.

(Error code: 2410)

- The drive No. designated by 🔊 is invalid. (Error code: 4100)
- There is not enough memory to load the specified program in drive 0.

(Error code: 2413)

• The program designated by (s) is not in standby status or is being executed.

(Error code: 4101)

Program Example

(1) The following program deletes "EFGH.QPG" stored in drive 0 from the memory, transfers "ABCD.QPG" stored in drive 4 to drive 0, and places the program in standby status when M0 is turned from OFF to ON.

[Ladder Mode]

[List Mode]

7.18.19 High-speed Block Transfer of File Register (RBMOV(P))

Process

Universa

Command **RBMOV** RBMOV (\mathbf{S}) (D)n Command **RBMOVP** (S) RBMOVP (D)n : Head number of the devices where the data to be transferred is stored (BIN 16 bits) (S) : Head number of the devices of transfer destination (BIN 16 bits) \bigcirc : Number of data to be transferred (BIN 16 bits) n Setting Internal Devices Constants J....\.... R, ZR U....\G.... 7n Other Data К, Н Wor (s)0 0 n \bigcirc \bigcirc Grant Function

(1) Transfers in batch 16-bit data of n points from the device designated by (s) to location n points from the device designated by (p).

(2) The transfer is available even if there is an overlap between the source and destination devices.

For the transmission to the smaller number of device, the data is transferred from \mathfrak{S} . For the transmission to the larger number of device, the data is transferred from \mathfrak{S} +(n-1).

However, as shown in the example below, when transferring data from R to ZR, or from ZR to R, the range to be transferred (source) and the range of destination must not overlap.

 ZR transfer range ((specified head No. of ZR) to (specified head No. of ZR + the number of transfers -1))

R transfer range ((specified head No. of R + file register block No. \times 32768) to (specified head No. of R + file register block No. \times 32768 + the number of transfers -1))

Example

Transfer ranges of ZR and R overlap when transferring 10000 points of data from ZR30000 (source) to R10 (block No.1 of the destination).

- ZR transfer range \rightarrow (30000) to (30000+10000-1) \rightarrow (30000) to (39999)
- R transfer range \rightarrow (10+(1×32768)) to (10+(1×32768)+10000-1)

→ (32778) to (42777)

Therefore, the range 32778 to 39999 overlaps.

(3) When (s) is a word device and (d) is a bit device, the number of bits designated by the bit device digit specification will be transferred. If K1Y30 has been designated by (d), the lower four bits of the word device designated by (s) will be transferred.

Operation Error

- (1) In any of the following cases, an operation error occurs, the error flag (SM0) turns ON, and an error code is stored into SD0.
 - The device range of n points from (s) or (p) exceeds the corresponding device range.

(Error code: 4101)

• The file register is not specified for either (s) or (D). (Error code: 4101)

Program Example

(1) The following program outputs the lower four bits of data in R66 to R69 to Y30 through Y3F in units of 4 points.

[List Mode]

[Ladder Mode]

(2) The following program outputs the data in X20 to X2F to R100 to R103 in units of 4 points.[Ladder Mode][List Mode]

The RBMOV (P) instruction is useful to batch transfer a large quantity of file register data with the QnHCPU/QnPHCPU/QnPRHCPU.

For the QnUCPU, the processing speed of the RBMOV instruction is equivalent to that of the BMOV instruction.

The comparison of processing speed between the RBMOV and BMOV instructions is as follows:

(1)Transfer from file registers to internal devices/internal devices to file registers

CPU	Instruction	Target memory where	1 word		1000 words		10000 words	
GFU	moulden	file register is stored	Min.	Max.	Min.	Max.	Min.	Max.
		Standard RAM	20	.0 µs	91.0 µs		775.0 µs	
	RBMOV	SRAM card	22	.0 µs	305.0 µs		2900.0 µs	
QnHCPU		Flash card *1	22.5 µs		405.0 µs		3950.0 µs	
QnPHCPU QnPRHCPU		Standard RAM	7.5 µs		76.	2 µs	720	.0 µs
	BMOV	SRAM card	0	0	384	.0 µs	3900	0.0 µs
		Flash card *1	8.	υµs	418	.0 µs	4250	0.0 µs
		Standard RAM	45	.5 µs	215	.0 µs	1850	0.0 µs
	RBMOV	SRAM card	40	5.05	540	0.05	515() ().uc
OnCDU		Flash card *1	49	.0 µS	540	.υ μs	5150	λ.υμδ
QICPU		Standard RAM	17	.5 µs	177	.0 µs	1700	0.0 µs
	BMOV	SRAM card	10	0.00	500	.0 µs	5050	0.0 µs
		Flash card *1	10	.υ μs	572.0 µs		5800.0 µs	
		Standard RAM	12.2 µs	34.9 µs	121.5 µs	145.1 µs	1111.5 µs	1135.1 µs
	RBMOV	SRAM card*2	-	-	-	-	-	-
Q00UCPU Q01UCPU		Flash card *2	-	-	-	-	-	-
		Standard RAM	7.3 µs	13.8 µs	116.5 µs	124.2 µs	1106.5 µs	1114.2 µs
	BMOV	SRAM card*2	-	-	-	-	-	-
		Flash card *2	-	-	-	-	-	-
	RBMOV	Standard RAM	9.4 µs	31.3 µs	118.5 µs	141.3 µs	1108.5 µs	1131.3 µs
		SRAM card	9.4 µs	31.4 µs	178.5 µs	201.3 µs	1708.5 µs	1731.3 µs
		Flash card *1	9.4 µs	32.1 µs	278.5 µs	301.3 µs	2708.5 µs	2731.3 µs
		Standard RAM	5.0 µs	11.6 µs	114.5 µs	122.3 µs	1104.5 µs	1112.3 µs
	BMOV	SRAM card	5.1 µs	11.7 µs	174.5 µs	182.3 µs	1704.5 µs	1712.3 µs
		Flash card *1	5.0 µs	11.6 µs	274.5 µs	282.3 µs	2704.5 µs	2712.3 µs
		Standard RAM	11.3 µs	16.8 µs	120.7 µs	127.1 µs	1110.7 µs	1117.1 µs
	RBMOV	SRAM card	11.2 µs	16.7 µs	180.7 µs	187.1 µs	1710.7 µs	1717.1 µs
		Flash card *1	11.3 µs	16.8 µs	280.7 µs	287.1 µs	2710.7 µs	2717.1 µs
Q050D(L)CF0		Standard RAM	4.8 µs	6.6 µs	114.7 µs	117.1 µs	1104.7 µs	1107.1 µs
	BMOV	SRAM card	4.8 µs	6.6 µs	147.7 µs	177.1 µs	1704.7 µs	1707.1 µs
		Flash card *1	4.8 µs	6.5 µs	274.7 µs	277.1 µs	2704.7 µs	2707.1 µs
		Standard RAM	9.2 µs	15.1 µs	61.0 µs	68.6 µs	531.0 µs	538.6 µs
Q040D(E)HCPU Q06UDE(H)CPU	RBMOV	SRAM card	9.4 µs	15.6 µs	165.0 µs	172.6 µs	1576.0 µs	1583.6 µs
Q10UDE(H)CPU		Flash card *1	9.4 µs	15.7 µs	260.0 µs	267.6 µs	2526.0 µs	2533.6 µs
Q13UDE(H)CPU		Standard RAM	4.1 µs	5.6 µs	56.0 µs	58.6 µs	526.0 µs	528.6 µs
	BMOV	SRAM card	4.5 µs	6.1 µs	160.0 µs	162.6 µs	1571.0 µs	1573.6 µs
Q26UDE(H)CPU		Flash card *1	4.3 µs	6.2 µs	255.0 µs	257.6 µs	2521.0 µs	2523.6 µs

*1 : When file registers are stored in the Flash card, no processing is performed for transfer from internal devices to file registers.

*2 : Unusable for the Q00UCPU and Q01UCPU.

CPU	Instruction	Target memory where	1 י	word	1000	words	10000 words	
	monuction	file register is stored	Min.	Max.	Min.	Max.	Min.	Max.
	REMOV	Standard RAM	20	.0 µs	91.0 µs		775.0 µs	
QnHCPU	INDIVIO V	SRAM card	22.5 µs		545.0 µs		5300.0 µs	
QnPRHCPU	RMOV/	Standard RAM	7.	5 µs	77.	0 µs	720.	0 µs
	DIVIOV	SRAM card	8.	5 µs	692	.0 µs	7050	.0 µs
	RBMOV	Standard RAM	45	.5 µs	215	.0 µs	1850	.0 µs
OnCPU	TONIO V	SRAM card	50	.0 µs	870.	.0 µs	8350	.0 µs
	BMOV	Standard RAM	17	.5 µs	179	.0 µs	1700	.0 µs
	DIVIOV	SRAM card	18	.5 µs	839	.0 µs	8600.0 μs	
	RBMOV	Standard RAM	12.6 µs	35.3 µs	232.5 µs	256.1 µs	2211.5 µs	2235.1 µs
Q00UCPU	INDIVIO V	SRAM card*2	-	-	-	-	-	-
Q01UCPU	BMOV	Standard RAM	7.7 µs	14.2 µs	227.5 µs	234.2 µs	2206.5 µs	2214.2 µs
		SRAM card*2	-	-	-	-	-	-
	RBMOV	Standard RAM	9.6 µs	31.5 µs	228.5 µs	252.3 µs	2208.5 µs	2231.3 µs
002UCPU		SRAM card	9.6 µs	31.5 µs	378.5 µs	401.3 µs	3708.5 µs	3731.3 µs
	RMOV	Standard RAM	5.2 µs	11.8 µs	224.5 µs	232.3 µs	2204.5 µs	2212.3 µs
	Billov	SRAM card	5.2 µs	11.8 µs	374.5 µs	382.3 µs	3704.5 µs	3712.3 µs
	RBMOV	Standard RAM	11.2 µs	16.7 µs	230.7 µs	237.1 µs	2210.7 µs	2217.1 µs
	T CDIVIC V	SRAM card	11.6 µs	16.7 µs	380.7 µs	387.1 µs	3710.7 µs	3717.1 µs
	BMOV	Standard RAM	4.9 µs	6.7 µs	224.7 µs	227.1 µs	2204.7 µs	2207.1 µs
	Billov	SRAM card	5.2 µs	6.7 µs	374.7 µs	377.1 µs	3704.7 µs	3707.1 µs
Q04UD(E)HCPU	RBMOV	Standard RAM	9.3 µs	15.5 µs	118.0 µs	124.6 µs	1102.0 µs	1107.6 µs
	T CDIVIC V	SRAM card	9.7 µs	15.5 µs	365.0 µs	371.6 µs	3571.0 µs	3578.6 µs
Q13UDE(H)CPU		Standard RAM	4.3 µs	6.2 µs	113.0 µs	115.6 µs	1096.0 µs	1098.6 µs
Q20UDE(H)CPU Q26UDE(H)CPU	BMOV	SRAM card	4.5 µs	6.1 µs	360.0 µs	362.6 µs	3566.0 µs	3568.6 µs

(2)Transfer from file registers to file registers

*1 : Unusable for the Q00UCPU and Q01UCPU.

[Symbols]

- (BIN 16-bit subtraction operations) \$+ (Linking character strings)	
\$=, \$<>, \$>, \$<=, \$<, \$>= (Character	string data
comparisons)	6-11
\$MOV (Character string transfers)	6-112
* (BIN 16-bit multiplication operations)	6-30
+ (BIN 16-bit addition operations)	6-22
/ (BIN 16-bit division operations)	6-30
<(BIN 16-bit data comparisons)	6-2
<=(BIN 16-bit data comparisons)	6-2
<>(BIN 16-bit data comparisons)	6-2
=(BIN 16-bit data comparisons)	6-2
>(BIN 16-bit data comparisons)	6-2
>=(BIN 16-bit data comparisons)	6-2

[Numerics]

16-bit data block transfers (FMOV)	6-120,6-122
16-bit data checks (SUM)	7-69
16-bit data exchange (XCH)	6-124
16-bit data exclusive NOR operation (WX	(NR) 7-27
16-bit data searches (SER)	
16-bit dead band controls (BAND)	
16-bit exclusive OR operations (WXOR).	7-19
16-bit negation transfers (CML)	6-114
16-bit transfers (MOV)	6-106
1-bit shift to left of n-bit data (BSFL)	7-49,7-51
1-bit shift to right of n-bit data (BSFR)	7-49,7-51
1-word shift to left of n-word data (DSFL)	7-54,7-56
1-word shift to right of n-word data (DSFF	र)
	7-54,7-56
32-bit data checks (DSUM)	7-69
32-bit data exchanges (DXCH)	6-124
32-bit data exclusive NOR operation (DX	NR) 7-27
32-bit data searches (DSER)	7-66
32-bit dead band controls (DBAND)	
32-bit exclusive OR operations (DXOR)	7-19
32-bit negation transfers (DCML)	6-114
32-bit transfers (DMOV)	6-106
4-bit dissociation of 16-bit data (DIS)	7-77
4-bit linking of 16-bit data (UNI)	7-79
7 segment decode (SEC)	
	7-75

[A]

A contact operation start (LD) 5-2
A contact parallel connection (OR)
A contact series connection (AND)
ACOS (COS ⁻¹ operation on floating-point data (Single
precision))
ACOSD (COS ⁻¹ operation on floating-point data
(Double precision))
Addition
Addition of floating decimal point (Double precision)
(ED+)
Addition of floating decimal point (Single precision)
(E+)
BCD 4-digit addition (B+) 6-34
BCD 8-digit addition (DB+)6-38
·

BIN 16-bit addition operations (+)	6-22
BIN 32-bit addition operations (D+)	6-26
Block addition (BK+)6-59	,6-62
Addition and subtraction of floating decimal point	data
(Double precision) (ED+, ED-)	,6-52
Addition and subtraction of floating decimal point	data
(Single precision) (E+, E-)6-46	,6-48
ADRSET (Indirect address read)7	-395
ANB (Ladder block series connections)	5-10
AND (=, <>, >, <=, <, >=) (BIN 16-bit	data
comparisons)	6-2
AND (A contact series connection)	5-2
AND (D=, D<>, D>, D<=, D<, D>=) (BIN 32-bit	data
comparisons)	6-4
AND (E=, E<>, E>, E<=, E<, E>=) (Floationg ded	cimal
point data comparisons(Single precision))	6-6
AND (ED=, ED<>, ED>, ED<=, ED<, ED>=) (Floa	tiong
decimal point data comparisons(Double precision	((ר
	6-8
And inverse (ANI)	5-3
AND(\$=, \$<>, \$>, \$<=, \$<, \$>=) (Character string	data
comparisons)	6-11
ANDF (Pulse series connections / trailing	edge
leading edg)5-	5,5-7
ANDP (Pulse series connections / leading	edge
leading edg)5-	5,5-7
ANDPI, ANDFI	5-8
ANI (B contact series connection)	5-2
Annunciator output (OUT F)	5-28
Application instructions	2-29
Arithmetic operation instructions	2-16
ASC (Conversion from hexadecimal BIN to ASCI	I)
	-228
ASIN (SIN ⁻¹ operation on floating-point data (S	ingle
precision))	-262
ASIND (SIN ⁻¹ operation on floating-point data (Do	ouble
precision))	-265
ATAN (TAN ⁻¹ operation on floating-point data (S	ingle
precision))7	-271
ATAND (TAN ⁻¹ operation on floating-point data	
	'-273

[B]

B- (BCD 4-digit subtraction)	6-34
B contact operation start (LDI)	5-2
B* (BCD 4-digit multiplication)	6-42
B+ (BCD 4-digit addition)	6-34
B/ (BCD 4-digit division)	6-42
BACOS (BCD type COS ⁻¹ operation)	7-317
BAND (16-bit dead band controls)	7-324
Basic instructions	2-10
BASIN (BCD type SIN ⁻¹ operation)	7-315
BATAN (BCD type TAN ⁻¹ operation)	7-313
Batch recovery of index register (ZPOP)	7-400
Batch reset of bit devices (BKRST)	7-64
Batch save of index register (ZPUSH)	7-400
BCD (BIN data to 4-digit)	6-73
BCD 4-digit addition and subtraction operati	ons (B+,
B-)	6-34

BCD 4-digit multiplication and division operations	(B*,
B/)	6-42
BCD 4-digit square roots (BSQR)7-	-306
BCD 8-digit addition and subtraction operations (E)B+,
DB-)	6-38
BCD 8-digit multiplication and division operat	ions
(DB*. DB/)	6-44
BCD 8-digit square roots (BDSQR) 7-	-306
BCD conversion	000
Conversion from BIN data to 4-digit BCD (BCD)	`
	/ 6 72
Conversion from DIN data to 0 digit DCD (DDC)	0-73
Conversion from BIN data to 8-digit BCD (DBC	D)
	0-13
BCD type COS operations (BCOS)	-311
BCD type COS ⁻⁺ operations (BACOS)	-317
BCD type SIN operation (BSIN) 7-	-309
BCD type SIN ⁻¹ operation (BASIN)	-315
BCD type TAN operation (BTAN) 7-	-313
BCD type TAN ⁻¹ operations (BATAN)	-319
BCDDA (Conversion from BCD 4-digit to dec	imal
ASCII)	-189
BCOS (BCD type COS operations) 7	-311
BDSOR (BCD 8-digit square roots) 7	-306
BIN (BCD 4 digit data to BIN data)	8 75
PIN 16 bit addition and subtraction operations (+	0-75 ۱
Bin To-bit addition and subtraction operations (+,	-) c
	0-22
BIN 16-bit data comparisons $(=, <>, >, <=, <, >=)$	
	. 6-2
BIN 16-bit data sort operations (SORT)	7-95
BIN 16-bit multiplication and division operations (*	`, /)
	6-30
BIN 16-bit to BIN 32-bit (DBL)	6-88
BIN 16-bit to Gray code (GRY)	6-90
BIN 32-bit addition and subtraction operations (D+	, D-)
· · · · · · · · · · · · · · · · · · ·	6-26
BIN 32-bit block data comparisons (DBKCMP	□.
$DBKCMP \square P$	6-18 [′]
BIN 32-bit data block addition and subtrac	ction
operations (DBK+(P) DBK-(P))	6-62
BIN 32-bit data comparisons (D= D<> D> D<=	D<
D = 1	6_1
PIN 22 bit data part operations (DSOPT)	. 0- - 7 05
DIN 32-bit data to DIN 16 bit data (MODD)	1-90
BIN 32-DIL GALA LO BIN TO-DIL GALA (WORD)	0-89
BIN 32-bit data to Gray code (DGRY)	6-90
BIN 32-bit multiplication and division operations	(D^,
D/)	6-32
BIN block data comparisons (BKCMP) 6-15,0	6-18
BINDA (Conversion from BIN 16-bit data to dec	imal
ASCII)	-183
BINHA (Conversion from BIN 16-bit data	to
hexadecimal ASCII)7	-186
Bit data	. 3-3
Bit device output reverse (FF)	5-40
Bit device shifts (SET)	5-44
Bit processing instructions	2_21
Bit reset for word devices (RDST)	2-04 7_50
Dit reset for word dovices (DRST)	7 50
	1-09 7 61
Dil lesis ($IE3I/UIE3I$)	1-01
DN- (BIOCK SUDIJACTION)	0-02

BK+ (Block addition)
BKAND (Block logical products)
BKBCD (Conversion from block BIN 16-bit data to
BCD 4-digit data) 6-98
BKBIN (Conversion from block BCD 4-digit data to
block BIN 16-bit data)6-100
BKCMP (BIN block data comparisons)6-15,6-18
BKOR (Block logical sum operations)7-17
BKRST (Batch reset of bit devices)
BKXNR (Block exclusive NOR operations)
BKXOR (Block exclusive OR operations)7-25
Block 16-bit exchanges (BXCH) 6-126
Block 16-bit transfers (BMOV)6-117
Block addition (BK+)6-59,6-62
Block exclusive NOR operations (BKXNR)
Block exclusive OR operations (BKXOR)7-25
Block logical products (BKAND)
Block logical sum operations (BKOR)7-17
Block subtraction (BK-)6-59,6-62
BMOV (Block 16-bit data transfers) 6-117
BREAK (Forced end of FOR to NEXT instruction loop)
BRST (Bit reset for word devices)
BSET (Bit set for word devices)7-59
BSFL (1-bit shift to left of n-bit data)7-49,7-51
BSFR (1-bit shift to right of n-bit data)
BSIN (BCD type SIN operation)7-309
BSQR (BCD 4-digit square roots)7-306
BIAN (BCD type IAN operation)
BIOW (Data linking in byte units)
Buffer memory access instructions
BXCH (Block 16-bit data exchanges) 6-126
C]
Calculation of averages for 16-bit or 32-bit data
(MEAN(P),DMEAN(P))
Calculation of totals for 16-bit data (WSUM) 7-99
Calculation of totals for 32-bit data (DWSUM)
CALL (Subroutine program calls)7-110
Cautions on programming 3-27

[C]

Calculation of averages for 16-bit or 32-bit data (MEAN(P),DMEAN(P))
CALL (Subroutine program calls)
CHKEND)
Character string processing instructions
CHKCIR (Changing check format of CHK Instruction)
CHKST, CHK (Special format failure checks) 7-175 CJ (Pointer branch instruction)

CML (16-bit negation transfers)	6-114
Common logarithm operation on floating noi	nt data
(Double precision) (LOG10D(P))	ni uala
Common logarithm operation on floating-poi	nt data
(Single precision) (LOG10(P))	7-300
Comparison operation instruction table	2-10
Comparison operation instructions	6-2
Comparisons (BIN 16-bit data)	6_2
Comparisons (DIN 10-bit data)	0-2 6 1
Comparisons (Character string data)	6 11
Comparisons (Character sting data)	0-11
Complement of 2 of BIN 16-bit data (NEG)	6-94
Complement of 2 of BIN 32-bit data (DNEG)	6-94
COMRD (Reading device comment data)	7-201
Conditions for execution of instructions	3-33
Connection instructions	
Association instruction table	2-7
Ladder block parallel connection (ORB)	5-10
Ladder block series connection (ANB)	5-10
Linking character strings (\$+)	6-65
Contact instruction	2-6
Contact instructions	
Operation start (LD, LDI)	5-2
Parallel connection (OR, ORI)	5-2
Pulse operation start (LDF, LDP)	5-5,5-7
Pulse parallel connection (ORF.ORP)	5-5.5-7
Pulse serial connection (ANF, ANP)	5-5.5-7
Series connection (AND, ANI)	5-2
Conversion	
BCD 4-digit to BIN (BIN)	6-75
BCD 8-digit to BIN (DBIN)	6-75
BIN 16-bit to BIN 32-bit (DBL)	6-88
BIN 16-bit to floating decimal point (
precision) (FLTD)	6 81
BIN 16 bit to floating decimal point	0-01 (Sinala)
procision) (ELT)	
DIN 16 bit to Croy code (CDV)	0-70
DIN 10-DIL to Glay Code (GRT)	0-90
DIN 32-DIL IO DIN 10-DIL (WORD)	0-09 Develo
BIN 32-bit to libating decimal point (
precision) (DFLTD)	6-81
BIN 32-bit to floating decimal point	(Single
precision) (DFLI)	6-78
BIN 32-bit to Gray code (DGRY)	6-90
BIN to BCD 4-digit (BCD)	6-73
BIN to BCD 8-digit (DBCD)	6-73
Double precision to Single precision (EDCO	N)
	6-104
Floating decimal point data to BIN 16-bit (Double
precision) (INTD)	6-86
Floating decimal point data to BIN 16-bit	(Single
precision) (INT)	6-83
Floating decimal point data to BIN 32-bit	(Single
precision) (DINT)	6-83
Floating decimal point data to BIN32-bit (Double
precision) (DINTD)	6-86
Gray code to BIN 16-bit (GBIN)	6-92
Gray code to BIN 32-bit (DGBIN)	6-92
Single precision to Double precision (ECON)
· · · · ·	6-102

Conversion from ASCII to hexadecimal BIN (HEX) Conversion from BCD 4-digit to decimal ASCII Conversion from BCD 8-digit to decimal ASCII Conversion from BIN 16-bit to character string (STR) Conversion from BIN 16-bit to decimal ASCII (BINDA) Conversion from BIN 16-bit to floating decimal point Conversion from BIN 16-bit to floating decimal point Conversion from BIN 16-bit to hexadecimal ASCII Conversion from BIN 32-bit to character string (DSTR) Conversion from BIN 32-bit to decimal ASCII Conversion from BIN 32-bit to floating decimal point Conversion from BIN 32-bit to floating decimal point Conversion from BIN 32-bit to hexadecimal ASCII Conversion from block BCD 4-digit data to block BIN Conversion from block BIN 16-bit data to BCD 4-digit data (BKBCD) 6-98 Conversion from character string to BIN 16-bit (VAL) Conversion from character string to BIN 32-bit (DVAL) Conversion from character string to floating decimal Conversion from decimal ASCII to BCD 4-digit Conversion from decimal ASCII to BCD 8-digit Conversion from decimal ASCII to BIN 16-bit (DABIN) Conversion from decimal ASCII to BIN 32-bit Conversion from floating decimal point to character Conversion from floating-point angle to radian (Double precision) (RADD)......7-277 Conversion from floating-point angle to radian (Single Conversion from floating-point radian to angle (Double precision) (DEGD)7-281,7-283,7-285 Conversion from floating-point radian to angle (Single Conversion from hexadecimal ASCII to BIN 16-bit Conversion from hexadecimal ASCII to BIN 32-bit (DHABIN)......7-195

Conversion from hexadecimal BIN to ASCII (ASC)	
Conversion of Gray code to BIN 16-bit (GBIN) 6-92 Conversion of Gray code to BIN 32-bit (DGBIN)	
	0
Conversion to BIN	0
BCD 4-digit to BIN 16-bit (BIN) 6-75	[
BCD 8-digit to BIN 32-bit (DBIN) 6-75	[
Floating decimal point data to BIN 16-bit (Double	0
precision) (INTD)	0
Floating decimal point data to BIN 16-bit (Single	1
precision) (INT) 6-83	l r
Floating decimal point data to BIN 32-bit (Double	
precision) (DINTD) 6-86	
Floating decimal point data to BIN 32-bit (Single	ſ
precision) (DINT) 6-83	
Conversion to floating decimal point (Double	
provision (ELTD DELTD) 6 91	
precision) (FLTD, DFLTD)	
(FLI, DFLI)	
COS (COS operation on floating-point data (Single	
precision))	
COS operation on floating-point data (Double	L
precision) (COSD) 7-256	ון
COS operation on floating-point data (Single	8
precision) (COS)	E
COS ⁻¹ operation on floating-point data (Double	3
precision) (ACOSD)7-269	[
COS ⁻¹ operation on floating-point data (Single	[
precision) (ACOS)	0
COSD (COS operation on floating-point data (Double	[
precision))	
Count 1-phase input or down (UDCNT1) 6-143	0
Count 2-phase input or down (UDCNT2)	
Counters (OUT C)	
	Г
וחו	l r
נטן	
D- (BIN 32-bit subtraction operations	
D(P).DDRD(Reading Devices to Another CPU)	
D(P).DDWR(Writing Devices to Another CPU)	
D* (BIN 32-bit multiplication operations)	
D+ (BIN 32-bit addition operations) 6-26	
D/ (BIN 32-bit division operations)	
D=, D<>, D>, D<=, D<, D>= (BIN 32-bit data	L
comparisons)	r
DABCD (Conversion from decimal ASCII to BCD	L
4-digit) 7-198	
DARIN (Conversion from decimal ASCII to RIN 16-bit)	F
7_102	[
DAND (I order a products with 32-bit data) 7.3	0
עודי (בטעוטו דיטעעטוט אוווי ג-טו udia)	[
Data conversion instruction table	r
Data conversion instruction table	[
Data conversion instructions	
Data dissociation in byte units (VVIOB)	r
Data link instructions	r
Data linking in byte units (BIOW)	
Data processing instructions	

Data table operation instructions
DATE- (Clock data subtraction operation)
Date comparison (DT=,DT,DT>,DT=)
DATE+ (Clock data addition operation) 7-348
DATERD (Reading clock data)7-344
DATEWR (Writing clock data)
DB- (BCD 8-digit subtraction) 6-38
DB* (BCD 8-digit multiplication)6-44
DB+ (BCD 8-digit addition)6-38
DB/ (BCD 8-digit division)
DBAND (32-bit dead band controls)
DBCD (Conversion from BIN to BCD 8-digit) 6-73
JBCDDA (Conversion from BCD 8-digit to decimal
NOCII)
BINDA (Conversion from BIN 32-bit to decimal
BINHA (Conversion from BIN 32-bit to beyadecimal
ASCII) 7-186
DBK- 6-63
DBK+
DBL (BIN 16-bit to BIN 32-bit)
DCML (32-bit negation transfers) 6-114
DDABCD (Conversion from decimal ASCII to BCD
B-digit)
DDABIN (Conversion from decimal ASCII to BIN
32-bit)
DDEC (Decrementing 32-bit BIN)
Debugging and failure diagnosis instructions 2-42
JEC (Decrementing 16-bit BIN)
$\nabla CO(Docoding from 0 to 256 hito) = 7.71$
DECO (Decoding from 8 to 256 bits)
DECO (Decoding from 8 to 256 bits)
DECO (Decoding from 8 to 256 bits)
DECO (Decoding from 8 to 256 bits)
DECO (Decoding from 8 to 256 bits) 7-71 Decoding from 8 to 256 bits (DECO) 7-71 Decrement BIN 16-bit (DEC) 6-69 BIN 32-bit (DDEC) 6-71 Decrementing 16-bit BIN (DEC) 6-69
DECO (Decoding from 8 to 256 bits)
DECO (Decoding from 8 to 256 bits)
DECO (Decoding from 8 to 256 bits)
DECO (Decoding from 8 to 256 bits)
DECO (Decoding from 8 to 256 bits)
DECO (Decoding from 8 to 256 bits)
DECO (Decoding from 8 to 256 bits)
DECO (Decoding from 8 to 256 bits)
DECO (Decoding from 8 to 256 bits)
DECO (Decoding from 8 to 256 bits)
DECO (Decoding from 8 to 256 bits)
DECO (Decoding from 8 to 256 bits)
DECO (Decoding from 8 to 256 bits)
DECO (Decoding from 8 to 256 bits)
DECO (Decoding from 8 to 256 bits)
DECO (Decoding from 8 to 256 bits)
DECO (Decoding from 8 to 256 bits)
DECO (Decoding from 8 to 256 bits)
DECO (Decoding from 8 to 256 bits)
DECO (Decoding from 8 to 256 bits) 7-71 Decoding from 8 to 256 bits (DECO) 7-71 Decrement BIN 16-bit (DEC) 6-69 BIN 32-bit (DDEC) 6-71 Decrementing 16-bit BIN (DEC) 6-69 Decrementing 32-bit BIN (DDEC) 6-71 Decrementing 32-bit BIN (DDEC) 6-71 DEG (Conversion from floating-point radian to angle 6-71 Decrementing 32-bit BIN (DDEC) 7-279 DEG (Conversion from floating-point radian to angle 7-279 Decod (Conversion from floating-point radian to angle 7-281,7-283,7-285 Deleting data from data tables (FDEL) 7-157 Deletion of character string (STRDEL(P)) 7-243 DELTA (Pulse conversion of direct output) 5-42 Designating data 3-3 Designation of modification values in index 10dex nodification (IXDEV, IXSET) 7-148 Device range check 3-27 DFLT (Conversion from BIN 32-bit to floating decimal Doint (Single precision)) 6-78 DFLTD (Conversion from BIN 32-bit to floating Decimal point (Double precision)) 6-81 DFRO (Reading 2-word data from intelligent functio
DECO (Decoding from 8 to 256 bits) 7-71 Decoding from 8 to 256 bits (DECO) 7-71 Decrement BIN 16-bit (DEC) 6-69 BIN 32-bit (DDEC) 6-71 Decrementing 16-bit BIN (DEC) 6-69 Decrementing 32-bit BIN (DDEC) 6-71 Decrementing 32-bit BIN (DDEC) 6-71 DEG (Conversion from floating-point radian to angle 6-71 DEGD (Conversion from floating-point radian to angle 7-279 DEGD (Conversion from floating-point radian to angle 7-281,7-283,7-285 Deleting data from data tables (FDEL) 7-157 Deletion of character string (STRDEL(P)) 7-243 DELTA (Pulse conversion of direct output) 5-42 Designating data 3-3 Designation of modification values in index 10 nodification (IXDEV, IXSET) 7-148 Device range check 3-27 DFLT (Conversion from BIN 32-bit to floating decimal boint (Single precision)) 6-78 DFLTD (Conversion from BIN 32-bit to floating decimal boint (Single precision)) 6-81 DFRO (Reading 2-word data from intelligent function nodules) 7-160 DGBIN (Conversion of Gray code to BIN 16-bit) 6-90

DI (Interrupt disable)	6-133
Digit designation	3-4
Digit designation of bit devices	3-4
DINC (Incrementing 32-bit BIN)	6-71
DIN I (Floating decimal point data to BIN 32-bit (Single
precision))	6-83
DINTD (Floating decimal point data to Bin	SZ-DIL
Direct 1 byte read from file register (ZPDD)	. 0-00
Direct 1-byte read norm life register (ZRRDB)	7 77
Display instructions	2_11
Display Instructions	7_81
Division	
BCD 4-digit (B/)	6-42
BCD 8-digit division (DB/)	6-44
BIN 16-bit (/)	6-30
Division of floating decimal point(Double pred	cision)
(ED/)	6-56
Division of floating decimal point(Single pred	cision)
(E/)	6-54
DLIMIT (Upper and lower limit controls for BIN 3	32-bit)
	7-321
DMAX (Maximum value search for 32-bit data).	7-89
DMEAN(P)	7-103
DMIN (Minimum value search for 32-bit data)	7-92
DMOV (32-bit transfers)	6-106
DNEG (Complement of 2 of BIN 32-bit data)	6-94
DOR (Logical sums of 32-bit data)	7-11
Double precision to Single precision conv	ersion
(EDCON)	6-104
Double word data	3-0
DRCL (Left folditor of 32-bit data)	. 7-44
DROR (Right Totation of 32 bit data)	7 41
DROR (Right rotation of 32-bit data)	7_41
DSCI (P)	7-331
DSCI 2(P)	7-335
DSER (32-bit data searches)	
DSFL (1-word shift to left of n-word data)7-54	4.7-56
DSFR (1-word shift to right of n-word data)	,
	4,7-56
DSORT (BIN 32-bit data sort)	. 7-95
DSTR (Conversion from BIN 32-bit to character	string)
	7-206
DSUM (32-bit data checks)	7-69
DTEST (Bit tests)	7-61
DTO (Writing 2-word data to intelligent fu	nction
modules)	7-163
DUTY (Timing pulse generation)	7-388
DVAL (Conversion from character string to BIN 3	32-bit)
DWOLIN (Oslaulation a filatale fam 00 bit data)	7-212
DWSUM (Calculation of totals for 32-bit data)	7 400
	,7-103
DXNP (32 bit data exclusive NOP expertise)	0-124 7 07
DANK (32-bit avaluative NOR operations) \dots	. 1-21
DZON (02-bit exclusive OR operations)	
	7-334
	. 004

[E]

E- (Subtraction of floating decimal point data (Single precision))......6-46,6-48 E* (Multiplication of floating decimal point data (Single E+ (Addition of floating decimal point data (Single precision)).....6-46,6-48 E/ (Dividion of floating decimal point data (Single E=, E<>, E>, E<=, E<, E>= (Floationg decimal point data comparisons(Single precision))6-6 ECALL (Sub-routine calls between program files) ECON (Single precision to Double precision conversion) 6-102 ED- (Subtraction of floating decimal point data ED* (Multiplication of floating decimal point data ED+ (Addition of floating decimal point data (Double ED/ (Dividion of floating decimal point data (Double ED=,ED<>,ED>,ED<=,ED<,ED>= (Floationg decimal point data comparisons (Double precision)) 6-8 EDCON (Double precision to Single precision conversion) 6-104 EDMOV (Floating-point data transfer (Double EDNEG (Floating-point sign invertion (Double EFCALL (Output OFF calls between program files) EGF (Pulse operation results / leading edge)...... 5-18 EGP (Pulse operation results / trailing edge)...... 5-18 EMOV (Floating-point data transfer (Single precision)) ENCO (Encoding from 256 to 8 bits)7-73 Encoding from 256 to 8 bits (ENCO)7-73 END (End sequence program)5-53 End main routine program (FEND) 5-51 End sequence program (END) 5-53 ENEG (Floating-point sign invertion(Single precision)) EREXP (From BCD format data to floating decimal point)......7-248 Error display and annunciator reset instruction (LEDR) ESTR (Conversion from floating decimal point to character string)......7-217 EVAL (Conversion from character string to floating decimal point)7-217 EXP (Exponent operation on floating-point data (Single precision))......7-291 Expansion clock data addition operation (S.DATE+)

Expansion clock data subtraction operation (S.DATE-) 7-366
EXPD (Exponent operation on floating-point data (Double precision))
precision) (EXP)
Exponentiation operation on floating-point data (Single precision) (POW(P))
Exponentiation operation on floating-point data (Single precision) (POWD(P))
Extracting character string data from the left (LEFT)
Extracting character string data from the right (RIGHT)

[F]

FCALL (Subroutine program output OFF calls)
FDEL (Deleting data from data tables) 7-157
FEND (End main routine program) 5-51
FF (Bit device output reverse) 5-40
FIFR (Reading oldest data from data tables) 7-153
FIFW (Writing data to the data tables) 7-151
File register direct 1-byte write (ZRWRB) 7-393
File setting for comments (QCDSET) 7-342
FINS (Inserting data in data tables) 7-157
Fixed cycle pulse output (PLSY) 6-162
Floating decimal point data comparisons (Double
precision) (ED=, ED<>, ED>, ED<=, ED<, ED>=)
Floating decimal point data comparisons (Single
precision) (E=, E<>, E>, E<=, E<, E>=)
Floating decimal point to BCD (EMOD) 7-245
Floating-point data transfer (Double precision)
(EDMOV)
Floating-point data transfer (Single precision) (EMOV)
Floating-point sign invertion (Double precision)
(EDNEG) 6-97
Floating-point sign invertion (Single precision) (ENEG)
FLT (Conversion from BIN 16-bit to floating decimal
point (Single precision))
FLID (Conversion from BIN 16-bit to floating decimal
point (Double precision))
FMOV (16-bit data block transfers) 6-120,6-122
FOR (FOR to NEXT)
FOR to NEXT (FOR, NEXT)
Forced end of FOR to NEXT instruction loop (BREAK)
FPOP (Reading newest data from data tables)
FROM (Reading from other CPU shared memory)
EDOM (Deding 1 word data from intelligent function
rkowi (keeling i-word data from intelligent function
mouules)

From	BCD	format	data	to	floating	decimal	point
(ERE)	XP)						7-248

[G]

GBIN (Conversion of Gray code to BIN 16-bi	t) 6-92
GOEND (Jump to END)	6-132
GRY (BIN 16-bit to Gray code)	6-90

[H]

HABIN (Conversion from hexadecimal ASCII to BIN	٧
16-bit)	5
HEX (Conversion from ASCII to hexadecimal BIN)	
	0
High speed retentive timer (OUTH ST) 5-22	2
High speed timer (OUTH T)5-22	2
High-speed block transfer of file register (RBMOV)	
	8
HOUR (Time data conversion) 7-354	4
How to read instruction tables 2-4	4
How to read instructions 4-2	2

[I]

I/O refrech (RFS) I/O refresh instruction table Identical 32-bit data block transfers (DFMOV(P)	6-141 2-27)) 6 122
IMASK (Interrupt program mask) INC (Incrementing 16-bit BIN) Increment	6-133 6-69
BIN 16-bit (INC)	6-69
BIN 32-bit (DINC)	6-/1
Incrementing 16-bit BIN (INC)	6-69
Index modification	0-71
Indirect address read (ADRSET)	7_395
Indirect specification	3-23
Inserting data in data tables (FINS)	7-157
Insertion of character string (STRINS(P))	7-241
INSTR (Character string search) 7-239,7-241	,7-243
Instructions for data link	2-59
INT (Floating decimal point data to BIN 16-bit (Single
precision))	6-83
INID (Floating decimal point data to BIN	16-bit
(Double precision))	6-86
Interrupt disable (DI)	6 1 2 2
Interrupt enable (EI)	6 122
INV (Operation results inversion)	5-15
Inversion	5-15
Bit device output reverse (FF)	5-40
Operation results inversion (INV)	5-15
IRET (Recovery from interrupt programs)	6-139
IX, IXEND (Index modification of entire ladder)	
	7-144
IXDEV (Designation of modification values in	index
modification)	7-148
IXSEI (Designation of modification values in	Index
modification)	7-148

Г	1	11
L	J	1

JMP (Pointer branch)	6-129
Jump to END (GOEND)	6-132

[K]

KEY (Numerical key input from keyboard)....... 7-396

[L]

Ladder block parallel connections (ORB)
LD (A contact operation start)
LDF (Pulse operation start / trailing edge)5-5,5-7 LDI (B contact operation start)
LEFT (Extracting character string data from the left) 7-232
Left rotation of 16-bit data (ROL, RCL)
Link refresh instructions

Master control instructions 5-47 Matrix input (MTR) 6-166 MAX (Maximum value search for 16-bit data) 7-89 Maximum value search for 16-bit data (MAX) 7-89 Maximum value search for 32-bit data (DMAX) 7-89 MC (Setting the master control) 5-47 MCR (Resetting the master control) 5-47 MEAN(P) 7-103 MEF (Pulse operation results / trailing edge) 5-17 MIDR (Random selection from character strings) 7-235
MIDN/ (Dendem replacement in character strings)
MINI (Minimum value accred for 16 bit date) 7.02
Minimum value search for 16 bit data (MIN) 7.92
Minimum value search for 32 bit data (MIN)
MOV/(16 bit transfors) 6 106
MDD (Depretion regults per)
MPP (Operation results pup)
MPD (Operation results read) 5.12
MTD (Operation results read)
Miltinliaation
BCD 4-digit (B [*])
BCD 8-digit (DB [*])
BIN 10-DIL (*)
BIN 32-DIL (D [*])
multiplication of floating decimal point (Double
Precision) (ED)
multiplication of floating decimal point (Single
Precision) (E)
(Double precision)(ED* ED/)
Multiplication and division of floating decimal point
(Single precision)(F* F/) 6-54

[N]

Natural logarithm operation on floating-point data (Double precision) (LOGD)
SFTWL(P))
NEG (complement of 2 of BIN 16-bit data)
Network refresh instruction (ZCOM) 8-2
NEXT (FOR to NEXT)7-105
No operation (NOP, NOPLF, PAGE) 5-57
NOP 5-57
NOP (No operation) 5-57
NOPLF (No operation page change) 5-57
Number of steps
Numerical key input (KEY)7-396
Numerical key input from keyboard (KEY)7-396
NUNI (Linking of random data)
Operation errors
--
Operation results non (MPD)
Operation results pup (MPP)
Operation results read (MDD)
Operation results read (MRD)
Operation start (LD, LDI)
OR(5=, 5<), 5<=, 5<, 5>=) (Character string (
comparisons)
OR(=, <>, >, <=, <, >=) (BIN 16-bit data comparise
OR (A contact parallel connection)
OR (D=, D<>, D>, D<=, D<, D>=) (BIN 32-bit (
comparisons)
OR (E=, E<>, E>, E<=, E<, E>=) (Floationg dec
point data comparisons (Single precision))
OR (ED=, ED<>, ED>, ED<=, ED<, ED>=) (Floati
decimal point data comparisons (Double precision
Or inverse (ORI)
ORB (Ladder block parallel connections)
ORF (Pulse parallel connection / trailing edge)
ORI (B contact parallel connection)
ORP (Pulse parallel connection / leading edge)
Other convenient instructions
Other Instructions
Application instructions
Sequence Instructions
Lish as ad establish times (OUTLECT)
High speed retentive timer (OUTHST)
High speed timer (OUTH T)
Low speed retentive timer (OUT ST)
Low speed timer (OUT T)
Out instructions (OUT)
Output Instructions (OUT)
Output of sub-routine program OFF calls (FCALL)
Culput OFF calls between program files (EFCALL

[P]

PAGE (No operation page change)	5-57
Page change (NOPLF)	5-57
Page change (PAGE n)	5-57
Parallel connection (OR, ORI)	5-2
Parallel connections (ORB)	5-10
PCHK (Program low speed execution	registeration
instruction)	7-384
PLF (Trailing edge output)	5-37
PLOADP (Load program from Memory C	ard) 7-440

PLOW (Program low speed execution registrat	ion)
	7-382
PLS (Leading edge output)	5-37
PLSY (Fixed cycle pulse output)	. 6-162
POFF (Program output OFF standby instructio	n)
	. 7-378
Pointer branching instruction (CJ, SCJ, JMP)	. 6-129
Pop (MPP)	5-12
PR (Print ASCII code instruction)	. 7-166
PRC (Print comment instruction)	. 7-169
Print ASCII code instruction (PR)	. 7-166
Print comment instruction (PRC)	. 7-169
Program branch instruction table	2-27
Program control instructions	2-56
Program execution control instruction table	2-27
Program low speed exection registration inst	truction
(PCHK)	7-384
Program low speed execution registration (PI (
	7_382
Program output OFF standby instruction (POF	E)
	' <i>)</i> 7_378
Program scan execution registration inst	truction
(FSCAN)	7 277
Program standby instruction (PSTOP)	trotion
PSCAN (Program scan execution regis	
Instruction)	. 7-380
PSTOP (Program standby instruction)	. 1-3//
PSWAPP (Load + Unioad)	. 7-445
	F 40
	5-42
	5-18
	5-17
Pulse conversion of direct output (DELTA)	5-42
Pulse density measurement (SPD)	. 6-160
Pulse NOT operation start, pulse NOT	series
connection, pulse NOT parallel connection LDP	'I,LDFI,
ANDPI,ANDFI,ORPI,ORFI)	5-7
Pulse operation results	
Operation result conversions (MEF, MEP)	5-17
Pulse conversions of edge relay operation	results
(EGF, EGP)	5-18
Pulse operation start (LDF, LDP)	5-5,5-7
Pulse parallel connection (ORF, ORP)	5-5,5-7
Pulse series connection (ANDF, ANDP)	5-5
Pulse width modulation (PWM)	6-164
PUNLOADP (Unload program from program m	emory)
	7-443
Push (MPS)	5-12
PWM (Pulse width modulation)	. 6-164
[Q]	
OCDSET (File setting for comments)	7-310
OCPU dedicated instructions	2 60
ODDSET(Setting files for file register use)	7 220
	. 1-008

[R]

RAD (Conversion	from	floating-point	angle	to	radian
(Single precision))					. 7-275

RADD (Conversion from floating-point angle to radian Random number generation (RND/SRND).......7-304 Random selection from and replacement in character Random selection replacement in character strings RBMOV (High-speed block transfer of file register) RCR (Right rotation of 16-bit data) 7-35 Read data from standard ROM (S.DEVLD)...... 7-438 Reading 1-word data from intelligent function modules Reading 2-word data from intelligent function modules (DFRO)......7-160 Reading clock data (DATERD)......7-344 Reading data from designated file (SP.FREAD) 7-424 Reading device comment data (COMRD) 7-201 Reading expansion clock data (S.DATERD) 7-366 Reading from other CPU shared memory (FROM) Reading module information (UNIRD)......7-402 Reading newest data from data tables (FPOP) Reading oldest data from data tables (FIFR) 7-153 Reading routing information (RTREAD) 8-6 Real number data 3-8 Recovery from interrupt programs (IRET) 6-139 Related programming manuals 1-2 Resetting devices (RST)...... 5-32,5-35 Resetting the annunciators (RST F) 5-35 Resetting the master control (MCR) 5-47 Resetting watchdog timer (WDT) 7-386 Revercing Bit device output reverse (FF).....5-40 Floating-point sign invertion (Double precision) Floating-point sign invertion (Single precision) Operation results inversion (INV)...... 5-15 RFS (I/O refresh) 6-141 RIGHT (Extracting character string data from the right) Right rotation of 16-bit data (ROR, RCR) 7-35 Right rotation of 32-bit data (DROR, DRCL)...... 7-41 RND (Random number generation and series update) ROL (Left rotation of 16-bit data)......7-38 ROR (Right rotation of 16-bit data)......7-35 Rotary table shortest direction control (ROTC)

ROTC (Rotary table shortest direction control)

Resetting devices (RST)	5-32
Resetting the annunciators (RST F)	5-35
RTREAD (Reading routing information)	8-6
RTWRITE (Writing routing information)	8-8

[S]

S.DATE- (Expansion clock data subtraction or	peration)
S.DATE+ (Expansion clock data addition ope	7-300 ration)
S DATERD (Reading expansion cleak data)	7-300
S.DATERD (Reading expansion clock data)	7-300
S.DEVLD (Redu udia IIOIII Statiuaru ROW)	/ -430
S. IO (while to host CPU shared memory)	
Scaling (Point-by-point coordinate data) (SCL(P),
DSCL(P))	7-330
Scaling (Point-by-point coordinate data) (S	SCL2(P),
DSCL2(P))	7-334
SCJ (Pointer branching instruction)	6-129
SCL(P)	7-330
SCL2	7-334
SECOND (Time data conversion)	7-352
SEG (7-segment decode)	7-75
Sequence instructions	2-6
Sequence program stop (STOP)	5-55
SER (16-bit data searches)	7-66
Series connection (AND ANI)	5-2
Series connections (ANB)	5-10
SET	
Setting devices (SET)	5 30
Setting the annunciators (SET E)	5-30 5 35
Setting devices (SET)	20 5 25
Setting files for file register use (ODDSET)	-30,0-30
Setting the ensurasisters (SET E)	1-339
Setting the month of the control (MO)	5-35
Setting the master control (MC)	5-47
SFL (n-bit shift to left of 16-bit data)	/-46
SFR (n-bit shift to right of 16-bit data)	7-46
SFT (Bit device shifts)	5-44
SFTBL(P)	7-52
SFTBR(P)	7-51
SFTWL(P)	7-57
SFTWR(P)	7-56
Shift instruction5	-44,7-46
(Application instructions)	2-29
Shift instruction table	
(Sequence instructions)	2-6
SIN (SIN operation on floating-point data	(Single
precision))	7-250
SIN operation on floating-point data	(Double
precision) (SIND)	
SIN operation on floating-point data (Single p	recision)
(SIN)	7-250
SIN ⁻¹ operation on floating-point data	(Double
precision) (ASIND)	7-265
SIN ⁻¹ operation on floating-point data	(Sinale
nrecision) (ASIN)	7,262
	1-202

SIND (SIN operation on floating-point data (Double Single precision to Double precision conversion SORT (BIN 16-bit data sort) 7-95 SP.CONTSW (System switching instruction) 11-2 SP.DEVST (Writing data to standard ROM)...... 7-436 SP.FREAD (Reading data from designated file) SP.FWRITE (Writing data to designated file) 7-413 SPD (Pulse density measurement) 6-160 Special format failure checks (CHKST, CHK) ... 7-175 Special function instructions 2-46 Special timer (STMR) 6-151 SQR (Square root operation for floating-point data SQRD (Square root operation for floating-point data Square root operation for floating-point data (Double Square root operation for floating-point data (Single SRND (Random number generation and series STMR (Special function timer)...... 6-151 STOP (Sequence program stop) 5-55 STR (Conversion from BIN 16-bit to character string) Structure creation instructions 2-38 Subrotine program calls (CALL) 7-110 Subroutine calls (XCALL) 7-129 Subroutine calls between program files (ECALL) Subroutine program output OFF calls (FCALL) Subset processing 3-25 Subtraction BCD 4-digit subtraction (B-)..... 6-34 BCD 8-digit subtraction (DB-) 6-38 BIN 16-bit subtraction operations (-) 6-22 BIN 32-bit subtraction operations (D-) 6-26 Block subtraction (BK-) 6-59,6-62 Subtraction of floating decimal point data (Double Subtraction of floating decimal point data (Single precision) (E-) 6-46,6-48 SUM (16-bit data checks)......7-69 SWAP (Upper and lower byte exchanges) 6-128 Switching file register numbers (RSET)...... 7-337 System Switching (SP.CONTSW) 11-2

[T]

TAN ⁻¹ operation on floating-point data	(Double
precision)(ATAND)	7-273
TAN ⁻¹ operation on floating-point data	(Single
precision)(ATAN)	7-271
TAND (TAN operation on floating-point data	(Double
precision))	7-260
Teaching timer (TTMR)	6-149
Termination instruction table	2-9
TEST (Bit tests)	7-61
TIMCHK (Time check instruction)	7-390
Time check instruction (TIMCHK)	7-390
Time data conversion (HOUR)7-354,7-3	56,7-361
Time data conversion (SECOND)	7-352
Timer (OUT T)	5-22
Timing pulse generation (DUTY)	7-388
TO (Writing 1-word data to intelligent	function
modules)	7-163
TRACE (Trace set)	7-411
TRACER (Trace reset)	7-411
TTMR (Teaching timer)	6-149
Types of Instructions	2-2

[U]

UDCNT1 (Counter 1-phase input up or down) 6-143
UDCNT2 (Counter 2-phase input up or down) 6-146
UNI (4-bit linking of 16-bit data)7-79
UNIRD (Reading module information)
Unload program from program memory (PUNLOADP)
Up / Down counter
Count 1-phase input or dawn (UDCNT1) 6-143
Count 2-phase input or down (UDCNT2) 6-146
Upper and lower byte exchanges (SWAP) 6-128
Upper and lower limit controls for BIN 32-bit (DLIMIT)

[V]

VAL	(Conversion	from	character	string to	BIN	16-bit)
						7-212

[W]

S.TO	. 9-4
то	. 9-7
WSUM (Calculation of totals for 16-bit data)	7-99
WTOB (Data dissociation in byte units)	7-85
WXNR (16-bit data exclusive NOR operation)	7-27
WXNR (16-bit data non-exclusive logical	sum
operations)	7-30
WXOR (16-bit exclusive OR operations) 7-19,	7-22

[X]

XCALL (Subroutine program call)	7-129
XCH (32-bit data exchange)	6-124

[Z]

ZCOM (Network refresh instruction)	2
ZONE (Zone control for BIN 16-bit)	
	1
Zone control for BIN 16-bit (ZONE)	
	1
Zone control for BIN 32-bit data (DZONE)	
	1
ZPOP (Batch recovery of index register))
ZPUSH (Batch save of index register) 7-400)
ZRRDB (Direct 1-byte read from file register) 7-391	I
ZRWRB (File register direct 1-byte write)	3

Warrantv

Please confirm the following product warranty details before using this product.

1. Gratis Warranty Term and Gratis Warranty Range

If any faults or defects (hereinafter "Failure") found to be the responsibility of Mitsubishi occurs during use of the product within the gratis warranty term, the product shall be repaired at no cost via the sales representative or Mitsubishi Service Company.

However, if repairs are required onsite at domestic or overseas location, expenses to send an engineer will be solely at the customer's discretion. Mitsubishi shall not be held responsible for any re-commissioning, maintenance, or testing on-site that involves replacement of the failed module. [Gratis Warranty Term]

The gratis warranty term of the product shall be for one year after the date of purchase or delivery to a designated place.

Note that after manufacture and shipment from Mitsubishi, the maximum distribution period shall be six (6) months, and the longest gratis warranty term after manufacturing shall be eighteen (18) months. The gratis warranty term of repair parts shall not exceed the gratis warranty term before repairs.

- [Gratis Warranty Range]
- (1) The range shall be limited to normal use within the usage state, usage methods and usage environment, etc., which follow the conditions and precautions, etc., given in the instruction manual, user's manual and caution labels on the product.
- (2) Even within the gratis warranty term, repairs shall be charged for in the following cases.
 - 1. Failure occurring from inappropriate storage or handling, carelessness or negligence by the user. Failure caused by the user's hardware or software design.
 - 2. Failure caused by unapproved modifications, etc., to the product by the user.
 - 3. When the Mitsubishi product is assembled into a user's device, Failure that could have been avoided if functions or structures, judged as necessary in the legal safety measures the user's device is subject to or as necessary by industry standards, had been provided.
 - 4. Failure that could have been avoided if consumable parts (battery, backlight, fuse, etc.) designated in the instruction manual had been correctly serviced or replaced.
 - 5. Failure caused by external irresistible forces such as fires or abnormal voltages, and Failure caused by force majeure such as earthquakes, lightning, wind and water damage.
 - 6. Failure caused by reasons unpredictable by scientific technology standards at time of shipment from Mitsubishi.
- 7. Any other failure found not to be the responsibility of Mitsubishi or that admitted not to be so by the user.

2. Onerous repair term after discontinuation of production

- (1) Mitsubishi shall accept onerous product repairs for seven (7) years after production of the product is discontinued.
 - Discontinuation of production shall be notified with Mitsubishi Technical Bulletins, etc.

(2) Product supply (including repair parts) is not available after production is discontinued.

3. Overseas service

Overseas, repairs shall be accepted by Mitsubishi's local overseas FA Center. Note that the repair conditions at each FA Center may differ.

4. Exclusion of loss in opportunity and secondary loss from warranty liability

Regardless of the gratis warranty term, Mitsubishi shall not be liable for compensation of damages caused by any cause found not to be the responsibility of Mitsubishi, loss in opportunity, lost profits incurred to the user by Failures of Mitsubishi products, special damages and secondary damages whether foreseeable or not, compensation for accidents, and compensation for damages to products other than Mitsubishi products, replacement by the user, maintenance of on-site equipment, start-up test run and other tasks.

5. Changes in product specifications

The specifications given in the catalogs, manuals or technical documents are subject to change without prior notice. 6. Product application

- (1) In using the Mitsubishi MELSEC programmable controller, the usage conditions shall be that the application will not lead to a major accident even if any problem or fault should occur in the programmable controller device, and that backup and fail-safe functions are systematically provided outside of the device for any problem or fault.
- (2) The Mitsubishi programmable controller has been designed and manufactured for applications in general industries, etc. Thus, applications in which the public could be affected such as in nuclear power plants and other power plants operated by respective power companies, and applications in which a special quality assurance system is required, such as for Railway companies or Public service purposes shall be excluded from the programmable controller applications.

In addition, applications in which human life or property that could be greatly affected, such as in aircraft, medical applications, incineration and fuel devices, manned transportation, equipment for recreation and amusement, and safety devices, shall also be excluded from the programmable controller range of applications.

However, in certain cases, some applications may be possible, providing the user consults their local Mitsubishi representative outlining the special requirements of the project, and providing that all parties concerned agree to the special circumstances, solely at the users discretion.

Microsoft, Windows, Windows NT are registered trademarks of Microsoft Corporation in the United States and other countries.

Pentium and Celeron are trademarks of Intel Corporation in the United States and other countries.

Ethernet is a trademark of Xerox Co., Ltd. in the United States.

CompactFlash is a trademark of SanDisk Corporation.

VxWorks, Tornado, WindPower, WindSh and WindView are registered trademarks of Wind River Systems, Inc.

Other company names and product names used in this document are trademarks or registered trademarks of respective owners.

QCPU Programming Manual

Common Instruction 1/2

QCPU-P-KY-E

MODEL

MODEL CODE

13JW10

SH(NA)-080809ENG(1/2)-C(0907)KWIX

MITSUBISHI ELECTRIC CORPORATION

HEAD OFFICE : TOKYO BUILDING, 2-7-3 MARUNOUCHI, CHIYODA-KU, TOKYO 100-8310, JAPAN NAGOYA WORKS : 1-14 , YADA-MINAMI 5-CHOME , HIGASHI-KU, NAGOYA , JAPAN

When exported from Japan, this manual does not require application to the Ministry of Economy, Trade and Industry for service transaction permission.

Mitsubishi Programmable Controller

QCPU Programming Manual Common Instruction 2/2

(Always read these cautions before using the product)

Before using this product, please read this manual and the related manuals introduced in this manual, and pay full attention to safety to handle the product correctly.

Please store this manual in a safe place and make it accessible when required. Always forward a copy of the manual to the end user.

REVISIONS

*The manual number is given on the bottom left of the back cover.

Print Date	*Manual Number	Revision
Dec., 2008	SH (NA)-080809ENG-A	First edition
Mar., 2009	SH (NA)-080809ENG-B	Partial corrections Section 3.3, 3.8, 5.1.3, 6.1.7, 6.2.14, 7.3.3, 7.11.18, 7.11.19, 7.12.1.5,12.7, 7.12.11, 7.12.25, 7.12.26, 7.13.4, 7.13.5, 7.15.7, 7.15.8
Jul., 2009	SH (NA)-080809ENG-C	$ \begin{array}{l} \textbf{(12,26), (13,4, 1.13,5), (15,1, 7.15,6)} \\ \textbf{Revision because of function support by the Universal model QCPU having a serial number "11043" or later \\ \hline Partial corrections \\ \hline \textbf{Section 2.1, 2.5, 6, 2.5, 18, 2.5, 20, 7, 6, 9, 7, 12, 7, 7, 12, 11, 12, 1.3, 12, 1.4, APPENDIX 1.2, 1.3, 1.4, 2, 3, 5, 1 \\ \hline \textbf{Additions} \\ \hline \textbf{Section 2.5, 16, 7, 16, 7, 18, 10} \\ \hline \textbf{Modification} \\ \hline \textbf{Section 2.5, 21 } \rightarrow 2.5, 22, \text{ Section 2.5, 22 } \rightarrow 2.5, 21, \text{ Section 9, 13 } \rightarrow 7, 6, 10, \\ \hline \textbf{Section 9, 14 } \rightarrow 7, 6, 1, \text{ Section 9, 15 } \rightarrow 7, 16, \text{ Section 9, 15, 1 } \rightarrow 7, 16, 15, \\ \hline \textbf{Section 9, 15, 3 } \rightarrow 7, 16, 3, \text{ Section 9, 15 } \rightarrow 7, 18, 15, \\ \hline \textbf{Section 9, 15, 3 } \rightarrow 7, 18, 3, \text{ Section 9, 10 } \rightarrow 7, 18, 15, \\ \hline \textbf{Section 9, 15, 3 } \rightarrow 7, 18, 13, \\ \hline \textbf{Section 9, 10 } \rightarrow 7, 18, 18, \\ \hline \textbf{Section 9, 10 } \rightarrow 7, 18, 18, \\ \hline \textbf{Section 9, 11 } \rightarrow 9, 1, \\ \hline \textbf{Section 9, 11, 1 } \rightarrow 9, 1, 1, \\ \hline \textbf{Section 9, 11, 2 } \rightarrow 9, 1, 2, \\ \hline \textbf{Section 9, 11, 3 } \rightarrow 9, 1, 2 \\ \hline \textbf{Section 9, 11 } \rightarrow 9, 1, \\ \hline \textbf{Chapter 10 } \rightarrow 11, \\ \hline \textbf{Chapter 10 } \rightarrow 11, \\ \hline \textbf{Chapter 11 } \rightarrow 10 \\ \hline \textbf{Section 9, 11, 1 } \rightarrow 10 \\ \hline Section $

Japanese Manual Version SH-080804-B

This manual confers no industrial property rights or any rights of any other kind, nor does it confer any patent licenses. Mitsubishi Electric Corporation cannot be held responsible for any problems involving industrial property rights which may occur as a result of using the contents noted in this manual.

© 2008 MITSUBISHI ELECTRIC CORPORATION

INTRODUCTION

This manual explains the common instructions required for programming of the QCPU.

 The common instructions refer to all instructions except those dedicated to special function modules (such as AJ71QC24 and AJ71PT32-S3) and to AD57 models, as well as PID control instructions, SFC instructions and ST instructions.

Before using this product, please read this manual and the relevant manuals carefully and develop familiarity with the functions and performance of the Q series programmable controller to handle the product correctly.

■ Relevant CPU module

CPU module	Model
Basic model QCPU	Q00JCPU, Q00CPU, Q01CPU
High Perfomance model QCPU	Q02CPU, Q02HCPU, Q06HCPU, Q12HCPU, Q25HCPU
Process CPU	Q02PHCPU, Q06PHCPU, Q12PHCPU, Q25PHCPU
Redundant CPU	Q12PRHCPU, Q25PRHCPU
	Q00UJCPU, Q00UCPU, Q01UCPU, Q02UCPU, Q03UDCPU,
	Q04UDHCPU, Q06UDHCPU, Q10UDHCPU, Q13UDHCPU,
Universal model QCPU	Q20UDHCPU, Q26UDHCPU, Q03UDECPU, Q04UDEHCPU,
	Q06UDEHCPU, Q10UDEHCPU, Q13UDEHCPU,
	Q20UDEHCPU

CONTENTS

SAFETY PRECAUTIONS	۹ - 1
REVISIONS	۹-2
INTRODUCTION	۹ - 3
CONTENTS	۹ - 4
MANUALS	- 14

Common Instructions 1/2

1. GENE	RAL DESCRIPTION	1 - 1 to 1 - 8
1.1 Re	elated Programming Manuals	1 - 2
1.2 At	breviations and Generic Names	1 - 5
2. INSTI	RUCTION TABLES	2 - 1 to 2 - 62
2.1 Ty	pes of Instructions	2 - 2
2.2 Ho	w to Read Instruction Tables	2 - 4
2.3 Se	quence Instructions	2 - 6
2.3.1	Contact instructions	2 - 6
2.3.2	Association instructions	2 - 7
2.3.3	Output instructions	2 - 8
2.3.4	Shift instructions	2 - 8
2.3.5	Master control instructions	
2.3.6	Termination instructions	
2.3.7	Other instructions	2 - 9
2.4 Ba	sic instructions	2 - 10
2.4.1	Comparison operation instructions	2 - 10
2.4.2	Arithmetic operation instructions	2 - 16
2.4.3	Data conversion instructions	2 - 22
2.4.4	Data transfer instructions	2 - 24
2.4.5	Program branch instructions	2 - 27
2.4.6	Program execution control instructions	2 - 27
2.4.7	I/O refresh instructions	2 - 27
2.4.8	Other convenient instructions	2 - 28
2.5 Ap	plication Instructions	2 - 29
2.5.1	Logical operation instructions	2 - 29
2.5.2	Rotation instructions	2 - 32
2.5.3	Shift instructions	2 - 33
2.5.4	Bit processing instructions	2 - 34
2.5.5	Data processing instructions	2 - 35
2.5.6	Structure creation instructions	2 - 38
2.5.7	Data table operation instructions	2 - 40
2.5.8	Buffer memory access instructions	2 - 41
2.5.9	Display instructions	2 - 41
2.5.10	Debugging and failure diagnosis instructions	2 - 42

2.5.11	Character string processing instructions	2 - 43
2.5.12	Special function instructions	
2.5.13	Data control instructions	2 - 49
2.5.14	Switching instructions	
2.5.15	Clock instructions	2 - 52
2.5.16	Expansion clock instruction	2 - 55
2.5.17	Program control instructions	
2.5.18	Other instructions	2 - 57
2.5.19	Instructions for Data Link	2 - 59
2.5.20	Multiple CPU dedicated instruction	2 - 60
2.5.21	Multiple CPU high-speed transmission dedicated instruction	2 - 60
2.5.22	Redundant system instructions (For Redundant CPU)	2 - 61

3. CONFIGURATION OF INSTRUCTIONS

3 - 1 to 3 - 48

3.1	Configuration of Instructions	3 - 2
3.2	Designating Data	3 - 3
3.2	1 Using bit data	3 - 3
3.2	2 Using word (16 bits) data	3 - 4
3.2	3 Using double word data (32 bits)	3 - 6
3.2	4 Using real number data	3 - 8
3.2	5 Using character string data	3 - 11
3.3	Indexing	3 - 12
3.4	Indirect Specification	3 - 23
3.5	Reducing Instruction Processing Time	3 - 25
3.5	1 Subset Processing	3 - 25
3.5	2 Operation processing with standard device registers (Z)	
	(only Universal model QCPU)	3 - 26
3.6	Cautions on Programming (Operation Errors)	3 - 27
3.7	Conditions for Execution of Instructions	3 - 33
3.8	Counting Step Number	3 - 34
3.9	Operation when the OUT, SET/RST, or PLS/PLF Instructions Use the Same Device	ə 3 - 39
3.10	Precautions for Use of File Registers	3 - 44

4. HOW TO READ INSTRUCTIONS

4 - 1 to 4 - 4

5 - 1 to 5 - 60

5.1 C	ontact Instructions	5 - 2
5.1.1	Operation start, series connection, parallel connection (LD,LDI,AND,ANI,	OR,ORI)5 - 2
5.1.2	Pulse operation start, pulse series connection, pulse parallel connection	
	(LDP,LDF,ANDP,ANDF,ORP,ORF)	5 - 5
5.1.3	Pulse NOT operation start, pulse NOT series connection, pulse NOT para	allel connection
	(LDPI,LDFI,ANDPI,ANDFI,ORPI,ORFI)	
5.2 A	ssociation Instructions	5 - 10
5.2.1	Ladder block series connection and parallel connection (ANB,ORB)	5 - 10
5.2.2	Operation results push,read,pop (MPS,MRD,MPP)	

5.2.3	Operation results inversion (INV)	5 - 15
5.2.4	Operation result conversions (MEP,MEF)	5 - 17
5.2.5	Pulse conversions of edge relay operation results (EGP,EGF)	
5.3 Ou	utput Instructions	5 - 20
5.3.1	Out instruction (excluding timers, counters, and annunciators) (OUT)	
5.3.2	Timers (OUT T,OUTH T)	
5.3.3	Counter (OUT C)	
5.3.4	Annunciator output (OUT F)	
5.3.5	Setting devices (except for annunciators) (SET)	
5.3.6	Resetting devices (except for annunciators) (RST)	
5.3.7	Setting and resetting the annunciators (SET F,RST F)	
5.3.8	Leading edge and trailing edge outputs (PLS,PLF)	
5.3.9	Bit device output reverse (FF)	
5.3.10	Pulse conversions of direct outputs (DELTA(P))	5 - 42
5.4 Sh	nift Instructions	5 - 44
5.4.1	Bit device shifts (SFT(P))	
5.5 Ma	aster Control Instructions	5 - 47
5.5.1	Setting and resetting the master control (MC,MCR)	5 - 47
5.6 Te	ermination Instructions	5 - 51
5.6.1	End main routine program (FEND)	5 - 51
5.6.2	End sequence program (END)	5 - 53
5.7 Ot	her instructions	5 - 55
5.7.1	Sequence program stop (STOP)	
5.7.2	No operations (NOP,NOPLF,PAGE n)	
5.7.2 6. BASI	No operations (NOP,NOPLF,PAGE n)	6 - 1 to 6 - 168
5.7.2 6. BASIC 6.1 Cc	No operations (NOP,NOPLF,PAGE n) C INSTRUCTIONS omparison Operation Instructions	6 - 1 to 6 - 168 6 - 2
5.7.2 6. BASIC <u>6.1 Cc</u> 6.1.1	No operations (NOP,NOPLF,PAGE n) C INSTRUCTIONS omparison Operation Instructions BIN 16-bit data comparisons (=.<>.>.<=.<.>=)	6 - 1 to 6 - 168 6 - 2 6 - 2
5.7.2 6. BASIC <u>6.1 Co</u> 6.1.1 6.1.2	No operations (NOP,NOPLF,PAGE n) C INSTRUCTIONS omparison Operation Instructions BIN 16-bit data comparisons (=,<>,>,<=,<,>=) BIN 32-bit data comparisons (D=,D<>,D>,D<=,D<,D>=)	6 - 1 to 6 - 168 6 - 2
5.7.2 6. BASIC 6.1 Co 6.1.1 6.1.2 6.1.3	No operations (NOP,NOPLF,PAGE n) C INSTRUCTIONS omparison Operation Instructions BIN 16-bit data comparisons (=,<>,>,<=,<,>=) BIN 32-bit data comparisons (D=,D<>,D>,D<=,D<,D>=) Floating decimal point data comparisons (Single precision)	6 - 1 to 6 - 168 6 - 2
5.7.2 6. BASIC <u>6.1 Cc</u> 6.1.1 6.1.2 6.1.3	No operations (NOP,NOPLF,PAGE n) C INSTRUCTIONS omparison Operation Instructions BIN 16-bit data comparisons (=,<>,>,<=,<,>=) BIN 32-bit data comparisons (D=,D<>,D>,D<=,D<,D>=) Floating decimal point data comparisons (Single precision) (E=,E<>,E>,E<=,E<,E>=)	6 - 1 to 6 - 168 6 - 2
5.7.2 6. BASIC <u>6.1 Co</u> 6.1.1 6.1.2 6.1.3 6.1.4	No operations (NOP,NOPLF,PAGE n) C INSTRUCTIONS omparison Operation Instructions BIN 16-bit data comparisons (=,<>,>,<=,<,>=) BIN 32-bit data comparisons (D=,D<>,D>,D<=,D<,D>=) Floating decimal point data comparisons (Single precision) (E=,E<>,E>,E<=,E<,E>=) Floating decimal point data comparisons (Double precision)	6 - 1 to 6 - 168 6 - 2
5.7.2 6. BASIC 6.1 Cc 6.1.1 6.1.2 6.1.3 6.1.4	No operations (NOP,NOPLF,PAGE n) C INSTRUCTIONS pmparison Operation Instructions BIN 16-bit data comparisons (=,<>,>,<=,<,>=) BIN 32-bit data comparisons (D=,D<>,D>,D<=,D<,D>=) Floating decimal point data comparisons (Single precision) (E=,E<>,E>,E<=,E<,E>=) Floating decimal point data comparisons (Double precision) (ED=,ED<>,ED>,ED<=,ED<=,ED>=)	6 - 1 to 6 - 168 6 - 2 6 - 2 6 - 2 6 - 4 6 - 4 6 - 6 6 - 6
5.7.2 6. BASIC <u>6.1 Cc</u> 6.1.1 6.1.2 6.1.3 6.1.4 6.1.5	No operations (NOP,NOPLF,PAGE n) C INSTRUCTIONS omparison Operation Instructions BIN 16-bit data comparisons (=,<>,>,<=,<,>=) BIN 32-bit data comparisons (D=,D<>,D>,D<=,D<,D>=) Floating decimal point data comparisons (Single precision) (E=,E<>,E>,E<=,E<,E>=) Floating decimal point data comparisons (Double precision) (ED=,ED<>,ED>,ED<=,ED<,ED>=) Character string data comparisons (\$=,\$<>,\$>,\$<=,\$<,\$>=)	6 - 1 to 6 - 168 6 - 2
5.7.2 6. BASIC <u>6.1 Cc</u> 6.1.1 6.1.2 6.1.3 6.1.4 6.1.5 6.1.6	No operations (NOP,NOPLF,PAGE n) C INSTRUCTIONS omparison Operation Instructions BIN 16-bit data comparisons (=,<>,>,<=,<,>=) BIN 32-bit data comparisons (D=,D<>,D>,D<=,D<,D>=) Floating decimal point data comparisons (Single precision) (E=,E<>,E>,E<=,E<,E>=) Floating decimal point data comparisons (Double precision) (ED=,ED<>,ED>,ED<=,ED<,ED>=) Character string data comparisons (\$=,\$<>,\$>,\$<=,\$<,\$>=) BIN block data comparisons (BKCMP □ ,BKCMP □ P)	6 - 1 to 6 - 168 6 - 2 6 - 2 6 - 2 6 - 2 6 - 4 6 - 4 6 - 6 6 - 6 6 - 8 6 - 11 6 - 15
5.7.2 6. BASIC <u>6.1 Cc</u> 6.1.1 6.1.2 6.1.3 6.1.4 6.1.5 6.1.6 6.1.7	No operations (NOP,NOPLF,PAGE n) C INSTRUCTIONS Demparison Operation Instructions BIN 16-bit data comparisons (=,<>,>,<=,<,>=) BIN 32-bit data comparisons (D=,D<>,D>,D<=,D<,D>=) Floating decimal point data comparisons (Single precision) (E=,E<>,E>,E<=,E<,E>=) Floating decimal point data comparisons (Double precision) (ED=,ED<>,ED>,ED<=,ED<,ED>=) Character string data comparisons (\$=,\$<>,\$>,\$<=,\$<,\$>=) BIN block data comparisons (BKCMP [],BKCMP [] P) BIN 32-bit block data comparisons (DBKCMP [],DBKCMP [] P)	6 - 1 to 6 - 168 6 - 2 6 - 2 6 - 2 6 - 2 6 - 4 6 - 4 6 - 6 6 - 6 6 - 8 6 - 11 6 - 15 6 - 18
5.7.2 6. BASIC <u>6.1 Cc</u> 6.1.1 6.1.2 6.1.3 6.1.4 6.1.5 6.1.6 6.1.7 6.2 Ar	No operations (NOP,NOPLF,PAGE n) C INSTRUCTIONS pmparison Operation Instructions BIN 16-bit data comparisons (=,<>,>,<=,<,>=)	6 - 1 to 6 - 168 $6 - 2$ $6 - 2$ $6 - 2$ $6 - 4$ $6 - 6$ $6 - 6$ $6 - 8$ $6 - 11$ $6 - 15$ $6 - 18$ $6 - 22$
5.7.2 6. BASIC <u>6.1 Cc</u> 6.1.1 6.1.2 6.1.3 6.1.4 6.1.5 6.1.6 6.1.7 <u>6.2 Ar</u> 6.2.1	No operations (NOP,NOPLF,PAGE n) C INSTRUCTIONS omparison Operation Instructions BIN 16-bit data comparisons (=,<>,>,<=,<,>=) BIN 32-bit data comparisons (D=,D<>,D>,D<=,D<,D>=) Floating decimal point data comparisons (Single precision) (E=,E<>,E>,E<=,E<,E>=) Floating decimal point data comparisons (Double precision) (ED=,ED<>,ED>,ED<=,ED<,ED>=) Character string data comparisons (\$=,\$<>,\$>,\$<=,\$<,\$>=) BIN block data comparisons (BKCMP [],BKCMP [] P) BIN 32-bit block data comparisons (DBKCMP [],DBKCMP [] P) BIN 16-bit addition and subtraction operations (+(P),-(P))	6 - 1 to 6 - 168 $6 - 2$ $6 - 2$ $6 - 2$ $6 - 4$ $6 - 6$ $6 - 8$ $6 - 11$ $6 - 15$ $6 - 18$ $6 - 22$ $6 - 22$
5.7.2 6. BASIC <u>6.1 Cc</u> 6.1.1 6.1.2 6.1.3 6.1.4 6.1.5 6.1.6 6.1.7 <u>6.2 Ar</u> 6.2.1 6.2.2	No operations (NOP,NOPLF,PAGE n) C INSTRUCTIONS pmparison Operation Instructions BIN 16-bit data comparisons (=,<>,>,<=,<,>=) BIN 32-bit data comparisons (D=,D<>,D>,D<=,D<,D>=) Floating decimal point data comparisons (Single precision) (E=,E<>,E>,E<=,E<,E>=) Floating decimal point data comparisons (Double precision) (ED=,ED<>,ED>,ED<=,ED<,ED>=) Character string data comparisons (\$=,\$<>,\$>,\$<=,\$<,\$>=) BIN block data comparisons (BKCMP [],BKCMP [] P) BIN 32-bit block data comparisons (DBKCMP [],DBKCMP [] P) BIN 16-bit addition and subtraction operations (+(P),-(P)) BIN 32-bit addition and subtraction operations (D+(P),D-(P))	6 - 1 to 6 - 168 $6 - 2$ $6 - 2$ $6 - 2$ $6 - 4$ $6 - 6$ $6 - 6$ $6 - 8$ $6 - 11$ $6 - 15$ $6 - 18$ $6 - 22$ $6 - 22$ $6 - 26$
5.7.2 6. BASIC 6.1 CC 6.1.1 6.1.2 6.1.3 6.1.4 6.1.5 6.1.6 6.1.7 6.2 Ar 6.2.1 6.2.2 6.2.3	No operations (NOP,NOPLF,PAGE n)	6 - 1 to 6 - 168 $6 - 2$ $6 - 2$ $6 - 2$ $6 - 4$ $6 - 6$ $6 - 8$ $6 - 11$ $6 - 15$ $6 - 18$ $6 - 22$ $6 - 22$ $6 - 26$ $6 - 30$
5.7.2 6. BASIC <u>6.1 Co</u> 6.1.1 6.1.2 6.1.3 6.1.4 6.1.5 6.1.6 6.1.7 <u>6.2 Ar</u> 6.2.1 6.2.2 6.2.3 6.2.4	No operations (NOP,NOPLF,PAGE n)	6 - 1 to 6 - 168 $6 - 2$ $6 - 2$ $6 - 2$ $6 - 2$ $6 - 4$ $6 - 6$ $6 - 6$ $6 - 11$ $6 - 15$ $6 - 15$ $6 - 18$ $6 - 22$ $6 - 22$ $6 - 26$ $6 - 30$ $6 - 32$
5.7.2 6. BASIC <u>6.1 Cc</u> 6.1.1 6.1.2 6.1.3 6.1.4 6.1.5 6.1.6 6.1.7 <u>6.2 Ar</u> 6.2.1 6.2.3 6.2.4 6.2.5	No operations (NOP,NOPLF,PAGE n) C INSTRUCTIONS omparison Operation Instructions BIN 16-bit data comparisons (=,<>,>,<=,<,>=) BIN 32-bit data comparisons (D=,D<>,D>,D<=,D<,D>=) Floating decimal point data comparisons (Single precision) (E=,E<>,E>,E<=,E<,E>=) Floating decimal point data comparisons (Double precision) (E=,E<>,E>,E<=,E<,E>=) Floating decimal point data comparisons (Double precision) (ED=,ED<>,ED>,ED<=,ED<,ED>=) Character string data comparisons (\$=,\$<>,\$>,\$<,\$<,\$>=,\$<,\$>=) BIN block data comparisons (BKCMP □ ,BKCMP □ P) BIN 32-bit block data comparisons (DBKCMP □ ,DBKCMP □ P) BIN 16-bit addition and subtraction operations (+(P),-(P)) BIN 32-bit addition and subtraction operations (D*(P),D-(P)) BIN 16-bit multiplication and division operations (*(P),/(P)) BIN 32-bit multiplication and division operations (D*(P),D/(P)) BIN 32-bit multiplication and division operations (D*(P),D/(P))	6 - 1 to 6 - 168 $6 - 2$ $6 - 2$ $6 - 2$ $6 - 2$ $6 - 4$ $6 - 6$ $6 - 8$ $6 - 11$ $6 - 15$ $6 - 18$ $6 - 22$ $6 - 22$ $6 - 22$ $6 - 26$ $6 - 30$ $6 - 32$ $6 - 34$
5.7.2 6. BASIC 6.1 Co 6.1.1 6.1.2 6.1.3 6.1.4 6.1.5 6.1.6 6.1.7 6.2 Ar 6.2.1 6.2.2 6.2.3 6.2.4 6.2.5 6.2.6	No operations (NOP,NOPLF,PAGE n) C INSTRUCTIONS omparison Operation Instructions BIN 16-bit data comparisons (=,<>,>,<=,<>=) BIN 32-bit data comparisons (D=,D<>,D>,D<=,D<,D>=) Floating decimal point data comparisons (Single precision) (E=,E<>,E>,E<=,E<,E>=) Floating decimal point data comparisons (Double precision) (E=,E<>,E>,E<=,E<,E>=) Floating decimal point data comparisons (Double precision) (ED=,ED<>,ED>,ED<=,ED<,ED>=) Character string data comparisons (\$=,\$<>,\$>,\$<=,\$<,\$>=) BIN block data comparisons (BKCMP □, BKCMP □ P) BIN 32-bit block data comparisons (DBKCMP □, DBKCMP □ P) BIN 32-bit addition and subtraction operations (+(P),-(P)) BIN 16-bit addition and subtraction operations (D+(P),D-(P)) BIN 32-bit multiplication and division operations (*(P),/(P)) BIN 32-bit multiplication and division operations (D*(P),D/(P)) BIN 32-bit multiplication and division operations (D*(P),D/(P)) BIN 32-bit multiplication and subtraction operations (D*(P),D-(P)) BIN 32-bit multiplication and division operations (D*(P),D-(P)) BIN 32-bit multiplication and division operations (D*(P),D-(P)) BIN 32-bit multiplication and subtraction operations (D*(P),D-(P))	$\begin{array}{r} 5-57\\ \hline 6-1\ to\ 6-168\\ \hline 6-2\\ \hline6-2\\ \hline6-4\\ \hline6-4\\ \hline6-6\\ \hline6-6\\ \hline6-11\\ \hline6-15\\ \hline6-15\\ \hline6-18\\ \hline 6-22\\ \hline6-26\\ \hline6-26\\ \hline6-30\\ \hline6-32\\ \hline6-34\\ \hline6-38\\ \end{array}$
5.7.2 6. BASIC $6.1 CC 6.1.1 6.1.2 6.1.3 6.1.4 6.1.5 6.1.6 6.1.7 6.2 Ar 6.2.1 6.2.2 6.2.3 6.2.4 6.2.5 6.2.6 6.2.7$	No operations (NOP,NOPLF,PAGE n) C INSTRUCTIONS omparison Operation Instructions BIN 16-bit data comparisons (=,<>,>,<=,<,>=) BIN 32-bit data comparisons (D=,D<>,D>,D<=,D<,D>=) Floating decimal point data comparisons (Single precision) (E=,E<>,E>,E<,E>=) Floating decimal point data comparisons (Double precision) (ED=,ED<>,ED>,ED<=,ED<,ED>=) Character string data comparisons (\$=,\$<>,\$>,\$<,\$<=,\$<,\$>=) BIN block data comparisons (BKCMP □ ,BKCMP □ P) BIN 32-bit block data comparisons (DBKCMP □ ,DBKCMP □ P) BIN 32-bit addition and subtraction operations (+(P),-(P)) BIN 16-bit addition and subtraction operations (D+(P),D-(P)) BIN 32-bit multiplication and division operations (D*(P),D/(P)) BIN 32-bit multiplication and division operations (B+(P),B-(P)) BIN 32-bit multiplication and division operations (D*(P),D/(P)) BIN 32-bit multiplication and division operations (D*(P),D/(P)) BIN 32-bit multiplication and division operations (B+(P),B-(P)) BCD 4-digit addition and subtraction operations (D*(P),D-(P)) BCD 4-digit addition and subtraction operations (D*(P),D-(P))	6 - 1 to 6 - 168 $6 - 2$ $6 - 2$ $6 - 2$ $6 - 2$ $6 - 4$ $6 - 6$ $6 - 8$ $6 - 11$ $6 - 11$ $6 - 15$ $6 - 18$ $6 - 22$ $6 - 22$ $6 - 22$ $6 - 22$ $6 - 30$ $6 - 30$ $6 - 34$ $6 - 38$ $6 - 42$
5.7.2 6. BASIC <u>6.1 Cc</u> 6.1.1 6.1.2 6.1.3 6.1.4 6.1.5 6.1.6 6.1.7 <u>6.2 Ar</u> 6.2.1 6.2.3 6.2.4 6.2.5 6.2.6 6.2.7 6.2.8	No operations (NOP,NOPLF,PAGE n) C INSTRUCTIONS Demparison Operation Instructions BIN 16-bit data comparisons (=,<>,>,<=,<,>=). BIN 32-bit data comparisons (D=,D<>,D>,D<=,D<,D>=) Floating decimal point data comparisons (Single precision) (E=,E<>,E>,E<=,E<,E>=). Floating decimal point data comparisons (Double precision) (E=,E<>,E>,E<=,E<,E>=). Floating decimal point data comparisons (Double precision) (ED=,ED<>,ED>,ED<=,ED<,ED>=) Character string data comparisons (\$=,\$<>,\$>,\$<=,\$<,\$>=) BIN block data comparisons (BKCMP □ ,BKCMP □ P) BIN 32-bit block data comparisons (DBKCMP □ ,DBKCMP □ P) BIN 16-bit addition and subtraction operations (+(P),-(P)) BIN 16-bit addition and subtraction operations (P+(P),D-(P)) BIN 16-bit multiplication and division operations (D*(P),D/(P)) BIN 32-bit multiplication and division operations (B+(P),B-(P)) BCD 4-digit addition and subtraction operations (B+(P),B-(P)) BCD 4-digit addition and subtraction operations (B+(P),B-(P)) BCD 4-digit multiplication and division operations (B+(P),B-(P)) BCD 4-digit multiplication and division operations (B+(P),B-(P)) BCD 8-digit multiplication and division operations (B+(P),B-(P))	6 - 1 to 6 - 168 $6 - 2$ $6 - 2$ $6 - 2$ $6 - 2$ $6 - 4$ $6 - 6$ $6 - 8$ $6 - 11$ $6 - 15$ $6 - 18$ $6 - 22$ $6 - 22$ $6 - 22$ $6 - 26$ $6 - 30$ $6 - 32$ $6 - 34$ $6 - 38$ $6 - 42$ $6 - 44$
5.7.2 6. BASIC 6.1 Co 6.1.1 6.1.2 6.1.3 6.1.4 6.1.5 6.1.6 6.1.7 6.2 Ar 6.2.1 6.2.2 6.2.3 6.2.4 6.2.5 6.2.6 6.2.7 6.2.8 6.2.9	No operations (NOP,NOPLF,PAGE n) C INSTRUCTIONS Demparison Operation Instructions BIN 16-bit data comparisons (=,<>,>,<=,<,>=) BIN 32-bit data comparisons (D=,D<>,D>,D<=,D<,D>=) Floating decimal point data comparisons (Single precision) (E=,E<>,E>,E<=,E<,E>=) Floating decimal point data comparisons (Double precision) (ED=,ED<>,ED>,ED<=,ED<,ED>=) Character string data comparisons (\$=,\$<>,\$<,\$<=,\$<,\$>=) BIN block data comparisons (BKCMP □, BKCMP □ P) BIN 32-bit block data comparisons (DBKCMP □,DBKCMP □ P) BIN 16-bit addition and subtraction operations (+(P),-(P)) BIN 16-bit addition and subtraction operations (D+(P),D-(P)) BIN 32-bit multiplication and division operations (CP(P),D/(P)) BIN 32-bit multiplication and division operations (B+(P),B-(P)) BIN 32-bit multiplication and division operations (B+(P),B-(P)) BIN 32-bit multiplication and division operations (B+(P),B-(P)) BCD 4-digit addition and subtraction operations (B+(P),B-(P)) BCD 8-digit multiplication and division operations (B*(P),B/(P)) BCD 8-digit multiplication and division operations (B*(P),B-(P)) BCD 8-digit multiplication and division operations (B*(P),B-(P)) BCD 8-digit multiplication and division operations (DB+(P),DB-(P)) BCD 8-digit multiplication and divi	6 - 1 to 6 - 168 $6 - 2$ $6 - 2$ $6 - 2$ $6 - 2$ $6 - 4$ $6 - 6$ $6 - 8$ $6 - 11$ $6 - 15$ $6 - 15$ $6 - 18$ $6 - 22$ $6 - 22$ $6 - 22$ $6 - 22$ $6 - 30$ $6 - 32$ $6 - 34$ $6 - 34$ $6 - 38$ $6 - 42$ 1

6.2.10	Addition and subtraction of floating decimal point data (Double precision) (ED+(P),ED-(P))	6 - 50
6.2.11	Multiplication and division of floating decimal point data (Single precision) (E*(P),E/(P))	6 - 54
6.2.12	Multiplication and division of floating decimal point data (Double precision)	6 56
6213	(ED (F),ED/(F)) Block addition and subtraction (BK+(P) BK-(P))	0 - 50 6 - 50
6 2 14	BIN 32-bit data block addition and subtraction operations (DBK+(P) DBK-(P))	0 - 55 6 - 62
6 2 15	Linking character strings (\$+(P))	6 - 65
6.2.16	Incrementing and decrementing 16-bit BIN data (INC(P), DEC(P))	6 - 69
6.2.17	Incrementing and decrementing 32-bit BIN data (DINC(P),DDEC(P))	6 - 71
6.3 Da	ta conversion instructions	6 - 73
6.3.1	Conversion from BIN data to 4-digit and 8-digit BCD (BCD(P),DBCD(P))	6 - 73
6.3.2	Conversion from BCD 4-digit and 8-digit data to BIN data (BIN(P), DBIN(P))	6 - 75
6.3.3	Conversion from BIN 16 and 32-bit data to floating decimal point (Single precision (ELT(P) DELT(P))	on)
6.3.4	Conversion from BIN 16 and 32-bit data to floating decimal point (Double precis	0 - 70
	(FLTD(P),DFLTD(P))	6 - 81
6.3.5	Conversion from floating decimal point data to BIN16- and	
	32-bit data (Single precision) (INT(P),DINT(P))	6 - 83
6.3.6	Conversion from floating decimal point data to BIN16- and	
	32-bit data (Double precision) (INTD(P),DINTD(P))	6 - 86
6.3.7	Conversion from BIN 16-bit to BIN 32-bit data (DBL(P))	6 - 88
6.3.8	Conversion from BIN 32-bit to BIN 16-bit data (WORD(P))	6 - 89
6.3.9	Conversion from BIN 16 and 32-bit data to Gray code (GRY(P),DGRY(P))	6 - 90
6.3.10	Conversion of Gray code to BIN 16 and 32-bit data (GBIN(P),DGBIN(P))	6 - 92
6.3.11	Complement of 2 of BIN 16- and 32-bit data (sign reversal) (NEG(P),DNEG(P))	6 - 94
6.3.12	Floating-point sign invertion (Single precision) (ENEG(P))	6 - 96
6.3.13	Floating-point sign invertion (Double precision) (EDNEG(P))	6-97
0.3.14	Conversion from block BIN 16-bit data to block BIN 16 bit data (BKBCD(P))	0 - 98
6316	Single precision to Double precision conversion (ECON(D))	0 - 100 6 102
6317	Double precision to Single precision conversion (ECON(P))	6 - 104
6.4 Do	ta Transfor Instructions	6 106
6 / 1	16 bit and 22 bit data transform (MOV//D) DMOV/(D))	6 106
642	Floating-point data transfer (Single precision) (EMOV(P))	6 - 108
643	Floating-point data transfer (Double precision) (EMOV(P))	6 - 110
644	Character string transfers (\$MOV(P))	6 - 112
6.4.5	16-bit and 32-bit negation transfers (CML(P).DCML(P))	6 - 114
6.4.6	Block 16-bit data transfers (BMOV(P))	6 - 117
6.4.7	Identical 16-bit data block transfers (FMOV(P))	6 - 120
6.4.8	Identical 32-bit data block transfers (DFMOV(P))	6 - 122
6.4.9	16-bit and 32-bit data exchanges (XCH(P),DXCH(P))	6 - 124
6.4.10	Block 16-bit data exchanges (BXCH(P))	6 - 126
6.4.11	Upper and lower byte exchanges (SWAP(P))	6 - 128
6.5 Pro	ogram Branch Instructions	6 - 129
6.5.1	Pointer branch instructions (CJ,SCJ,JMP)	6 - 129
6.5.2	Jump to END (GOEND)	6 - 132

0.0			0 - 133
6	6.1	Interrupt disable/enable instructions, interrupt program mask (DI,EI,IM	IASK)6 - 133
6	6.2	Recovery from interrupt programs (IRET)	6 - 139
6.7	/ I/O	Refresh Instructions	6 - 141
6	6.7.1	I/O refresh (RFS(P))	6 - 141
6.8	B Oth	ner Convenient Instructions	6 - 143
6	6.8.1	Counter 1-phase input up or down (UDCNT1)	6 - 143
6	6.8.2	Counter 2-phase input up or down (UDCNT2)	6 - 146
6	6.8.3	Teaching timer (TTMR)	6 - 149
6	6.8.4	Special function timer (STMR)	6 - 151
6	6.8.5	Rotary table shortest direction control (ROTC)	6 - 154
6	6.8.6	Ramp signal (RAMP)	6 - 157
6	6.8.7	Pulse density measurement (SPD)	
6	8.8.8	Fixed cycle pulse output (PLSY)	6 - 162
6	6.8.9	Pulse width modulation (PWM)	6 - 164
6	6.8.10	Matrix input (MTR)	6 - 166
7. A	\PPLI	CATION INSTRUCTIONS	7 - 1 to 7 - 452
7.1	Log	gical operation instructions	7 - 2
7	7.1.1	Logical products with 16-bit and 32-bit data (WAND(P),DAND(P))	7-3
7	7.1.2	Block logical products (BKAND(P))	7 - 9
7	7.1.3	Logical sums of 16-bit and 32-bit data (WOR(P),DOR(P))	7 - 11
7	7.1.4	Block logical sum operations (BKOR(P))	7 - 17

16-bit and 32-bit exclusive OR operations (WXOR(P),DXOR(P))7 - 19

December Free outline Control Instantions

~ ~

7.1.5

7.1.6 16-bit and 32-bit data exclusive NOR operations (WXNR(P),DXNR(P))......7 - 27 7.1.7 7.1.8 Block exclusive NOR operations (BKXNR(P)).....7 - 33 7.2 Rotation instruction 7 - 35 Right rotation of 16-bit data (ROR(P),RCR(P))7 - 35 7.2.1 7.2.2 Left rotation of 16-bit data (ROL(P),RCL(P)).....7 - 38 Right rotation of 32-bit data (DROR(P), DRCR(P))7 - 41 7.2.3 Left rotation of 32-bit data (DROL(P),DRCL(P)).....7 - 44 7.2.4 7.3 Shift instruction 7 - 46 7.3.1 n-bit shift to right or left of 16-bit data (SFR(P),SFL(P))7 - 46 7.3.2 1-bit shift to right or left of n-bit data (BSFR(P),BSFL(P))7 - 49 7.3.3 n-bit shift to right or left of n-bit data (SFTBR(P),SFTBL(P)).....7 - 51 7.3.4 7.3.5 n-bit shift to right or left of n-word data (SFTWR(P),SFTWL(P))......7 - 56 7.4 Bit processing instructions 7 - 59 7.4.1 Bit set and reset for word devices (BSET(P), BRST(P))7 - 59 7.4.2 Bit tests (TEST(P),DTEST(P)).....7 - 61 7.4.3 7.5 Data processing instructions 7 - 66 16-bit and 32-bit data searches (SER(P),DSER(P)).....7 - 66 7.5.1 16-bit and 32-bit data checks (SUM(P),DSUM(P)).....7 - 69 7.5.2 7.5.3 7.5.4

100

7.5.5 7-segment decode (SEG(P))	7 - 75
7.5.6 4-bit dissociation of 16-bit data (DIS(P))	7 - 77
7.5.7 4-bit linking of 16-bit data (UNI(P))	7 - 79
7.5.8 Dissociation or linking of random data (NDIS(P),NUNI(P))	7 - 81
7.5.9 Data dissociation and linking in byte units (WTOB(P),BTOW(P))	7 - 85
7.5.10 Maximum value search for 16- and 32-bit data (MAX(P),DMAX(P))	7 - 89
7.5.11 Minimum value search for 16- and 32-bit data (MIN(P),DMIN(P))	7 - 92
7.5.12 BIN 16 and 32 bits data sort operations (SORT, DSORT)	7 - 95
7.5.13 Calculation of totals for 16-bit data (WSUM(P))	7 - 99
7.5.14 Calculation of totals for 32-bit data (DWSUM(P))	7 - 101
7.5.15 Calculation of averages for 16-bit or 32-bit data (MEAN(P),DMEAN	(P))7 - 103
7.6 Structure creation instructions	7 - 105
7.6.1 FOR to NEXT instruction loop (FOR,NEXT)	7 - 105
7.6.2 Forced end of FOR to NEXT instruction loop (BREAK(P))	7 - 108
7.6.3 Subroutine program calls (CALL(P))	7 - 110
7.6.4 Return from subroutine programs (RET)	7 - 115
7.6.5 Subroutine program output OFF calls (FCALL(P))	7 - 116
7.6.6 Subroutine calls between program files (ECALL(P))	
7.6.7 Subroutine output OFF calls between program files (EFCALL(P))	7 - 125
7.6.8 Subroutine program call (XCALL)	7 - 129
7.6.9 Refresh instruction (COM)	
7.6.10 Select Refresh Instruction (COM)	7 - 137
7.6.11 Select Refresh Instruction (CCOM)	7 - 141
7.6.12 Index modification of entire ladder (IX,IXEND)	7 - 144
7.6.13 Designation of modification values in index modification of entire la (IXDEV,IXSET)	dders 7 - 148
7.7 Data Table Operation Instructions	7 - 151
7.7.1 Writing data to the data table (FIFW(P))	
7.7.2 Reading oldest data from tables (FIFR(P))	
7.7.3 Reading newest data from data tables (FPOP(P))	
7.7.4 Deleting and inserting data from and in data tables (FDEL(P), FINS	(P))7 - 157
7.8 Buffer memory access instruction	7 - 160
7.8.1 Reading 1-/2-word data from the intelligent function module	
(FROM(P).DFRO(P)).	
7.8.2 Writing 1-/2-word data to intelligent function module (TO(P).DTO(P)	·))
7.9 Display instructions	7 - 166
7.9.1 Print ASCII code instruction (PR)	7 - 166
7.9.2 Print comment instruction (PRC)	7 - 169
7.9.3 Error display and annunciator reset instruction (LEDR)	7 - 172
7 10 Debugging and failure diagnosis instructions	7 - 175
7 10 1 Special format failure chacks (CHKST CHK)	7 175
7.10.2 Changing check format of CHK instruction (CHKCIP CHKEND)	
7.10.2 Changing check format of Chik instruction (CHKCIK,CHKEND)	
7.11 Character string processing instructions	/ - 183
7.11.1 Conversion from BIN 16-bit or 32-bit to decimal ASCII (BINDA(P),C)BINDA(P))7 - 183
7.11.2 Conversion from BIN 16-bit or 32-bit data to hexadecimal ASCII (BINHA(P),DBINHA(P))	7 - 186

7.11.3	Conversion from BCD 4-digit and 8-digit to decimal ASCII data	7.	_ 1	80
7 11 4	Conversion from decimal ASCII to BIN 16-bit and 32-bit data	. / -	- 1	03
7.11.4		7.	_ 1	92
7 11 5	Conversion from bexadecimal ASCII to BIN 16-bit and 32-bit data			52
7.11.0	(HABIN(P) DHABIN(P))	7.	- 1	95
7 11 6	Conversion from decimal ASCII to BCD 4-digit or 8-digit data		'	00
7.11.0	(DABCD(P) DDABCD(P))	7.	- 1	98
7 11 7	Reading device comment data (COMRD(P))	7.	- 2	201
7.11.8	Character string length detection (LEN(P))	.7.	- 2	04
7.11.9	Conversion from BIN 16-bit or 32-bit to character string (STR(P).DSTR(P))	.7	- 2	206
7.11.10	Conversion from character string to BIN 16-bit or 32-bit data (VAL(P),DVAL(P))	.7.	- 2	12
7.11.11	Conversion from floating decimal point to character string data (ESTR(P))	.7.	- 2	17
7.11.12	Conversion from character string to floating decimal point data (EVAL(P))	.7.	- 2	24
7.11.13	Conversion from hexadecimal BIN to ASCII (ASC(P))	.7.	- 2	28
7.11.14	Conversion from ASCII to hexadecimal BIN (HEX(P))	.7.	- 2	:30
7.11.15	Extracting character string data from the right or left (RIGHT(P),LEFT(P))	.7.	- 2	232
7.11.16	Random selection from and replacement in character strings (MIDR(P),MIDW(P))			
		.7.	- 2	235
7.11.17	Character string search (INSTR(P))	.7.	- 2	:39
7.11.18	Insertion of character string (STRINS(P))	.7-	- 2	41
7.11.19	Deletion of character string (STRDEL(P))	.7.	- 2	:43
7.11.20	Floating decimal point to BCD (EMOD(P))	.7 -	- 2	:45
7.11.21	From BCD format data to floating decimal point (EREXP(P))	. 7 -	- 2	:48
7.12 Spe	ecial function instructions	7 -	- 2	:50
7.12.1	SIN operation on floating-point data (Single precision) (SIN(P))	. 7 -	- 2	50
7.12.2	SIN operation on floating-point data (Double precision) (SIND(P))	. 7 -	- 2	52
7.12.3	COS operation on floating-point data (Single precision) (COS(P))	. 7 -	- 2	.54
7.12.4	COS operation on floating-point data (Double precision) (COSD(P))	. 7 -	- 2	56
7.12.5	TAN operation on floating-point data (Single precision) (TAN(P))	. 7 -	- 2	58
7.12.6	TAN operation on floating-point data (Double precision) (TAND(P))	. 7 -	- 2	60
7.12.7	SIN ⁻¹ operation on floating point data (Single precision) (ASIN(P))	. 7 -	- 2	62
7.12.8	SIN ⁻¹ operation on floating-point data (Double precision) (ASIND(P))	. 7 -	- 2	65
7.12.9	COS ⁻¹ operation on floating-point data (Single precision) (ACOS(P))	. 7 -	- 2	67
7.12.10	COS ⁻¹ operation on floating-point data (Double precision) (ACOSD(P))	. 7 -	- 2	69
7.12.11	TAN ⁻¹ operation on floating-point data (Single precision) (ATAN(P))	. 7 -	- 2	:71
7.12.12	TAN ⁻¹ operation on floating-point data (Double precision) (ATAND(P))	.7-	- 2	73
7.12.13	Conversion from floating-point angle to radian (Single precision) (RAD(P))	.7-	- 2	75
7.12.14	Conversion from floating-point angle to radian (Double precision) (RADD(P))	.7-	- 2	77
7.12.15	Conversion from floating-point radian to angle (Single precision) (DEG(P))	. 7 -	- 2	:79
7.12.16	Conversion from floating-point radian to angle (Double precision) (DEGD(P))	. 7 -	- 2	:81
7.12.17	Exponentiation operation on floating-point data (Single precision) (POW(P))	. 7 -	- 2	83
7.12.18	Exponentiation operation on floating-point data (Single precision) (POWD(P))	. 7 -	- 2	85
7.12.19	Square root operation for floating-point data (Single precision) (SQR(P))	.7 -	- 2	:87
7.12.20	Square root operation for floating-point data (Double precision) (SQRD(P))	. 7 -	- 2	.89
7.12.21	Exponent operation on floating-point data (Single precision) (EXP(P))	. 7 -	- 2	.91
7.12.22	Exponent operation on floating-point data (Double precision) (EXPD(P))	.7.	- 2	.94
7.12.23	Natural logarithm operation on floating-point data (Single precision) (LOG(P))	.7.	- 2	.96
7.12.24	Natural logarithm operation on floating-point data (Double precision) (LOGD(P))	.7.	- 2	.98

7.12.25	6 Common logarithm operation on floating-point data (Single precision)	7 000
7 10 06	(LUG10(P))	
7.12.20	(LOG10D(P))	7 - 302
7.12.27	Random number generation and series updates (RND(P),SRND(P))	7 - 304
7.12.28	B BCD 4-digit and 8-digit square roots (BSQR(P),BDSQR(P))	7 - 306
7.12.29	BCD type SIN operation (BSIN(P))	7 - 309
7.12.30	BCD type COS operations (BCOS(P))	7 - 311
7.12.31	BCD type TAN operation (BTAN(P))	7 - 313
7.12.32	2 BCD type SIN ⁻¹ operations (BASIN(P))	7 - 315
7.12.33	BCD type COS ⁻¹ operation (BACOS(P))	7 - 317
7.12.34	BCD type TAN ⁻¹ operations (BATAN(P))	7 - 319
7.13 Da	ta Control Instructions	7 - 321
7.13.1	Upper and lower limit controls for BIN 16-bit and BIN 32-bit data	
	(LIMIT(P),DLIMIT(P))	7 - 321
7.13.2	BIN 16-bit and 32-bit dead band controls (BAND(P),DBAND(P))	7 - 324
7.13.3	Zone control for BIN 16-bit and BIN 32-bit data (ZONE(P),DZONE(P))	7 - 327
7.13.4	Scaling (Point-by-point coordinate data) (SCL(P),DSCL(P))	7 - 330
7.13.5	Scaling (Point-by-point coordinate data) (SCL2(P),DSCL2(P))	7 - 334
7.14 Fil	e register switching instructions	7 - 337
7.14.1	Switching file register numbers (RSET(P))	7 - 337
7.14.2	Setting files for file register use (QDRSET(P))	7 - 339
7.14.3	File setting for comments (QCDSET(P))	7 - 342
7.15 Clo	ock instructions	7 - 344
7.15.1	Reading clock data (DATERD(P))	7 - 344
7.15.2	Writing clock data (DATEWR(P))	7 - 346
7.15.3	Clock data addition operation (DATE+(P))	7 - 348
7.15.4	Clock data subtraction operation (DATE-(P))	7 - 350
7.15.5	Time data conversion (from Hour/Minute/Second to Second) (SECOND(P)).	7 - 352
7.15.6	Time data conversion (from Second to Hour/Minute/Second) (HOUR(P))	7 - 354
7.15.7	Date comparison (DT=,DT<>,DT>,DT<=,DT<,DT>=)	7 - 356
7.15.8	Clock comparison (TM=,TM<>,TM>,TM<=,TM<,TM>=)	7 - 361
7.16 Ex	pansion Clock Instructions	7 - 366
7.16.1	Reading expansion clock data (S(P).DATERD)	7 - 366
7.16.2	Expansion clock data addition operation (S(P).DATE+)	7 - 369
7.16.3	Expansion clock data subtraction operation (S(P).DATE-)	7 - 372
7.17 Pr	ogram control instructions	7 - 375
7.17.1	Program standby instruction (PSTOP(P))	7 - 377
7.17.2	Program output OFF standby instruction (POFF(P))	7 - 378
7.17.3	Program scan execution registration instruction (PSCAN(P))	7 - 380
7.17.4	Program low speed execution registration instruction (PLOW(P))	
7.17.5	Program execution status check instruction (PCHK)	7 - 384
7.18 Ot	her instructions	7 - 386
7.18.1	Resetting watchdog timer (WDT(P))	7 - 386
7.18.2	Timing pulse generation (DUTY)	7 - 388
7.18.3	Time check instruction (TIMCHK)	7 - 390
7.18.4	Direct 1-byte read from file register (ZRRDB(P))	7 - 391

7.18.5	File register direct 1-byte write (ZRWRB(P))	
7.18.6	Indirect address read operations (ADRSET(P))	
7.18.7	Numerical key input from keyboard (KEY)	
7.18.8	Batch save or recovery of index register (ZPUSH(P), ZPOP(P))	7 - 400
7.18.9	Reading Module Information (UNIRD(P))	
7.18.10	Reading module model name(TYPERD(P))	
7.18.11	Trace Set/Reset (TRACE, TRACER)	7 - 411
7.18.12	? Writing Data to Designated File (SP.FWRITE)	
7.18.13	Reading Data from Designated File (SP.FREAD)	
7.18.14	Writing Data to Standard ROM (SP.DEVST)	
7.18.15	Read Data from Standard ROM (S(P).DEVLD)	
7.18.16	Coad Program from Memory Card (PLOADP)	
7.18.17	Unload Program from Program Memory (PUNLOADP)	
7.18.18	Load + Unload (PSWAPP)	
7.18.19	High-speed Block Transfer of File Register (RBMOV(P))	

Common Instructions 2/2

8. INSTRUCTIONS FOR DATA LINK	8 - 1 to 8 - 10
8.1 Network refresh instructions	8 - 2
8.1.1 Refresh instruction for the designated module (S(P)/J(P)/G(P).ZCO	M)8 - 2
8.2 Reading/Writing Routing Information	8 - 6
8.2.1 Reading routing information (S(P)/Z(P).RTREAD)	8 - 6
8.2.2 Registering routing information (S(P)/Z(P).RTWRITE)	8 - 8
9. Multiple CPU dedicated instruction	9 - 1 to 9 - 18
9.1 Writing to the CPU Shared Memory of Host CPU	9 - 2
9.1.1 Write to Host CPU Shared Memory (S(P).TO)	
9.1.2 Writing to host station CPU shared memory (TO(P), DTO(P))	
9.2 Reading from the CPU Shared Memory of another CPU	9 - 11
9.2.1 Reading from Other CPU Shared Memory (FROM(P), DFRO(P))	9 - 12
10. QCPU INSTRUCTIONS	10 - 1 to 10 - 20
10. QCPU INSTRUCTIONS 10.1 Overview	10 - 1 to 10 - 20 10 - 2
10. QCPU INSTRUCTIONS 10.1 Overview 10.2 Writing Devices to Another CPU (D(P).DDWR)	10 - 1 to 10 - 20 10 - 2 10 - 13
10. QCPU INSTRUCTIONS 10.1 Overview 10.2 Writing Devices to Another CPU (D(P).DDWR) 10.3 Reading Devices from Another CPU (D(P).DDRD)	10 - 1 to 10 - 20 10 - 2 10 - 13 10 - 17
10. QCPU INSTRUCTIONS 10.1 Overview 10.2 Writing Devices to Another CPU (D(P).DDWR) 10.3 Reading Devices from Another CPU (D(P).DDRD) 11. QCPU INSTRUCTIONS	10 - 1 to 10 - 20 10 - 2 10 - 13 10 - 17 11 - 1 to 11 - 4
10. QCPU INSTRUCTIONS 10.1 Overview 10.2 Writing Devices to Another CPU (D(P).DDWR) 10.3 Reading Devices from Another CPU (D(P).DDRD) 11. QCPU INSTRUCTIONS 11.1 System Switching Instruction (SP.CONTSW)	10 - 1 to 10 - 20 10 - 2 10 - 13 10 - 17 11 - 1 to 11 - 4 11 - 2
10. QCPU INSTRUCTIONS 10.1 Overview 10.2 Writing Devices to Another CPU (D(P).DDWR) 10.3 Reading Devices from Another CPU (D(P).DDRD) 11. QCPU INSTRUCTIONS 11.1 System Switching Instruction (SP.CONTSW)	10 - 1 to 10 - 20 10 - 2 10 - 13 10 - 17 11 - 1 to 11 - 4 11 - 2
10. QCPU INSTRUCTIONS 10.1 Overview 10.2 Writing Devices to Another CPU (D(P).DDWR) 10.3 Reading Devices from Another CPU (D(P).DDRD) 11. QCPU INSTRUCTIONS 11.1 System Switching Instruction (SP.CONTSW) 12. ERROR CODES	10 - 1 to 10 - 20 10 - 2 10 - 13 10 - 17 11 - 1 to 11 - 4 11 - 2 12 - 1 to 12 - 84
10. QCPU INSTRUCTIONS 10.1 Overview 10.2 Writing Devices to Another CPU (D(P).DDWR) 10.3 Reading Devices from Another CPU (D(P).DDRD) 11. QCPU INSTRUCTIONS 11.1 System Switching Instruction (SP.CONTSW) 12. ERROR CODES 12.1 Error Code List	10 - 1 to 10 - 20 10 - 2 10 - 13 10 - 17 11 - 1 to 11 - 4 11 - 2 12 - 1 to 12 - 84 12 - 2
10. QCPU INSTRUCTIONS 10.1 Overview 10.2 Writing Devices to Another CPU (D(P).DDWR) 10.3 Reading Devices from Another CPU (D(P).DDRD) 11. QCPU INSTRUCTIONS 11.1 System Switching Instruction (SP.CONTSW) 12. ERROR CODES 12.1 Error Code List 12.1.1 Error codes	10 - 1 to 10 - 20 10 - 2 10 - 13 10 - 17 11 - 1 to 11 - 4 11 - 2 12 - 1 to 12 - 84 12 - 2
10. QCPU INSTRUCTIONS 10.1 Overview 10.2 Writing Devices to Another CPU (D(P).DDWR) 10.3 Reading Devices from Another CPU (D(P).DDRD) 11. QCPU INSTRUCTIONS 11.1 System Switching Instruction (SP.CONTSW) 12. ERROR CODES 12.1 Error Code List 12.1.1 Error codes 12.1.2 Reading an error code 12.1.2 Frame and a list (1000 to 1000)	10 - 1 to 10 - 20 10 - 2 10 - 13 10 - 17 11 - 1 to 11 - 4 11 - 2 12 - 1 to 12 - 84 12 - 2

12.1.4	Error code list (2000 to 2999)	
12.1.5	Error code list (3000 to 3999)	
12.1.6	Error code list (4000 to 4999)	
12.1.7	Error code list (5000 to 5999)	
12.1.8	Error code list (6000 to 6999)	
12.1.9	Error code list (7000 to 10000)	
12.2 C	anceling of Errors	12 - 83

APPENDICES

App - 1 to App - 198

Appendix 1 OPEF	RATION PROCESSING TIME	App - 2
Appendix 1.1	Definition	App - 2
Appendix 1.2	Operation Processing Time of Basic Model QCPU	App - 3
Appendix 1.3	Operation Processing Time of High Performance Model QCPU	Process CPU/
	Redundant CPU	App - 21
Appendix 1.4	Operation Processing Time of Universal Model QCPU	App - 50
Appendix 1.4.1	Subset instruction processing time	App - 50
Appendix 1.4.2	Processing time of instructions other than subset instruction	Арр - 66
Appendix 2 CPU I	PERFORMANCE COMPARISON	App - 114
Appendix 2.1	Comparison of Q with AnNCPU, AnACPU, and AnUCPU	App - 114
Appendix 2.1.1	Usable devices	App - 114
Appendix 2.1.2	I/O control mode	App - 115
Appendix 2.1.3	Data that can be used by instructions	App - 115
Appendix 2.1.4	Timer comparison	App - 116
Appendix 2.1.5	Comparison of counters	App - 117
Appendix 2.1.6	Comparison of display instructions	App - 117
Appendix 2.1.7	Instructions whose designation format has been changed	
	(Except dedicated instructions for AnACPU and AnUCPU)	App - 118
Appendix 2.1.8	AnACPU and AnUCPU dedicated instructions	App - 119
Appendix 3 SPEC	CIAL RELAY LIST	App - 120
Appendix 4 SPEC	CIAL REGISTER LIST	App - 146
Appendix 5 APPL	ICATION PROGRAM EXAMPLES	App - 198
Appendix 5.1	Concept of Programs which Perform Operations of X^n , $\sqrt[3]{X}$	App - 198

Index - 1 to Index - 12

MANUALS

To understand the main specifications, functions, and usage of the CPU module, refer to the basic manuals. Read other manuals as well when using a different type of CPU module and its functions. Order each manual as needed, referring to the following list.

The numbers in the "CPU module" and the respective modules are as follows.

Nunber	CPU module
1)	Basic model QCPU
2)	High Perfomance model QCPU
3)	Process CPU
4)	Redundant CPU
5)	Universal model QCPU

○:Basic manual, ●:Other CPU module manuals

Manual name	anual name < Manual number (model code) > Description		CPL	J module		
< Manual number (model code) >			2)	3)	4)	5)
∎User's manual						
QCPU User's Manual (Hardware design, Maintenance and Inspection) < SH-080483ENG (13JR73) >	Specifications of the hardware (CPU modules, power supply modules, base units, extension cables, and memory cards), system maintenance and inspection, troubleshooting, and error codes	•	•	•	•	•
QnUCPU User's Manual						
(Function Explanation, Program Fundamentals) < SH-080807ENG (13JZ27) >	Functions, methods, and devices for programming					•
Qn(H)/QnPH/QnPRHCPU User's Manual		-	_	-	-	
(Function Explanation, Program Fundamentals) < SH-080808ENG (13JZ28) >	Functions, methods, and devices for programming	•		•	•	
QnUCPU User's Manual (Communication via Built-in Ethernet Port) < SH-080811ENG (13JZ29) >	Functions for the communication via built-in Ethernet port of the CPU module					0
■Programming Manual						
QCPU Programming Manual (Common Instructions) < SH-080809ENG (13JW10) >	How to use sequence instructions, basic instructions, and application instructions	•	•	•	•	•
QCPU (Q Mode)/QnACPU Programming Manual (SFC) < SH-080041 (13JF60) >	System configuration, performance specifications, functions, programming, debugging, and error codes for SFC (MELSAP3) programs	0	0	0	0	0
QCPU (Q Mode) Programming Manual (MELSAP-L) < SH-080072 (13JC03) >	Programming methods, specifications, and functions for SFC (MELSAP-L) programs	0	0	0	0	0
QCPU (Q Mode) Programming Manual (Structured Text) < SH-080366E (13JF68) >	Programming methods using structured languages	0	0	0	0	0
QCPU (Q Mode) / QnACPU Programming Manual (PID Control Instructions) < SH-080040 (13JF59) >	Dedicated instructions for PID control	0	0		0	0
QnPH/QnPRHCPU Programming Manual (Process Control Instructions) < SH-080316E (13JF59) >	Describes the dedicated instructions for performing pro- cess control.			0	0	

Manual name	Decorintian
< Manual number (model code) >	Description
CC-Link IE Controller Network Reference Manual	Specifications, procedures and settings before system operation, parameter
< SH-080668ENG (13JV16) >	setting, programming, and troubleshooting of the CC-Link IE controller network module
Q Corresponding MELSECNET/H Network System Reference	Explains the specifications for a MELSECNET/H network system for PLC to PLC
Manual (PLC to PLC network)	network. It explains the procedures and settings up to operation, setting the parame-
< SH-080049 (13JF92) >	ters, programming and troubleshooting.
Q Corresponding MELSECNET/H Network System Refer-	Explains the specifications for a MELSECNET/H network system for remote I/O
ence Manual (Remote I/O network)	network. It explains the procedures and settings up to operation, setting the
< SH-080124 (13JF96) >	parameters, programming and troubleshooting.
Type MELSECNET, MELSECNET/B Data Link System Reference Manual < IB-66530 (13JF70) >	Describes the general concept, specifications, and part names and settings for MELSECNET (II) and MELSECNET/B.
Q Corresponding Ethernet Interface Module User's Manual (Application) < SH-080010 (13JF70) >	Describes various functions of the Ethernet module: e-mail function, PLC CPU status monitoring, communication via MELSECNET/H or MELSECNET/10 net- work system, communication using data link instructions, file transfer (using FTP) and other functions.

MEMO

INSTRUCTIONS FOR DATA LINK

Category	Processing Details	Reference section
Network refresh instructions	Refreshes the specified network module.	Section 8.1
Routing information	Reading the data specified by routing parameters.	Section 8.2.1
read/write instructions	Writing routing data to the area specified by routing parameters.	Section 8.2.2

In this chapter, instruction names are abbreviated as follows if not specified particularly.

 $\bullet \ S(P)/J(P)/G(P).ZCOM \rightarrow ZCOM \quad \bullet \ S(P)/Z(P).RTWRITE \rightarrow RTWRITE$

* S(P)/Z(P).RTREAD \rightarrow RTREAD

8.1 Network refresh instructions

8.1.1 Refresh instruction for the designated module (S(P)/J(P)/G(P).ZCOM)

S.ZCOM		C	ommand				S.ZCOM	Jn	\vdash
SP.ZCOM		с С	ommand				- SP.ZCON	1 Jn	\vdash
S.ZCOM		C	ommand				S.ZCOM	Un	
SP.ZCOM		С С	ommand				- SP.ZCOM	1 Un	\vdash
	Jn : No Un : He	etwork No. c ead I/O num	of host statio ber of host s	n (BIN 16 bi station netwo	ts) ork module (BIN 16 bits)			
Setting Data	Internal Bit	Devices Word	R, ZR	J Bit	\ Word	U\G	Zn	Constants	Other

Basic High Process Redundant Universal

The ZCOM instruction is used to perform refresh at any timing during execution of a sequence program.

The targets of refresh performed by the ZCOM instruction are indicated below.

- · Refresh of CC-Link IE controller network (when refresh parameters are set)
- · Refresh of MELSECNET/H (when refresh parameters are set)
- · Auto refresh of CC-Link (when refresh device is set)
- Auto refresh of intelligent function module (when auto refresh is set)

Grant Function

(1) When the ZCOM instruction is executed, the CPU module temporarily suspends processing of the sequence program and conducts refresh processing of the network modules designated by Jn/Un.

- (2) The ZCOM instruction does not perform the following processing.
 - (a) Communication processing between CPU module and programming tool
 - (b) Monitor processing of other station
 - (c) Read processing of buffer memory of other intelligent function module by serial communication module.
 - (d) Low-speed cyclic data transmission of MELSECNET/H
- (3) PLC to PLC network^{*1}
 - (a) When the scan time for the sequence program of host station is longer than the scan time for the other station, the ZCOM instruction is used to ensure the data reception from the other station.
 - (1) Example of data communications when the ZCOM instruction is not used

For details of the transmission delay time on the PLC to PLC network^{*1}, refer to the manual below:

- · CC-Link IE Controller Network Reference Manual
- Q Corresponding MELSECNET/H Network System Reference Manual (PLC to PLC network)
- (b) When the link scan time is longer than the sequence program scan time, data communications will not be faster even if the ZCOM instruction is used.

*1: Controller network in CC-Link IE controller network.

(4) Remote I/O network

The link refresh of the remote master station is performed by the "END processing" of the CPU module.

Since link scan is performed at completion of link refresh, link scan 'synchronizes' with the program of the CPU module.

When the ZCOM instruction is used at the remote master station, link refresh is performed at the point of ZCOM instruction execution, and link scan is performed at completion of link refresh.

Hence, use of the ZCOM instruction at the remote master station speeds up send/receive processing to/from the remote I/O station.

(1) When the ZCOM instruction is not used

For details of the transmission delay time on the remote I/O network, refer to the manual below:

 Q Corresponding MELSECNET/H Network System Reference Manual (Remote I/O network)

(5) The ZCOM instruction can be used as many times as desired in sequence programs. However, note that each execution of a refresh operation will lengthen the sequence program scan time by the amount of time required for the refresh operation. (6) Designating "Un" in the argument enables the target designation of the intelligent function as well as the network modules.

In this case, the auto refresh is performed for the buffer memory of the intelligent function modules. (It replaces the FROM/TO instructions.)

(7) Only with the universal model QCPU, interruption of processing is enabled during the execution of the ZCOM instruction. However, when refresh data are used in an interrupted program, the data can split.

- 1. The ZCOM instruction cannot be used in a fixed cycle execution type program or interrupt program.
- 2. The Redundant CPU has restrictions on use of the ZCOM instruction. Refer to the manual below for details.
 - QnPRHCPU User's Manual (Redundant System)

Operation Error

- (1) In any of the following cases, an operation error occurs, the error flag (SM0) turns ON, and an error code is stored into SD0.
 - When the specified network number is not connected to the host station
 - (Error code: 4102)
 - When the module specified with the head I/O number is not a network module or link module (Except Universal model QCPU) (Error code: 2111)
 - When the module specified with the head I/O number is not a network module or link module (Only Universal model QCPU) (Error code: 4102)

To conduct only communication with peripheral device, use the COM instruction (refer to Section 7.6.9, 9.1).

Program Example

(1) The following program conducts a link refresh for the network module of network No. 6 while X0 is ON.

(2) The following program conducts a link refresh for the network module mounted to the position whose head I/O number is a X/Y30 to X/Y4F while X0 is ON.

8.2 Reading/Writing Routing Information

8.2.1 Reading routing information (S(P)/Z(P).RTREAD)

S.RTREAD	Command	S.RTREAD n D
SP.RTREAD	Command	SP.RTREAD n D

- n : Transfer destination network No. (1 to 239) (BIN 16 bits)
- (D) : Head number of the devices that stores the read data (Device name)

Se	etting	Internal Devices		R 7R			7n	Constants	Other	
E	Data	Bit	Word	N, 2N	Bit	Word	0	2.11	К, Н	
	n	0	C)					0	—
	D		(\supset						_

Grant Function

- Reads data from transfer destination network number specified by n, using routing information set by the routing parameters, and stores it into the area starting from
 D.
- (2) If no data for the transfer destination network number specified by n is set at the routing parameters, stores 0 into the area starting from **D**.
- (3) The contents of the data stored in the area starting from \bigcirc is as indicated below.

Operation Error

- (1) In any of the following cases, an operation error occurs, the error flag (SM0) turns ON, and an error code is stored into SD0.
 - When data specified by n is other than 1 to 239. (Error code: 4100)
 - The device specified by D exceeds the range of the corresponding device. (For the Universal model QCPU only.) (Error code: 4101)

Program Example

(1) The following program reads the routing information for the network number specified by D0 when X0 is turned ON.

[Operation] [C				content of routing parameter setting]						
D0	1			Transfer destination network number	Relay network number	Relay station number				
D1	10	•		1	10	3				
D2	3	•		2	10	2				
D3	Dummy	 		3	10	1				

8

8.2.2 Registering routing information (S(P)/Z(P).RTWRITE)

				Basic	High performance Pro	cess Redundant	Universal
S.RTWRITE		Command		S.F	RTWRITE	n (S	_
SP.RTWRITE		Command		SP	RTWRITE	n (S)	-
	n :T (s) :H	ransfer destination netw	ork No. (1 to 239) (BIN 1 ces where the data to be	6 bits) written is store	d (Device nam	ne)	
Setting Data	Internal Bit	Devices R, ZR	J∭\∭ Bit Word	U∭\G∭	Zn	Constants K, H	Other
n	0	0				0	
S		0				_	
Function							

- (1) Registers routing data of (s) or later in the area for the transfer destination network number specified by n in the routing parameters.
- (2) The following shows the contents of data to be set at \odot or later.

(Individual data ranges)

 \sim

- (3) If data for the transfer destination network number specified by n is set in the routing parameters, it is used to update the data in the area starting from (s).
- (4) If all data in (s) or later (s)+0 to (s)+2) is 0, the data for the transfer destination network number specified by n is deleted from the routing parameters.

Operation Error

- (1) In any of the following cases, an operation error occurs, the error flag (SM0) turns ON, and an error code is stored into SD0.
 - When data specified by n is other than 1 to 239. (Error code: 4100)
 - When the data of (s) or later exceeds each setting ranges. (Error code: 4100)
 - When the total number of routing information registered in the routing parameter of the network parameters and routing information registered with the RTWRITE instruction exceeds 64.
 (Error code: 4100)
 - The device specified by (s) exceeds the range of the corresponding device.
 (For the Universal model QCPU only.)
 (Error code: 4101)

Program Example

(1) The following program writes the routing information specified by D1 to D3 to the network module of the network number specified by D0 when X0 is turned ON.
[Letter Made]

ľ	_adder Modej		[List Mode]					
₀	X0 	DO	D1]	Step	Instruction	Device	-
9			[END]	0 1 9	LD S. RTWRITE END	XO DO D1	

MEMO

MULTIPLE CPU DEDICATED INSTRUCTION

Category	Processing Details	Reference section
Writing to the CPU shared memory of host CPU	Writes device data of the host CPU to the CPU shared memory of the host CPU module.	Section 9.1
Reading from the CPU shared memory of another CPU	Reads device data from the CPU shared memory of another CPU module to the host CPU.	Section 9.2

9.1 Writing to the CPU Shared Memory of Host CPU

The S.TO or TO instruction is used to write to the CPU shared memory of the host station in the multiple CPU system.

The following table indicates the usability of the S.TO and TO instructions.

CPU Module Type	Name	S.TO Instruction	TO Instruction	
Basic model QCPU	Q00CPU, Q01CPU	Usable	Usable	
	Q02CPU, Q02HCPU,			
High Performance model QCPU	Q06HCPU, Q12HCPU,	Usable	Unusable	
	Q25HCPU			
Process CPU	Q02PHCPU, Q06PHCPU,	Lisable	Linusable	
	Q12PHCPU, Q25PHCPU	USable	Ullusable	
Redundant CPU	Q12PRHCPU, Q25PRHCPU	Unusable	Unusable	
	Q00UCPU, Q01UCPU,			
	Q02UCPU, Q03UDCPU,			
	Q04UDHCPU, Q06UDHCPU,			
	Q10UDHCPU, Q13UDHCPU,			
	Q20UDHCPU, Q26UDHCPU,			
	Q03UDECPU,	Lisabla	Usable	
Oniversal model QCP0	Q04UDEHCPU,	USable		
	Q06UDEHCPU,			
	Q10UDEHCPU,			
	Q13UDEHCPU,			
	Q20UDEHCPU,			
	Q26UDEHCPU			

(1) Operation of S.TO instruction

The S.TO instruction can write data to the CPU shared memory of the host CPU module. The following figure shows the processing performed when the S.TO instruction is executed in CPU No. 1.

Remark

module by the TO instruction.

The TO instruction can write device memory data to the following memories.

- · CPU shared memory of host CPU module
- · Buffer memory of intelligent function module

The following figure shows the processing performed when the TO instruction is executed in CPU No. 1.

Both of the S.TO and TO instructions can be used for the Basic model QCPU (Q00CPU or Q01CPU) and Universal model QCPU to write data to the CPU shared memory. However, use of the TO instruction is recommended, since use of S.TO instruction reduces the number of steps and processing time.

9.1.1 Write to Host CPU Shared Memory (S(P).TO)

Basic model QCPU: The first 5 digits of serial No is "04122" or higher. Hight performance modele QCPU: Function version B or later.

Grant Function

(1) Writes device data of words n3 to n4 to the CPU shared memory address specified by n2 of the host CPU module or later address.

When writing is completed, the completion bit specified by D turns ON.

9

(a) CPU shared memory address of the Basic model QCPU

CPU shared memory address 0(0H) Host CPU operation information area 96(60H) System area 192(C0H) Host CPU refresh area^{*3} User free area 511(1FFH) Write designation permitted area

(b) CPU shared memory address of the High Performance model QCPU, Process CPU and Universal model QCPU*⁴

CPU shared memory address

- *3 : Usable as a user free area when auto refresh setting is not made. In addition, even when auto refresh setting is made, the auto refresh send range or later is usable as a user free area.
- *4 : Data cannot be written to the multiple CPU high speed transmission area of the Universal model QCPU with the S(P).TO instruction.
- (2) When the number of write points is 0, no processing is performed and the completion device does not turn ON, either.
- (3) The S.TO instruction can be executed once to one scan for each CPU.
- When execution condition is established at two or more places at the same time, the S.TO instruction executed later is not processed since handshake is established automatically.
- (4) The number of data that can be written varies depending on the target CPU module.

CPU module	Number of Write Points
Basic model QCPU	1 to 320
High Performance model QCPU Process CPU	1 to 256
Universal model QCPU	1 to 2048

Writing data to CPU shared memory can be performed using the intelligent function module device.

For intelligent function module device, refer to the QnUCPU User's Manual (Function Explanation, Program Fundamentals) or Qn(H)/QnPH/QnPRHCPU User's Manual (Function Explanation, Program Fundamentals).

Operation Error

In any of the following cases, an operation error occurs, the error flag (SM0) turns ON, and an error code is stored into SD0.

(1)	When the specified data is outside the following range	(Error code: 4101)							
	• When the number of write points (n4) is outside the specified range of	the setting data.							
	 When the head of the CPU shared memory address (n2) of the write destination host CPU exceeds the CPU shared memory address range 								
	 When the CPU shared memory address (n2) + the number of write points (n4) of the wr destination host CPU exceeds the CPU shared memory address range 								
	 When the head number of the devices (n3) where the data to be written number of write points (n4) exceeds the device range 	en is stored + the							
(2)	When the host CPU operation information area, system area or host CPU specified to the CPU shared memory address (n2) of the write destination	U refresh area is n							
	(High Performance model QCPU, Process CPU) (Basic model QCPU, Universal model QCPU)	(Error code: 4101) (Error code: 4111)							
(3)	When the head I/O number (n1) of the host CPU is other than that of the	host CPU							
	(High Performance model QCPU, Process CPU) (Basic model QCPU, Universal model QCPU)	(Error code: 2107) (Error code: 4112)							
(4)	No CPU module is installed at the position specified by the head I/O num module.	nber of the CPU (Error code: 2110)							
(5)	When the head I/O number (n1) of the host CPU is other than $3E0H/3E1$	н/3E2н/3E3н (Error code: 4100)							
(6)	When the specified instruction is improper	(Error code: 4002)							
(7)	When the specified number of devices is wrong	(Error code: 4003)							
(8)	When the unusable device is specified	(Error code: 4004)							

Program Example

(1) The following program stores 10 points of data from D0 into address 800_H of the CPU shared memory of CPU No. 1 when X0 is turned ON.

Remark • • • • •

The n1 is specified by the first 3 digits of the hexadecimal 4 digits which represent the head I/O number of the slot mounted to the CPU module.

	CPU Slot	Slot 0	Slot 1	Slot 2
Head I/O number	3E00	3E10	3E20	3E30
n1	3E0	3E1	3E2	3E3

9.1.2 Writing to host station CPU shared memory (TO(P), DTO(P))

Q00CPU/Q01CPU whose first 5 digits of the serial No. is "04122" or higher

\overleftrightarrow Function

то

(1) Writes device data of words (s) to n3 to the CPU shared memory address specified by n2 of the host CPU module or later address.

Host CPU

9.1 Writing to the CPU Shared Memory of Host CPU
 9.1.2 Writing to host station CPU shared memory (TO(P), DTO(P))

When a constant is specified to $_{\odot}$, writes the same data (value specified to $_{\odot}$) to the area of n3 words from the specified CPU shared memory.

(a) CPU shared memory addresses of the Basic model QCPU

CPU shared memory address

(b) CPU shared memory address of the Universal model QCPU^{*3}

CPU shared memory address

- *2 : Usable as a user free area when auto refresh setting is not made.
 In addition, even when auto refresh setting is made, the auto refresh send range or later is usable as a user free area.
- *3 : With Q02UCPU, data can not be written to the multiple CPU high speed transmission area.
- (2) No processing is performed when the number of write points is 0.
- (3) The number of write data varies depending on the target CPU module.

CPU module	Number of Write Points			
Basic model QCPU	1 to 320			
Universal model QCPU	1 to 14336			

DTO

(1) Writes device data of words (s) to (n3×2) to the CPU shared memory address specified by n2 of the host CPU module or later address.

When a constant is specified to \odot , writes the same data (value specified to \odot) to the area of (n3×2) words from the specified CPU shared memory.

- (2) No processing is performed when the number of write points is 0.
- (3) The number of data that can be written varies depending on the target CPU module.

CPU mode	Number of Write Points
Basic model QCPU	1 to 160
Universal model QCPU	1 to 7168

Writing data to CPU shared memory can be performed using the intelligent function module device.

For intelligent function module device, refer to the QnUCPU User's Manual (Function Explanation, Program Fundamentals) or Qn(H)/QnPH/QnPRHCPU User's Manual (Function Explanation, Program Fundamentals).

Coperation Error

In any of the following cases, an operation error occurs, the error flag (SM0) turns ON, and an error code is stored into SD0.

- (1) When the specified data is outside the following range (Error code: 4101)
 - When the number of write points (n3) is outside the specified range of the setting data.
 - When the CPU shared memory address (n2) of the write destination host CPU + the number of write points (n3) exceeds the CPU shared memory range
 - When the head number of the devices that stores the data to be written ((s)) + the number of write points (n3) exceeds the device range
 - When the head of CPU shared memory address (n2) of the write destination host CPU is outside the write permitted area.
- When the head of CPU shared memory address (n2) of the write destination host CPU is an invalid value.
 (Error code: 4111)
- (3) When the I/O number specified in (n1) is other than that of the host CPU (Exclude the case when the multiple CPU high speed transmisson area of other CPU is used.)

(Error code: 4112)

(4) No CPU module is installed at the position specified by the head I/O number of the CPU module. (Error code: 2110)

Program Example

(1) The following program stores 10 points of data from D0 into address 10000 of the CPU shared memory of CPU No. 1 when X0 is turned ON.

[Ladder Mode]

[List Mode]

(2) The following program stores 20 points of data from D0 into address 10000 of the CPU shared memory of CPU No. 4 when X0 is turned ON.

 [Ladder Mode]
 [List Mode]

 0
 X0
 [DTOP H3E3 K10000 D0 K20]
 Step Instruction Device

 0
 1
 DTOP H3E3 K10000 D0 K20]
 0

 6
 END
 1000 H3E3 K10000 D0 K20]
 0

Remark

The n1 is specified by the first 3 digits of the hexadecimal 4 digits which represent the head I/O number of the slot mounted to the CPU module.

	CPU Slot	Slot 0	Slot 1	Slot 2
Head I/O number	3E00	3E10	3E20	3E30
n1	3E0	3E1	3E2	3E3
	520	JET	562	3L3

9.2 Reading from the CPU Shared Memory of another CPU

The FROM(P)/DFRO(P) instruction of Multiple CPU system can be read from the following memories.

- · Buffer memory of intelligent function module
- · CPU shared memory of other CPU module
- CPU shared memory of host CPU module (applicable for the Basic model QCPU and Universal model QCPU)

The following figure shows the processing performed when the FROM(P) instruction is executed in CPU No. 1.

9.2.1 Reading from Other CPU Shared Memory (FROM(P), DFRO(P))

Basic model QCPU:The first 5 digits of serial No is "04122" or higher. High performance model QCPU:Function version B or later.

(1) When Basic model QCPU, Universal model QCPU is used

	Command	indicate	s an instructio	n symbol	of FROM/DFRO.	
	Command	P	n1 r	12 (D n3	
n1 : Head • Bas • Univ n2 : Head • Bas • Univ	d I/O number of the read ic model QCPU : 3E(versal model QCPU: 3E(d address of data to be ru- ic model QCPU : 0 to	ing target CPU modu)H to 3E2H)H to 3E3H ead (BIN 16 bits) 9 512	ule (BIN 16 bits)			
© :Heac n3 :Numi ∙Bas ∙Univ	I number of the devices ber of read data (BIN 16 ic model QCPU : FR versal model QCPU: FR	where the read data bits) OM(P): 1 to 512, DF OM(P): 1 to 14336 ^{*3}	is stored (BIN ⁻ RO(P) : 1 to 25 ⁻ , DRRO(P) : 1 t	16 bits) 6 o 7168* ³		
Setting Internal De Data Bit	wices R, ZR	J∷:∖∷: Bit Word	U\G	Zn	Constants K, H	Oth U
n1 —	0		0		0	С
n2 —	0		0		0	
0 —	0				—	
	-		\cap		\sim	_

FROM

(1) Reads the data of n3 words from the CPU shared memory address designated by n2 of the CPU module designated by n1, and stores that data into the area starting from the device designated by (1).

9

(a) CPU shared memory address of the Basic model QCPU

CPU shared memory address

(b) CPU shared memory address of the Universal model QCPU^{*5}

- Usable as a user free area when auto refresh setting is not made. When auto refresh setting is made, the auto refresh send range and later are usable as a user free area.
- *5 : With Q02UCPU, data can not be written to the multiple CPU high speed transmission area.
- (2) When 0 is specified in n3 as the number of data to be read, no processing is performed.
- (3) The number of data to be read changes depending on the target CPU module.

CPU Module	Number of Read Points
Basic model QCPU	1 to 512
Universal model QCPU	1 to 14336

DFRO

(1) Reads the data of (n3×2) words from the CPU shared memory address designated by n2 of the CPU module designated by n1, and stores that data into the area starting from the device designated by
[●].

- (2) When 0 is specified in n3 as the number of data to be read, no processing is performed.
- (3) The number of data to be read changes depending on the target CPU module.

CPU Module	Number of Read Points
Basic model QCPU	1 to 256
Universal model QCPU	1 to 7168

Read of data from the CPU shared memory can also be performed using the intelligent function module devices.

For intelligent function module device, refer to the QnUCPU User's Manual (Function Explanation, Program Fundamentals) or Qn(H)/QnPH/QnPRHCPU User's Manual (Function Explanation, Program Fundamentals).

Operation Error

In any of the following cases, an operation error occurs, the error flag (SM0) turns ON, and an error code is stored into SD0.

- (1) When the specified data is outside the following range. (Error code: 4101)
 - The head of the CPU shared memory address (n2) which performs reading is outside the CPU shared memory range.
 - The address of the CPU shared memory (n2) which performs reading plus the number of read points (n3) is outside the CPU shared memory range.
 - The read data storage device number (D) plus the number of read points (n3) is outside the specified device range.
- (2) The CPU module does not exist in the position specified by the CPU module head I/O number. (Error code: 2110)
- (3) When the head of the CPU shared memory address (n2) which performs reading is an invalid value. (4097 to 9999) (Error code: 4101)

.

9

Program Example

(1) The following program stores 10 points of data from address C0H of the CPU shared memory of CPU No. 2 into the area starting from D0 when X0 is turned ON.

[[_adder Mode]						[List Mo	ode]				
0	XO [FROM	H3E1	H80	DO	K10	٦	Step	Instruction		Dev	ice	
					FEND	-	0	LD FROM	X0 H3E1	H80	DO	K10
6					[END	J	0	END				

(2) The following program stores 20 points of data from address 10000 of the CPU shared memory of CPU No. 4 into the area starting from D0 when X0 is turned ON.

[Ladder Mode]

[List Mode]

Remark •••••

The n1 is specified by the first 3 digits of the hexadecimal 4digits which represent the head I/O number of the slot mounted to the CPU module.

	CPU Slot	Slot 0	Slot 1	Slot 2
Head I/O number	3E00	3E10	3E20	3E30
n1	3E0	3E1	3E2	3E3

The QCPU provides automatic interlocks for the FROM and TO instructions.

(2) When High Performance model QCPU, Process CPU is used

FROM	1			mmand	FRO	Л r	1	n2	D	n3	
FROM	1P				FROM	1P r	1	n2	D	n3	_
											I
	 n1 : Head I/O number of the reading target CPU module (BIN 16 bits) n2 : Head address of data to be read (BIN 16 bits) (D) : Head number of the devices where the read data is stored (BIN 16 bits) n3 : Number of read data (BIN 16 bits) 										
	Setting Data	Internal Bit	Devices Word	R, ZR	Jii\i Bit	Word	U∭∖G∭		Zn	Constants K, H	Other U
	n1		0)			0			0	0
	n2		C)			0			0	
	D		C)						_	_
	n3		C)			0			0	

Grant Function

(1) Reads the data of n3 words from the CPU shared memory address designated by n2 of the CPU module designated by n1, and stores that data into the area starting from the device designated by .

CPU shared memory address of the High Performance model QCPU and Process CPU

*1 : Usable as a user free area when auto refresh setting is not made. When auto refresh setting is made, the auto refresh send range and later are usable as a user free area.

- (2) When 0 is specified in n3 as the number of data to be read, no processing is performed.
- (3) The number of data to be read changes depending on the target CPU module.

CPU Module	Number of Read Points
High Performance model QCPU Process CPU	1 to 4096

Read of data from the CPU shared memory can also be performed using the intelligent function module devices.

For intelligent function module device, refer to the QnUCPU User's Manual (Function Explanation, Program Fundamentals) or Qn(H)/QnPH/QnPRHCPU User's Manual (Function Explanation, Program Fundamentals).

Operation Error

In any of the following cases, an operation error occurs, the error flag (SM0) turns ON, and an error code is stored into SD0.

- (1) When the specified data is outside the following range. (Error code: 4101)
 - The head address of the CPU shared memory (n2) from which read will be performed is outside the CPU shared memory range.
 - The address of the CPU shared memory (n2) from which data is read plus the number of read points (n3) is outside the CPU shared memory range.
 - The read data storage device number (D) plus the number of read points (n3) is outside the specified device range.
- (2) The CPU module does not exist in the position specified by the CPU module head I/O number. (Error code: 2110)
- (3) When the head of read CPU shared memory address (n2) is an invalid value.
 (4097 to 9999) (Error code: 4101)

Program Example

(1) The following program stores data of 10 points from address 800H of the CPU shared memory of CPU No. 2. into the area starting from D0 when X0 is turned ON.

[Ladder Mode]

[List Mode]

Remark

The n1 is specified by the first 3 digits of the hexadecimal 4digits which represent the head I/O number of the slot mounted to the CPU module.

	CPU Slot	Slot 0	Slot 1	Slot 2
Head I/O number	3E00	3E10	3E20	3E30
n1	3E0	3E1	3E2	3E3

The QCPU provides automatic interlocks for the FROM and TO instructions.

K10

MEMO

Category	Processing Details	Reference section
Write instruction to another CPU	Writes devices to another CPU.	Section 10.2
Read instruction from another CPU	Reads devices from another CPU.	Section 10.3

10-1

10

10.1 Overview

The multiple CPU high-speed transmission dedicated instruction directs the Universal model QCPU to write/read device data to/from the Universal model QCPU in another CPU.

The following shows an operation when CPU No.1 writes device data to CPU No.2 with the multiple CPU high-speed transmission dedicated instruction.

The multiple CPU high-speed transmission dedicated instruction in either host CPU or another CPU (target CPU module of instruction) is available only for the following CPU modules.

- Q03UDCPU, Q04UDHCPU, Q06UDHCPU
- The first five digits of serial numeber is 10012 or higer.
- Q10UDHCPU, Q13UDHCPU, Q20UDHCPU, Q26UDHCPU
- QnUDE (H) CPU
- (1) Parameter setting and system configuration to execute the multiple CPU high-speed transmission dedicated instruction

The multiple CPU high-speed transmission dedicated instruction can be executed in the following parameter setting and system configuration.

- CPU No.1 uses QnUD(H)CPU or QnUDE(H)CPU.
- The multiple CPU high speed main base unit (Q3 DB) is used.
- "Use multiple CPU high speed transmission" is selected in the Multiple CPU settings screen of PLC parameter.

(2) Writable/readable devices

(a) Writable/readable device names

The following table shows the devices that can be written to/read from the Univesal model QCPU in another CPU with the multiple CPU high-speed transmission dedicated instruction.

Category	Туре	Device name	Setting of target device	Remarks
Internal user device	Bit device	X, Y, M, L, B, F, SB	Δ	 Requirements for the setting Digits are specified by 16 bits (4 digits). The start bit device is multiples of 16(10H).
	Word device	T, ST, C, D, W, SW	0	—
Internal system device	Bit device	SM	Δ	 Requirements for the setting Digits are specified by 16 bits (4 digits). The start bit device is multiples of 16(10H).
	Word device	SD	0	
File register	Word device	R, ZR	0	_

 \bigcirc :Settable \bigtriangleup :Settable with conditions

SB, SW, SM, and SD include system information area. Take care not to destroy the system information when writing data to the devices above with the D(P).DDWR instruction of the multiple CPU high-speed transmission dedicated instruction.

- (3) Specification method of a device and writable/readable device range There are two methods for specifying a device in another CPU: device specification and string specification. They differ in writable/readable device range to another CPU.
 - (a) Device specification The device specification is a method to directly specify a device in another CPU to be written/read.

Program for device specification with the DP.DDWR instruction

In the device specification, data can be written/read within the device range of host CPU. For example, when data register in host CPU is 12k points and data register in another CPU is 16k points, data can be written/read by 12k points from the start of the data register in another CPU.

10

(b) String specification

The string specification is a method to specify a device in another CPU to be written/ read by character string.

Program for string specification with the DP.DDWR instruction

In the string specification, data can be written to/read from all device ranges of another CPU.

For example, when data register in host CPU is 12k points and data register in another CPU is 16k points, data can be written/read by 16k points from the start of the data register in another CPU.

The following explains precautions for string specification.

- The number of characters that can be specified is 32.
- Whether "0" is appended at the start of the device number or not, the devices are processed as the same.
- For example, both "D1" and "D0001" are processed as "D1".
- Whether a device is specified by upper case character or lower-case character, they are processed as the same.
- For example, both "D1" and "d1" are processed as "D1".
- If a device not existing in another CPU is specified by a character string, the instruction will be completed abnormally.

•••••••••

- (4) Managing the multiple CPU high speed transmission area
 - (a) The multiple CPU high speed transmission area is managed by blocks in units of 16 words.

The following table shows the number of blocks that can be used in each CPU and the number of blocks used in the instruction.

C Number of CPU modules	System area ^{*1}		
o Number of or of modules	1k points	2k points	
2	46	110	
3	22	54	
4	14	35	

^{*1:} For setting of the system area, refer to the QCPU User's Manual (Multiple CPU System).

(b) The following shows configuration of the multiple CPU high speed transmission area when the multiple CPU system is configured with three CPU modules and the system area size is 1k word.

(5) The number of blocks used for the instruction

The number of blocks used for the instruction depends on the number of write points. The following table shows the number of blocks used for the instruction.

Number of write/read points specified by the instruction	D(P).DDWR instruction	D(P).DDRD instruction
1 to 4	1	
5 to 20	2	
21 to 36	3	
37 to 52	4	1
53 to 68	5	
69 to 84	6	
85 to 100	7	

(6) The multiple CPU high-speed transmission dedicated instructions that can be executed concurrently

For the Universal model QCPU, the multiple CPU high-speed transmission dedicated instructions can be concurrently executed within the range satisfying the following formula.

The number of blocks that can be used in each CPU

 \geq

Total number of blocks used for the instructions concurrently executed

When the number of blocks used for the multiple CPU high-speed transmission dedicated instructions exceeds the total number of blocks in the multiple CPU high speed transmission area, the instruction will not be executed in the scan (no processing) but executed at the next scan.

Note that the instruction will be completed abnormally when the number of empty blocks in the multiple CPU high speed transmission area is less than the setting values of SD796 to SD799 (maximum number of used blocks for multiple CPU high-speed transmission dedicated instruction setting) at the execution of the instruction.

The following table shows execution possibility of the multiple CPU high-speed transmission dedicated instructions when the number of empty blocks in the multiple CPU high speed transmission area is less than the number of blocks used for the multiple CPU high-speed transmission dedicated instructions or the setting values of SD796 to SD799.

Magnitude relation between the number of blocks		
used for the instructions*1 and		
the number of empty	Number of blocks used SNumber of empty blocks*2	Number of blocks used > Number of empty blocks*2
Magnitude relation blocks	for the instruction*1	for the instruction*1
between SD setting value		
and the number of empty blocks		
SD setting value*3 ≤ Number of empty blocks*2	Executed	Not executed (no processing)
SD setting value*3 > Number of empty blocks*2	Completed	abnormally

*1:The number of blocks used for the multiple CPU high-speed transmission dedicated instruction.

*2:The number of empty blocks in the multiple CPU high-speed transmission area *3:Setting values from SD796 of SD799.

- (7) Interlock when using the multiple CPU high-speed transmission dedicated instruction
 - (a) Special relays SM796 to SM799 (maximum number of used blocks for multiple CPU high-speed transmission dedicated instruction setting) can be used as an interlock for the multiple CPU high-speed transmission dedicated instruction.
 When executing the multiple CPU high-speed transmission dedicated instructions concurrently, use SM796 to SM799 as an interlock for the instructions.

When using special relays SM796 to SM799, set the maximum number of blocks for the instruction used for each CPU to special registers SD796 to SD799. (For example, when the maximum number of blocks for the multiple CPU high-speed transmission dedicated instruction to be executed to CPU No.3 is 5, set 5 to SD798.)

When the multiple CPU high speed transmission area becomes equal to or less than the number of blocks set at SD796 to SD799, the corresponding special relay (SM796 to SM799) turns on.

(b) Program example when SM796 to SM799 are used as an interlock The following shows a program that executes the D.DDWR instruction to CPU No.2 at the rise of X0, and executes the D.DDWR instruction to CPU No.3 at the rise of X1.

The maximum number of used blocks for multiple CPU hight speed transmission dedicated

(8) Program example when the multiple CPU high-speed transmission dedicated instructions are executed to CPU modules by turns

When the multiple CPU high-speed transmission dedicated instructions are executed to Universal model QCPUs by turns, release an interlock to prevent the concurrent execution. Use the cyclic transmission area device (from U3En¥G10000) as an interlock. The following shows a program example when the multiple CPU high-speed transmission dedicated instructions are executed at CPU No.s 1 and 2 by turns.

Program example when the multiple CPU high-speed transmission dedicated instruction is executed at CPU No.1

SM402 Turn-on for one scan after RUN	[моv	K7	SD797 Maximum number of used blocks (CPU No.2)
X0 I↑I Write command		–[SET	M0 } uring execution of the DWR instruction
	U3E0¥G10000.0 is turned on while CPU No.1 is exec	uting the DP.DI	OWR instruction.
M0 U3E1¥G10000.0 SM797		[SET	U3E0¥ G10000.0 CPU No.1 is during execution of the instruction
	[Mov	K100	D1 } Number of write points
	DP.DDWR H3E1 D0 ZR100 Completion status	ZR100	M1 } Completion device
		-[RST	MO } During execution of the DDWR instruction
M1 Completion device	U3E0¥G10000.0 is turned on while CPU No.1 is exec	[SET	U3E0¥ G10000.0 CPU No.1 is during of the instruction

10

Program example when the multiple CPU high-speed transmission dedicated instruction is executed at CPU No.2

SM402 I Turn-on for one scan after RUN	[MOV	K1	SD796 } Maximum number of used blocks (CPU No.1)
A20 I↑I Read instruction		-[SET	MO] During execution the DDRD instruction
	U3E1¥G10000.0 is turned on while CPU No.2 is execu	iting the DP.D	DRD instruction.
M0 U3E0¥G10000.0 SM796 During execution CPU No.1 is Number of used of the DDWR during execution blocks information instruction of the instruction (CPU No.1)		[SET	U3E1¥ G10000.0 } CPU No.2 is during execution of the instruction
	[моv	K50	D1 } Read instruction
	DP.DDRD H3E0 D0 D1000 Completion status	D1000	M1 } Completion devaice
		-[RST	MO } During execution of the DDRD instruction
M1 Completion device		[RST	U3E1¥ G10000.0 } CPU No.2 is during of execution the instruction

(9) Program example when data exceeding 100 words are written/read with the multiple CPU high-speed transmission dedicated instruction

The maximum number of write/read points that can be processed with the multiple CPU high-speed transmission dedicated instruction is 100 words. Data exceeding 100 words can be written/read by executing the multiple CPU high-speed transmission dedicated instruction at several times.

The following shows a program example using the D(P).DDWR instruction of the multiple CPU high-speed transmission dedicated instruction. The similar program can be used when using the D(P).DDRD instruction of the multiple CPU high-speed transmission dedicated instruction.

(a) Program example when one D(P).DDWR instruction is executThe following shows a program example that writes ZR0 to ZR999 (1000 points) in CPU No.1 to ZR0 to ZR999 in CPU No.2 with the D.DDWR instruction.

In the following program example, the next D.DDWR instruction is executed after the completion device of the D.DDWR instruction (M2) turns on so that only one D.DDWR instruction may be executed.

Program example when one D(P).DDWR instruction is executed

The maximum number of used blocks for multiple CPU high-speed transmission dedicated instruction setting is set to CPU No.2

(b) Program example when the D(P).DDWR instructions are executed concurrently

The following shows a program example that writes ZR0 to ZR999 (1000 points) in CPU No.1 to ZR0 to ZR999 in CPU No.2 with the D.DDWR instruction.

As shown on the program example, multiple CPU device write/read instructions can be executed concurrently.

When reading/writing devices with the multiple CPU high-speed transmission dedicated instructions concurrently, the more the total number of blocks in the multiple CPU high speed transmission area (send area), the more the time taken to complete reading/ writing with the multiple CPU high-speed transmission dedicated instruction can be shortened.

Program example when the D(P).DDWR instructions are executed concurrently

The m transr	naximum num nission dedic	ber of used b ated instruction	olocks for on setting	multiple C is set to C	PU high-spee PU No.2	d					
0	SM402							— [моv	K7	SD797 Maximum number o	յ ք }
								— [моv	K100	(CPU No.2) D1 Number of write points 1	}
Data	L writing is star	ted at the rise	e of the wi	ite comma	and (X0)			[MOV	K100	D3 Number of write points 2	З
39	X0 Write [comma w	M0 During vriting							[RST	Z2	}
First [DWR instruc	ction. Second	DDWR ir	struction					[SET	M0 During writing	}
70	M0 II During								[SET	M1 During execution of	3
	Writing M7	of the povt							E SET	M2	^{ה ז} ן
The fi	DDWR instruction	struction is ex	ecuted							the DDWR instruction	n 2
94	M1 During execution of the DDWR	SM797 Number of used blocks information			[D.DDWF	R H3E1	D0 Completion status 1	ZR0Z2 Write destination	ZR0Z2 source write	M3 Completion device 1	З
The s	instruction 1 econd DDWF	(CPU No.2) R instruction is	s execute	d					[RST	M1 During execution of the	. }
126	M2 During execution of the DDWR	SM797 Number of used 3 blocks information			[D.DDWF	R H3E1	D2 Completion status 2	ZR100Z2 Write destination	ZR100. source write	Z2 M5 Completion device 2	Э
	instruction 2	(CPU No.2)							-[RST	M2 During execution of the DDWR instruction 2	. }
When	the DDWR in M3	nstruction is o M4	completed	abnomall	y, the annunci	ator is tur	ned on and o	data writing is	s stopped	DDWN Instruction 2	_
158	Completion device 1	Error completion device 1							{SET	F0 DDWR instructi error display) on
	M5 Completion device 2	M6 Error completion							[RST	M0 During writing	}
Next	data writing is	requested a M6	t nomal co	ompletion	of the second	DDWR in	struction				
197	Completion							[+	K200	Z2	З
	device 2	completion device 2	[<	Z2	K1000	}			[PLS	M7 Execution request of t next DDWR instructio	the n
			l <u>r</u> =	Z2	K1000	}			—[RST	M0 During writing	З
241										END	}

10.2 Writing Devices to Another CPU (D(P).DDWR)

Basic High Process Redundant Universal

Q03UDCPU, Q04UDHCPU, Q06UDHCPU: that the first 5 digits of serial number is 10012 or higer QnUDE(H)CPU.

D.DDWR	Command	D.DDWR	n	S1	\$2	Ø	D2	-
DP.DDWR	Command	DP.DDWR	n	S1	\$2	D1	©	

Setting	Internal device		P 7P	J	JIII\III		Zn	Constant	Others
data	Bit	Word ^{*6}	Ν, ΖΝ	Bit	Word	0::\G::	211	К, Н	Others
n *2		0	0					0	
S1) *3		△*4	△*5		—				
S2 *3		0	0						
©1 *3	_	0	0	_					
©2 *3	△*7	-	△ ^{*5}	_					

*2: Index modification cannot be made to setting data n.

- *3: Index modification cannot be made to setting data from \mathfrak{S} to \mathfrak{D} .
- *4: Local devices cannot be used.
- *5: File registers cannot be used per program.
- *6: FD @ (indirect specification) cannot be used.
- *7: FX and FY cannot be used.

⊖ Set Data

Setting data	Description	Data type		
n	The result of dividing the start I/O number of another CPU by 16 CPU No.1: 3E0н, CPU No.2: 3E1н, CPU No.3: 3E2н, CPU No.4: 3E3н	BIN 16 bits		
SI	Start device of the host CPU that stores control data	Device name		
\$2	Start device of the host CPU that stores data to be written			
(D1)	Start device of another CPU that stores write data	Device ^{*6}		
Ŭ		Character string ⁷		
02	Completion device	Bit		

*6: By specifying a file register (R, ZR), data can be written to devices in another CPU, outside the range of host CPU.

*7: By specifying the start device by " ", devices can be written to devices in another CPU, outside the range of host CPU.

10

Control Data

Device	Item	Setting data	Setting range	Set by
জ)+0	Completion status	An execution result upon completion of the instruction is stored. 0000(H): No errors (normal completion) Other than 0000(H): Error code (error completion)	_	System
জ্ঞ)+1	Number of write points	Set the number of write points in units of words.	1 to 100	User

Grant Function

(1) In multiple CPU system, data stored in a device specified by host CPU ((2)) or later is stored by the number of write points specified by ((2)+1) into a device specified by another CPU (n) ((2)) or later.

- (2) Whether to complete the D(P).DDWR instruction normally can be checked by the completion device (2+0) and completion status display device (2+1).
 - (a) Completion device (2+0)
 Turns on at END processing in the scan where the instruction has been completed, and turns off at the next END processing.
 - (b) Completion status display device (2+1)
 This device turns on/off depending on the status upon completion of the instruction.
 - Normal completion: Off
 - Error completion: Turns on at END processing in the scan where the instruction has been completed, and turns off at the next END processing (At error completion, an error code is stored at control data ((s)+0): Completion status)).

(3) The number of blocks used for the instruction depends on the number of write points (refer to Section 12.1).

D(P).DDWR
instruction
1
2
3
4
5
6
7

Number of blocks used for the instruction

(4) The instruction will be completed abnormally when there are no empty blocks in the multiple CPU high speed transmission area.

Set the number of blocks used for the instruction at special registers (SD796 to SD799), and use the special relays (SM796 to SM799) as an interlock prevent error completion (refer to Section 12.1).

Coperation Error

In any of the following cases, an operation error occurs, the error flag (SM0) turns on, and an error code is stored into SD0.

- (1) Specified another CPU is wrong or the multiple CPU high-speed transmission dedicated instruction cannot be used in the setting (Error code: 4350)
 - The reserved CPU has been specified.
 - Unmounted CPU has been specified.
 - Another CPU start I/O number divided by 16n is out of 3E0H to 3E3H.
 - The instruction was executed without setting "Use multiple CPU high speed transmission".
 - The instruction was executed with the Q02UCPU.
 - · Host CPU has been specified.
 - · The CPU where the instruction cannot be executed has been specified.
- (2) The instruction cannot be executed with the CPU. (Error code: 4351)
 - · Another CPU does not support this instruction.
- (3) The number of devices is wrong.
- (4) The device that cannot be used for the instruction has been specified. (Error code: 4353)
- (5) A device has been specified by the character string that cannot be used. (Error code: 4354)
- (6) The number of write points ((s)+1) is other than 0 to 100. (Error code 4354)

(Error code: 4352)

10

In any of the following cases, the instruction is completed abnormally, and an error code is stored into a device specified at completion status storage device (\mathfrak{S} +0).

(1) The request of the instruction to the target CPU is more than the acceptable value (no empty blocks exist in the multiple CPU high speed transmission area).

(Error code: 0010H)

- (2) A device for another CPU specified at (s) cannot be used at another CPU, or is out of device range.
 (Error code: 1001H)
- (3) The number of write points set with the D(P).DDWR instruction is 0.

(Error code: 1080H)

(4) The response of the instruction from another CPU cannot be returned (no empty blocks exist in the multiple CPU high speed transmission area). (Error code: 1003H)

Program Example

 This program stores data by 10 words starting from DO in host CPU into W10 or later in CPU No.2 when XO turns on.

- <u>Caution</u>
 - (1) Digit specification of bit device is possible for n, <a>(2), and <a>(2). Note that when the digit specification of bit device is made to <a>(2) or <a>(2), the following conditions must be met.
 - Digits are specified by 16 bits (4 digits).
 - The start bit device is multiples of 16 (10H).
 - (2) Execute this instruction after checking that the write target CPU is powered on. Not doing so may end up no processing.
 - (3) If changing a range of the device specified at setting data between after execution of the instruction and turn-on of the completion device, data to be stored by system (completion status, completion device) cannot be stored normally.
 - (4) SB, SW, SM, and SD include system information area. Take care not to destroy the system information when writing data to the devices above with the D(P).DDWR instruction of the multiple CPU high-speed transmission dedicated instruction.

10.3 Reading Devices from Another CPU (D(P).DDRD)

Basic High performance Process Redundant Universal

Q03UDCPU, Q04UDHCPU, Q06UDHCPU: that the first 5 digits of serial number is 10012 or higer QnUDE(H)CPU.

Setting	Interna	l device	R 7R	J/		u:'''\ci'''	Zn	Constant	Others
data	Bit	Word	, <u>2</u> , 1	Bit	Word	0:	2.1	К, Н	Others
n *2		0	0					0	
S1 *3		△* 3	△* 4						
S2 *3		0	0						
©1 *3		△* 3	△*4	_					
©2 *3	*3		△*4						

*2: Index modification cannot be made to setting data n.

*3: Index modification cannot be made to setting data from \$1 to D2.

*4: Local devices cannot be used.

*5: File registers cannot be used per program.

*6: FD @ (indirect specification) cannot be used.

*7: FX and FY cannot be used.

⊖ Set Data

Setting data	Description	Data type	
n	The result of dividing the start I/O number of another CPU by 16 CPU No.1: 3E0н, CPU No.2: 3E1н, CPU No.3: 3E2н, CPU No.4: 3E3н	BIN 16 bits	
SI	Start device of the host CPU that stores control data	Device name	
62	Start device of another CPU that stores data to be read		
Ø	Start device of the host CPU that stores read data	Device ^{*6}	
		Character string*7	
02	Completion device	Bit	

*6: By specifying a file register (R, ZR), data can be read to devices in another CPU, outside the range of host CPU.

*7: By specifying the start device by " ", devices can be read to devices in another CPU, outside the range of host CPU.

10

Control Data

Device	Item	Setting data	Setting range	Set by
জ)+0	Completion status	An execution result upon completion of the instruction is stored. 0000(H): No errors (normal completion) Other than 0000(H): Error code (error completion)	_	System
জ)+1	Number of read points	Set the number of read points in units of words.	1 to 100	User

In multiple CPU system, data stored in a device specified by another CPU (n) (D) or later is stored by the number of read points specified by (S)+1) into a device specified by host CPU

- (2) Whether to complete the D(P).DDRD instruction normally can be checked by the completion device (2+0) and completion status display device (2+1).
 - (a) END processing in scan data that CPU completed the instruction turns on the device and the next END processing turns off the device.
 - (b) This device turns on/off depending on the status upon completion of the instruction.
 - · Normal completion: Off
 - Error completion: Turns on at END processing in the scan where the instruction has been completed, and turns off at the next END processing (At error completion, an error code is stored at control data (St+0): Completion status)).
- (3) The number of blocks used for the instruction depends on the number of read points (refer to Section 12.1).

Number of read points	D(P) DDPD instruction				
specified by the instruction					
1 to 100	1				

Number of blocks used for the instruction

(4) The instruction will be completed abnormally when there are no empty blocks in the multiple CPU high speed transmission area.

Set the number of blocks used for the instruction at special registers (SD796 to SD799), and use the special relays (SM796 to SM799) as an interlock prevent error completion (refer to Section 12.1).
(Error code: 4352)

✓ Operation Error

In any of the following cases, an operation error occurs, the error flag (SM0) turns on, and an error code is stored into SD0.

- (1) Specified another CPU is wrong or the multiple CPU high-speed transmission dedicated instruction cannot be used in the setting (Error code: 4350).
 - The reserved CPU has been specified.
 - · Unmounted CPU has been specified.
 - The result of dividing the start I/O number of another CPU by 16n is outside the range of 3E0H to 3E3H.
 - The instruction was executed without setting "Use multiple CPU high speed transmission".
 - The instruction was executed with the Q02UCPU.
 - Host CPU has been specified.
 - The CPU where the instruction cannot be executed has been specified.
- (2) The instruction cannot be executed with the CPU. (Error code: 4351)
 - Another CPU does not support this instruction.
- (3) The number of devices is wrong.
- (4) The device that cannot be used for the instruction has been specified. (Error code: 4353)
- (5) A device has been specified by the character string that cannot be used. (Error code: 4354)
- (6) The number of read points ((s)+1) is other than 0 to 100. (Error code: 4355)

In any of the following cases, the instruction is completed abnormally, and an error code is stored into a device specified at completion status storage device ((+0).

- (1) The request of the instruction to the target CPU is more than the acceptable value (no empty blocks exist in the multiple CPU high speed transmission area). (Error code: 0010H)
- (2) A device for another CPU specified at ⁽²⁾ cannot be used at another CPU, or is out of device range. (Error code: 1001H)
- (3) The number of read points set with the D(P).DDRD instruction is 0. (Error code: 1081H)
- (4) The response of the instruction from another CPU cannot be returned (no empty blocks exist in the multiple CPU high speed transmission area). (Error code: 1003H)

Program Example

(1) This program stores data by 10 words starting from DO in CPU No.2 into W10 or later in host CPU when XO turns on.

- (1) Digit specification of bit device is possible for n, (2), and (1). Note that when the digit specification of bit device is made to (2) or (1), the following conditions must be met.
 - Digits are specified by 16 bits (4 digits).
 - The start bit device is multiples of 16 (10H).
- (2) Execute this instruction after checking that the read target CPU is powered on. Not doing so may end up no processing.
- (3) If changing a range of the device specified at setting data between after execution of the instruction and turn-on of the completion device, data to be stored by system (completion status, completion device) cannot be stored normally.

Category Processing Details		Reference section
	Switches between the control system and standby system at	
System switching instruction	ing instruction the END processing of the scan executed with the	
	SP.CONTSW instruction.	

11.1 System Switching Instruction (SP.CONTSW)

Grant Function

- (1) Switches between the control system and standby system at the END processing of the scan executed with the SP.CONTSW instruction.
- (2) When using the SP.CONTSW instruction for system switching, the "manual switching enable flag (SM1592)" must have been turned ON (enabled) in advance.
- (3) (s) is provided to identify the processing block of the program where system switching occurred when multiple SP.CONTSW instructions are used.

At (s), specify a value within the ranges -32768 to -1 and 1 to 32767 (1 $\rm H$ to FFFH). The (s) value specified for the SP.CONTSW instruction is stored into the "system switching instruction argument (SD6)" of the error common information when the system switching is normally completed. ^{*2}

When multiple SP.CONTSW instructions are executed during the same scan, the argument of the SP.CONTSW instruction executed first is stored into the system switching instruction argument (SD6).

(4) When system switching is normally completed, the (s) value specified for the SP.CONTSW instruction is stored into the "system switching instruction argument (SD1602)" of the new control system CPU module. ^{*3}

By reading the SD1602 value from the new control system CPU module, which the SP.CONTSW instruction was used for system switching can be confirmed.

- *2 : The (s) value specified for the SP.CONTSW instruction can be confirmed in the error common information of the PLC diagnostics dialog box on GX Developer.
- *3 : The new control system CPU module means the CPU module that was switched from the standby system to the control system by the SP.CONTSW instruction.

- (5) The error completion device is turned ON by the control system CPU module when system switching by the SP.CONTSW instruction was unsuccessful.
 - (a) When OPERATION ERROR is detected due to any of the following reasons at the execution of the SP.CONTSW instruction, the error completion device is turned ON during the instruction execution.
 - 0 is specified at (s) of the executed SP.CONTSW instruction.
 - The "manual switching enable flag (SM1592)" is OFF.
 - The SP.CONTSW instruction was executed by the standby system in the separate mode.
 - The SP.CONTSW instruction was executed in the debug mode.
 - (b) If systems could not be switched due to any of the reasons given in the following table, the error completion device turns ON when system switching is executed in the END processing.

Reason No.	Reasons for System Switching Failure
0	Normally completed
1	Tracking cable is disconnected or faulty.
2	Hardware fault, power-off, reset or watchdog timer error occurred in the standby system.
3	Watchdog timer error occurred in the control system.
4	Preparations being made for tracking transfer.
5	Communication time-out.
6	Stop error occurred in the standby system. (Excluding watchdog timer error)
7	Operating status different between the control system and standby system.
8	Memory copy being executed from the control system to the standby system.
9	Write during RUN being executed.
10	Network fault detected by the standby system.

When the error completion device was turned ON due to unsuccessful system switching, 16 is stored into the "reason(s) for system switching (SD1588)" and the reason No. of the above table into the "reason(s) for system switching failure (SD1589)".

(6) Use a user program or GX Developer to turn OFF the error completion bit that has turned ON.

If normal system switching is performed by the execution of the SP.CONTSW instruction with the error completion device ON, the error completion device of the new standby system CPU module is also turned OFF.

When system switching is performed due to a factor other than the SP.CONTSW instruction, however, the error completion device is not turned OFF.

Coperation Error

- (1) In any of the following cases, an operation error occurs, the error flag (SM0) turns ON, and an error code is stored into SD0.
 - The value specified at ${\scriptstyle\textcircled{(s)}}$ is 0 at execution of the SP.CONTSW instruction.

(Error code: 4100)

- The manual switching enable flag (SM1592) is OFF (disable) at execution of the SP.CONTSW instruction.
 (Error code: 4120)
- The SP.CONTSW instruction was executed by the standby system CPU module in the separate mode.
 (Error code: 4121)
- The SP.CONTSW instruction was executed in the debug mode. (Error code: 4121)

(2)	If system switching was unsuccessful, the error flag (SM0) is turned ON a stored into SD0.	and an error code is
	 The tracking cable is disconnected or faulty. 	(Error code: 6220)
	Hardware fault, power-off, reset or watchdog timer error occurred in th	e standby system. (Error code: 6220)
	 Watchdog timer error occurred in the control system. 	(Error code: 6220)
	 Preparations are being made for tracking transfer. 	(Error code: 6220)
	Communication time-out occurred.	(Error code: 6220)
	Stop error, excluding watchdog timer error, occurred in the standby system	stem.
		(Error code: 6220)
	The operating status differs between the control system and standby s	system. (Error code: 6220)
	Memory copy is being executed from the control system to the standby	y system. (Error code: 6220)
	 Write during RUN is being executed. 	(Error code: 6220)
	 Network fault was detected by the standby system. 	(Error code: 6220)
nom	Example	

Program Example

(1) The following program executes system switching on the leading edge of the system switching command (M100).

If the system switching command (M100) remains ON, the SP.CONTSW instruction is also executed by the new control system CPU module after system switching. Therefore, M101 is added to the execution conditions as a consecutive switching prevention flag.

The CPU module uses the self diagnostics function to display error information (on the LED) and stores the information into the special relay SM and special register SD, when an error occurs in the following situations:

- When the Progammable Controller is powered ON.
- When the CPU module is switched from STOP to RUN.
- While the CPU module is running.

If an error occurs when a communication request is issued from the peripheral device, intelligent function module or network system to the CPU module, the CPU module returns the error code $(4000_{\text{H}} \text{ to } 4\text{FFF}_{\text{H}})$ to the request source.

The following describes the description of errors which occur in the CPU module and the corrective actions for the errors.

(1) How to read the error code list

The following describes how to read Section 12.1.3 Error code list (1000 to 1999) to Section 12.1.9 Error code list (7000 to 10000).

- (a) Error code, common information and individual information Alphanumeric characters in the parentheses of the titles indicate the special register numbers where each information is stored.
- (b) Compatible CPU

QCPU	: Indicates all the Q series CPU modules.
Q00J/Q00/Q01	: Indicates the Basic model QCPU.
Qn(H)	: Indicates the High Performance model QCPU.
QnPH	: Indicates the Process CPU.
QnPRH	: Indicates the Redundant CPU.
QnU	: Indicates the Universal model QCPU.
Each CPU module	: Indicates the relevant specific CPU module.
model name	(Example: Q02U)

12.1.1 Error codes

Errors are detected by the self diagnostic function of the CPU module or detected during communication with the CPU module.

The relation between the error detection pattern, error detection location and error code is shown in Table 12.1.

Error detection pattern	Error detection location	Error code	Reference
Detection by the self diagnostics function of CPU module	CPU module	1000 to 10000*1*2	Section 12.1.3 to 12.1.9
	CPU module	4000н to 4FFFн	 QCPU User's Manual (Hardware design, Maintenance and Inspection)
	Serial communication module, etc.	7000н to 7FFFн	Serial Communication User's Manual, etc.
	CC-Link module	B000н to BFFFн	CC-Link System Master/Local Module User's Manual
Detection at communication	Ethernet module	C000H to CFFFH	Ethernet Interface Module User's Manual
with CPU module	CC-Link IE controller network	E000н to EFFFн	CC-Link IE Controller Network Reference Manual
	MELSECNET/H network module	F000н to FFFFн	 MELSECNET/H mode Q Corresponding MELSECNET/H Network System Reference Manual MELSECNET/10 mode For QnA/Q4AR MELSECNET/10 Network System Reference Manual

Table12.1Reference destination

*1: CPU module error codes are classified into minor, moderate, major errors as shown below.

- Minor error: Errors that may allow the CPU module to continue the operation, e.g., battery error. (Error code: 1300 to 10000)
- Moderate error: Errors that may cause the CPU module to stop the operation, e.g., WDT error. (Error code: 1300 to 10000)
- Major error: Errors that may cause the CPU module to stop the operation, e.g., RAM error. (Error code: 1000 to 1299)
- Determine the error level, i.e. whether the operation can be continued or stopped, by referring to "Operating Statuses of CPU" described in Section 12.1.3 to 12.1.9 "Error Code List"
- *2: When detected an error code without being noted in the reference table, please contact your local Mitsubishi representive.

12.1.2 Reading an error code

When an error occurs, reading an error code, error message or the like can be executed with GX Developer.

For the details of the operation method, refer to the operating manual for GX Developer.

12

12.1.3 Error code list (1000 to 1999)

The following shows the error messages from the error code 1000 to 1999, the contents and causes of the errors, and the corrective actions for the errors.

Error Code	Error Contents and Cause	Corrective Action	LED Status CPU Status	Corresponding CPU
1000	[MAIN CPU DOWN] Runaway or failure of CPU module or failure of main CPU • Malfunctioning due to noise or other reason • Hardware fault Ecollateral information • Common Information: • Individual Information: EDiagnostic Timing • Always	 Take noise reduction measures. Reset the CPU module and RUN it again. If the same error is displayed again, this suggests a CPU module hardware fault. (Contact your local Mitsubishi representative.) 		
1001	 [MAIN CPU DOWN] Runaway or failure of CPU module or failure of main CPU Malfunctioning due to noise or other reason Hardware fault Accessed to outlying devices with the device range checks disabled (SM237 is turned on)(This error occurs only when BMOV, FMOV, and DFMOV instructions are executed.) (Universal model QCPU only) ECollateral information Common Information:- Individual Information:- Biagnostic Timing Always 	 Take noise reduction measures. Reset the CPU module and RUN it again. If the same error is displayed again, this suggests a CPU module hardware fault. (Contact your local Mitsubishi representative.) Check the devices specified by BMOV, FMOV, and DFMOV instructions and correct the device settings. (Universal model QCPU only) 	RUN: Off	QCPU
1002	[MAIN CPU DOWN] Runaway or failure of CPU module or failure of		ERR.: Flicker	
1003	 main CPU Malfunctioning due to noise or other reason Hardware fault Collateral information Common Information:- Individual Information:- Diagnostic Timing Always 	 Take noise reduction measures. Reset the CPU module and RUN it again. If the same error is displayed again, this suggests a CPU module hardware fault. (Contact your local Mitsubishi representative.) 	CPU Status: Stop	
1005	[MAIN CPU DOWN] Runaway or failure of CPU module or failure of main CPU • Malfunctioning due to noise or other reason • Hardware fault Collateral information • Common Information: • Individual Information: Diagnostic Timing • Always	 Take noise reduction measures. Reset the CPU module and RUN it again. If the same error is displayed again, this suggests a CPU module hardware fault. (Contact your local Mitsubishi representative.) 		
	[MAIN CPU DOWN] Boot operation was performed in the transfer destination without formatting. Collateral information • Common Information:- • Individual Information:- Diagnostic Timing • At power ON	Before performing boot operation by the parameter, select "Clear program memory" to clear the program memory.		Qn(H) QnPH QnPRH

Error Code	Error Contents and Cause	Corrective Action	LED Status CPU Status	Corresponding CPU	
1006	[MAIN CPU DOWN]				
1007	Runaway or failure of CPU module or failure of				
1008	 main CPU Malfunctioning due to noise or other reason Hardware fault Collateral information Common Information:- Individual Information:- Diagnostic Timing 	 Take noise reduction measures. Reset the CPU module and RUN it again. If the same error is displayed again, this suggests a CPU module hardware fault. (Contact your local Mitsubishi representative.) 		Qn(H) QnPH QnPRH	
	• Always				
1009	 [MAIN CPU DOWN] A failure is detected on the power supply module, CPU module, main base unit, extension base unit or extension cable. When using the redundant base unit, the redundant power supply module failure in both systems and/or the redundant base unit failure are detected. Collateral information Common Information: Individual Information: Diagnostic Timing Always 	Reset the CPU module and RUN it again. If the same error is detected again, it is considered that the power supply module, CPU module, main base unit, extension base unit or extension cable is faulty. (Contact your local Mitsubishi representative.)		Q00J/Q00/Q01 ^{*4} Qn(H) ^{*6} QnPH QnPRH QnU	12
1010	 [END NOT EXECUTE] Entire program was executed without the execution of an END instruction. When the END instruction is executed it is read as another instruction code, e.g. due to noise. The END instruction has been changed to another instruction code somehow. Collateral information Common Information:- Individual Information:- Diagnostic Timing When an END instruction executed 	 Take noise reduction measures. Reset the CPU module and RUN it again. If the same error is displayed again, this suggests a CPU module hardware fault. (Contact your local Mitsubishi representative.) 	RUN: Off ERR.: Flicker CPU Status: Stop	QCPU	
1020	 [SFCP. END ERROR] The SFC program cannot be normally terminated due to noise or other reason. The SFC program cannot be normally terminated due to noise or any similar cause. The SFC program cannot be normally terminated for any other reason. Collateral information Common Information: Individual Information: Diagnostic Timing When SFC program is executed 	 Take noise reduction measures. Reset the CPU module and RUN it again. If the same error is displayed again, this suggests a CPU module hardware fault. (Contact your local Mitsubishi representative.) 		Q00J/Q00/Q01 ^{*4} QnPH QnU	12.1 Error Code List 12.1.3 Error code list
1035	[MAIN CPU DOWN] Runaway or error of the CPU module was detected. • Malfunction due to noise etc. • Hardware failure Ecollateral information • Common Information:- • Individual Information:- EDiagnostic Timing • Always	 Take measures against noise. Reset the CPU module and run it again. If the same error is displayed again, the CPU module has hardware failure.(Contact your local Mitsubishi representative, explaining a detailed description of the problem.) 		QnU	t (1000 to 1999)

Error Code	Error Contents and Cause	Corrective Action	LED Status CPU Status	Corresponding CPU
1101	[RAM ERROR] The sequence program storing program memory in the CPU module is faulty. Collateral information • Common Information: • Individual Information: Diagnostic Timing • At power ON/ At reset/ When an END instruction executed	 Take noise reduction measures. Reset the CPU module and RUN it again. If the same error is displayed again,this suggests a CPU module hardware fault.(Contact your local Mitsubishi representative.) 		
1102	 [RAM ERROR] The work area RAM in the CPU module is faulty. The standard RAM and extended RAM in the CPU module are faulty. Collateral information Common Information:- Individual Information:- Diagnostic Timing At power ON/ At reset/ When an END instruction executed 	 Take noise reduction measures. Reset the CPU module and RUN it again. If the same error is displayed again, this suggests a CPU module hardware fault. (Contact your local Mitsubishi representative.) 		QCPU
1103	[RAM ERROR] The device memory in the CPU module is faulty. Collateral information • Common Information: • Individual Information: Diagnostic Timing • At power ON/ At reset	 Take noise reduction measures. When indexing is performed, check the value of 	RUN: Off ERR.: Flicker CPU Status: Stop	
	 [RAM ERROR] The device memory in the CPU module is faulty. The device out of range is accessed due to indexing, and the device for system is overwritten. Collateral information Common Information:- Individual Information:- Diagnostic Timing At power ON/ At reset/ When an END instruction executed 	 index register to see if it is within the device range. Reset the CPU module and RUN it again. If the same error is displayed again,this suggests a CPU module hardware fault.(Contact your local Mitsubishi representative.) 		Qn(H) ^{*8} QnPH ^{*8} QnPRH ^{*9}
1104	[RAM ERROR] The address RAM in the CPU module is faulty. Collateral information • Common Information: • Individual Information: Diagnostic Timing • At power ON/ At reset	 Take noise reduction measures. Reset the CPU module and RUN it again. If the same error is displayed again, this suggests a CPU module hardware fault. (Contact your local Mitsubishi representative.) 		QCPU
1105	[RAM ERROR] The CPU memory in the CPU module is faulty. Collateral information • Common Information:- • Individual Information:- Diagnostic Timing • At power ON/ At reset	 Take noise reduction measures. Reset the CPU module and RUN it again. If the 		Q00J/Q00/Q01 QnU
	[RAM ERROR] The CPU shared memory in the CPU module is faulty. Collateral information • Common Information: • Individual Information: Diagnostic Timing • At power ON/ At reset	same error is displayed again, this suggests a CPU module hardware fault. (Contact your local Mitsubishi representative.)		Qn(H) ^{*4} QnPH QnPRH QnU

*4 *8 *9

- Function version is B or later. The module whose first 5 digits of serial No. is "08032" or later. The module whose first 5 digits of serial No. is "09012" or later.

Error Code	Error Contents and Cause	Corrective Action	LED Status CPU Status	Corresponding CPU	
1106	[RAM ERROR] The battery is dead. The program memory in the CPU module is faulty. ■Collateral information • Common Information:- • Individual Information:- ■Diagnostic Timing • STOP → RUN/When an END instruction executed	 Check the battery to see if it is dead or not. If dead, replace the battery. Take noise reduction measures. Format the program memory, write all files to the PLC, then reset the CPU module, and RUN it again. If the same error is displayed again, the possible cause is a CPU module hardware fault. (Contact your local Mitsubishi representative, explaining a detailed description of the problem.) 		Qn(H) QnPH ^{*7} QnPRH	
1107	[RAM ERROR]				
1108	The work area RAM in the CPU module is faulty. Collateral information Common Information:- Individual Information:- Diagnostic Timing At power ON/ At reset			QnPRH	1
1109	 [RAM ERROR] The work area RAM in the CPU module is faulty. Collateral information Common Information:- Individual Information:- Diagnostic Timing Always 	This suggests a CDU module bardware foult	RUN: Off ERR.: Flicker CPU Status: Stop	Qn(H) ^{*8} QnPH ^{*8} QnPRH ^{*9}	
1110	[TRK. CIR. ERROR] A fault was detected by the initial check of the tracking hardware. ■Collateral information • Common Information: • Individual Information: ■Diagnostic Timing • At power ON/ At reset	 This suggests a CPU module hardware fault. (Contact your local Mitsubishi representative.) 			
1111	[TRK. CIR. ERROR] A tracking hardware fault was detected. Collateral information • Common Information: • Individual Information: Diagnostic Timing • At power ON/ At reset				
1112	[TRK. CIR. ERROR]			QnPRH	
1113	 A tracking hardware fault was detected during running. The tracking cable was disconnected and reinserted without the standby system being powered off or reset. The tracking cable is not secured by the connector fixing screws. The error occurred at a startup since the redundant system startup procedure was not followed. Ecollateral information Common Information: Individual Information: Diagnostic Timing During running 	 Start after checking that the tracking cable is connected. If the same error is displayed again, the cause is the hardware fault of the tracking cable or CPU module. (Please contact your local Mitsubishi representative, explaining a detailed description of the problem.) Confirm the redundant system startup procedure, and execute a startup again. For details, refer to the QnPRHCPU User's Manual (Redundant System). 			2.1 Error Code List 2.1.3 Error code list (1000 to 1999)

The module whose first 5 digits of serial No. is "07032" or later. The module whose first 5 digits of serial No. is "08032" or later. The module whose first 5 digits of serial No. is "09012" or later. *7

*8 *9

Error Code	Error Contents and Cause	Corrective Action	LED Status CPU Status	Corresponding CPU
1115	 [TRK. CIR. ERROR] A fault was detected by the initial check of the tracking hardware. Collateral information Common Information:- Individual Information:- Diagnostic Timing At power ON/ At reset 	This suggests a CPU module hardware fault. (Contact your nearest Mitsubishi representative.)		
1116	 [TRK. CIR. ERROR] A tracking hardware fault was detected during running. The tracking cable was disconnected and reinserted without the standby system being powered off or reset. The tracking cable is not secured by the connector fixing screws. The error occurred at a startup since the redundant system startup procedure was not followed. Collateral information Common Information: Individual Information: Diagnostic Timing During running 	 Start after checking that the tracking cable is connected. If the same error is displayed again, the cause is the hardware fault of the tracking cable or CPU module. (Please contact your local Mitsubishi representative, explaining a detailed description of the problem.) Confirm the redundant system startup procedure, and execute a startup again. For details, refer to the QnPRHCPU User's Manual (Redundant System). 		QnPRH
1150	[RAM ERROR] The memory of the CPU module in the Multiple CPU high speed transmission area is faulty. Collateral information • Common Information:- • Individual Information:- Diagnostic Timing • At power ON/ At reset	 Take noise reduction measures. Reset the CPU module and RUN it again. If the same error is displayed again, the CPU module has hardware failure. Contact your local Mitsubishi representative, explaining a detailed description of the problem. 	RUN: Off ERR.: Flicker CPU Status: Stop	QnU ^{*10}
1160	[RAM ERROR] The program memory in the CPU module is overwritten. Collateral information • Common Information:- • Individual Information:- Diagnostic Timing • At program execution	 Take noise reduction measures. Format the program memory, write all files to the PLC, then reset the CPU module, and RUN it again. If the same error is displayed again, the CPU module has hardware failure. Contact your local Mitsubishi representative, explaining a detailed description of the problem. 	P	
1161	[RAM ERROR] The data of the device memory built in the CPU module is overwritten. Collateral information • Common Information: • Individual Information: Diagnostic Timing • At program execution	 Take noise reduction measures. If the same error is displayed again, the CPU module has hardware failure. Contact your local Mitsubishi representative, explaining a detailed description of the problem. 		QnU
1162	[RAM ERROR] The error of the data held by the battery in the CPU module is detected. (It occurs when the automatic format is not set.) Collateral information • Common Information: • Individual Information: Diagnostic Timing • At power ON/ At reset	 Take noise reduction measures. Change the CPU main body or SRAM card battery. If the same error is displayed again, the CPU module has hardware failure. Contact your local Mitsubishi representative, explaining a detailed description of the problem. 		

*10 The Universal model QCPU except the Q00UJCPU, Q00UCPU, Q01UCPU, and Q02UCPU.

Error Code	Error Contents and Cause	Corrective Action	LED Status CPU Status	Corresponding CPU
1164	 [RAM ERROR] The destruction of the data stored in the standard RAM is detected. Collateral information Common Information:- Individual Information:- Diagnostic Timing When instruction executed 	 Take noise reduction measures. If the same error is displayed again, the CPU module has hardware failure. Contact your local Mitsubishi representative, explaining a detailed description of the problem. 		QnU ^{*11}
1200	[OPE. CIRCUIT ERR.] The operation circuit for index modification in the CPU module does not operate normally. Collateral information • Common Information: • Individual Information: Diagnostic Timing • At power ON/ At reset			
1201	[OPE. CIRCUIT ERR.] The hardware (logic) in the CPU module does not operate normally. Collateral information • Common Information: • Individual Information: Diagnostic Timing • At power ON/ At reset			QCPU
1202	[OPE. CIRCUIT ERR.] The operation circuit for sequence processing in the CPU module does not operate normally. Collateral information • Common Information: • Individual Information: Diagnostic Timing • At power ON/ At reset	This suggests a CPU module hardware fault	RUN: Off ERR.: Flicker CPU Status: Stop	
1203	[OPE. CIRCUIT ERR.] The operation circuit for index modification in the CPU module does not operate normally. ■Collateral information • Common Information: • Individual Information: ■Diagnostic Timing • When an END instruction executed	(Contact your local Mitsubishi representative.)		
1204	[OPE. CIRCUIT ERR.] The hardware (logic) in the CPU module does not operate normally. Collateral information • Common Information: • Individual Information: Diagnostic Timing • When an END instruction executed			QnPRH
1205	[OPE. CIRCUIT ERR.] The operation circuit for sequence processing in the CPU module does not operate normally. Collateral information • Common Information: • Individual Information: Diagnostic Timing • When an END instruction executed			

12.1 Error Code List 12.1.3 Error code list (1000 to 1999)

*11 The Q10UD(E)HCPU, Q13UD(E)HCPU, Q20UD(E)HCPU, .Q26UD(E)HCPU only.

Error Code	Error Contents and Cause	Corrective Action	LED Status CPU Status	Corresponding CPU
1300	[FUSE BREAK OFF] There is an output module with a blown fuse. Collateral information • Common Information:Module No.(Slot No.) [For Remote I/O network]Network No./ Station No. • Individual Information:- Diagnostic Timing • Always	 Check FUSE. LED of the output modules and replace the module whose LED is lit. (The module with a blown fuse can also be identified using GX Developer. Check the special registers SD1300 to SD1331 to see if the bit corresponding to the module is "1".) When a GOT is bus-connected to the main base unit or extension base unit, check the connection status of the extension cable and the earth status of the GOT. 	RUN: Off/On ERR.: Flicker/On CPU Status: Stop/ Continue ^{*1}	Qn(H) QnPH QnPRH QnU
	[FUSE BREAK OFF] There is an output module with a blown fuse. Collateral information: • Common Information:Module No.(Slot No.) [For Remote I/O network]Network No./ Station No. • Individual Information: Diagnostic Timing • Always	Check ERR. LED of the output modules and replace the module whose LED is lit. (The module with a blown fuse can also be identified using GX Developer. Check the special registers SD130 to SD137 to see if the bit corresponding to the module is "1".)		Q00J/Q00/Q01
1310	 [I/O INT. ERROR] An interruption has occurred although there is no interrupt module. Collateral information Common Information:- Individual Information:- Diagnostic Timing During interrupt 	Any of the mounted modules is experiencing a hardware fault. Therefore, check the mounted modules and change the faulty module. (Contact your local Mitsubishi representative.)		QCPU
	[I/O INT. ERROR] An interrupt request from other than the interrupt module was detected. Collateral information • Common Information: • Individual Information: Diagnostic Timing • During interrupt	Take action so that an interrupt will not be issued from other than the interrupt module.	RUN: Off ERR.: Flicker CPU Status:	Q00J/Q00/Q01 ^{*4} QnU
1311	 [I/O INT. ERROR] An interrupt request from the module where interrupt pointer setting has not been made in the PLC parameter dialog box was detected. Collateral information Common Information: Individual Information: Diagnostic Timing During interrupt 	 Correct the interrupt pointer setting in the PLC system setting of the PLC parameter dialog box. Take measures so that an interrupt is not issued from the module where the interrupt pointer setting in the PLC system setting of the PLC parameter dialog box has not been made. Correct the interrupt setting of the network parameter. Correct the interrupt setting of the intelligent function module buffer memory. Correct the basic program of the QD51. 	Stop	Q00J/Q00/Q01 ^{*5} QnPRH QnU
1320	[LAN CTRL.DOWN]		RUN:	
1321	failure. Collateral information Common Information:- Individual Information:- Diagnostic Timing At power ON/ At reset	This suggests a CPU module hardware fault. (Contact your local Mitsubishi representative.)	Off ERR.: Flicker CPU Status: Stop	QnU ^{*13}

CPU operation can be set in the parameters at error occurrence. (LED indication varies.) Function version is B or later. Function version is A. This applies to the Built-in Ethernet port QCPU. *1 *4 *5 *13

Error Code	Error Contents and Cause	Corrective Action	LED Status CPU Status	Corresponding CPU	
1401	 [SP. UNIT DOWN] There was no response from the intelligent function module/special function module in the initial processing. The size of the buffer memory of the intelligent function module/special function module is invalid. The unsupported module is mounted. Collateral information Common Information:Module No.(Slot No.) Individual Information:- Diagnostic Timing At power ON/ At reset/When intelligent function module is accessed 	When the unsupported module is mounted, remove it. When the corresponding module is supported, this suggests the intelligent function module/special function module, CPU module and/or base unit is expecting a hardware fault (Contact your local Mitsubishi representative.)			
1402	 [SP. UNIT DOWN] The intelligent function module/special function module was accessed in the program, but there was no response. Collateral information Common Information:Module No. (Slot No.) Individual Information:Program error location Diagnostic Timing When an intelligent function module access instruction is executed 	This suggests the intelligient function module/ special function module , CPU module and/or base unit is expecting a hardware fault (Contact your local Mitsubishi representative.)	RUN: Off/On ERR.: Flicker/On CPU Status: Stop/ Continue ^{*2}	RUN: Off/On ERR.: Flicker/On	
1403	 [SP. UNIT DOWN] The unsupported module is mounted. Collateral information Common Information:Module No. (Slot No.) Individual Information:- Diagnostic Timing When an END instruction executed 	When the unsupported module is mounted, remove it. When the corresponding module is supported, this suggests the intelligent function module/special function module , CPU module and/or base unit is expecting a hardware fault (Contact your local Mitsubishi representative.)		QCPU	
	 [SP. UNIT DOWN] There was no response from the intelligent function module/special function module when the END instruction is executed. An error is detected at the intelligent function module/special function module. The I/O module (intelligent function module/special function module) is nearly removed, completely removed, or mounted during running. ECollateral information Common Information:-Module No. (Slot No.) Individual Information:- Diagnostic Timing Always 	The CPU module, base module and/or the intelligent function module/special function module that was accessed is experiencing a hardware fault. (Contact your local Mitsubishi representative.)			
1411	[CONTROL-BUS. ERR.] When performing a parameter I/O allocation the intelligent function module/special function module could not be accessed during initial communications. (On error occurring, the head I/O number of the corresponding intelligent function module/special function module is stored in the common information.) Collateral information • Common Information:Module No. (Slot No.) • Individual Information:- Diagnostic Timing • At power ON/ At reset	Reset the CPU module and RUN it again. If the same error is displayed again, the intelligent function module/special function module, CPU module or base unit is faulty. (Contact your local Mitsubishi representative.)	RUN: Off ERR.: Flicker CPU Status: Stop		

12

12.1 Error Code List 12.1.3 Error code list (1000 to 1999)

Error Code	Error Contents and Cause	Corrective Action	LED Status CPU Status	Corresponding CPU
1412	[CONTROL-BUS. ERR.] The FROM/TO instruction is not executable, due to a control bus error with the intelligent function module/special function module. (On error occurring, the program error location is stored in the individual information.) ECollateral information • Common Information:Module No. (Slot No.) • Individual Information:Program error location Diagnostic Timing • During execution of FROM/TO instruction set	Reset the CPU module and RUN it again. If the same error is displayed again, the intelligent function module/special function module, CPU module or base unit is faulty. (Contact your local Mitsubishi representative.)	_	QCPU
1413	[CONTROL-BUS. ERR.] In a multiple CPU system, a CPU module incompatible with the multiple CPU system is mounted. Collateral information • Common Information: • Individual Information: Diagnostic Timing • Always	 Remove the CPU module incompatible with the multiple CPU system from the main base unit, or replace the CPU module incompatible with the multiple CPU system with a CPU module compatible with the multiple CPU system. The intelligent function module, CPU module or base unit is faulty. (Contact your local Mitsubishi representative.) 	RUN: Off ERR.: Flicker CPU Status: Stop	Q00J/Q00/Q01 ^{*4} Qn(H) ^{*4} QnPH
1413	[CONTROL-BUS. ERR.] An error is detected on the system bus. • Self-diagnosis error of the system bus. • Self-diagnosis error of the CPU module Collateral information • Common Information: • Individual Information: Diagnostic Timing • Always	Reset the CPU module and RUN it again. If the same error is displayed again, the intelligent function module, CPU module or base unit is faulty. (Contact your local Mitsubishi representative.)		QCPU
1414	 [CONTROL-BUS. ERR.] Fault of a loaded module was detected. In a multiple CPU system, a CPU module incompatible with the multiple CPU system is mounted. Collateral information Common Information:Module No. (Slot No.) Individual Information:– Diagnostic Timing Always 	 Remove the CPU module incompatible with the multiple CPU system from the main base unit, or replace the CPU module with a CPU module compatible with the multiple CPU system. Reset the CPU module and RUN it again. If the same error is displayed again, the intelligent function module, CPU module or base unit is faulty. (Contact your local Mitsubishi representative.) 		Q00J/Q00/Q01 ^{*4} Qn(H) ^{*4} QnPH QnU
	[CONTROL-BUS. ERR.] An error is detected on the system bus. Collateral information • Common Information:Module No. (Slot No.) • Individual Information: Diagnostic Timing • Always	Reset the CPU module and RUN it again. If the same error is displayed again, the intelligent function module, CPU module or base unit is faulty. (Contact your local Mitsubishi representative.)		Q00J/Q00/Q01 ^{*4} Qn(H) QnPH QnPRH QnU

Error Code	Error Contents and Cause	Corrective Action	LED Status CPU Status	Corresponding CPU	
1415	[CONTROL-BUS. ERR.] Fault of the main or extension base unit was detected. Collateral information • Common Information:Module No. (Slot No.) • Individual Information: Diagnostic Timing • When an END instruction executed			Q00J/Q00/Q01 Qn(H) ^{*4} QnPH QnPRH QnU	
	[CONTROL-BUS. ERR.] Fault of the main or extension base unit was detected. Collateral information • Common Information:Module No. (Slot No.) • Individual Information: Diagnostic Timing • At power-ON/ At reset/ When an END instruction executed	Reset the CPU module and RUN it again. If the same error is displayed again, the intelligent function module, CPU module or base unit is faulty. (Contact your local Mitsubishi representative.)	Qn(H) ^{*8} QnPH ^{*8}		12
1416	[CONTROL-BUS. ERR.] System bus fault was detected at power-on or reset. Collateral information • Common Information:Module No. (Slot No.) • Individual Information: Diagnostic Timing • At power ON/ At reset	L-BUS. ERR.] s fault was detected at power-on or al information n Information:Module No. (Slot No.) al Information: tic Timing r ON/ At reset	Qn(H) ^{*4} QnPH QnU		
	[CONTROL-BUS. ERR.] In a multiple CPU system, a bus fault was detected at power-on or reset. Collateral information • Common Information:Module No. (Slot No.) • Individual Information:– Diagnostic Timing • At power ON/ At reset	Reset the CPU module and RUN it again. If the same error is displayed again, the intelligent	RUN: Off ERR.: Flicker CPU Status: Stop	Q00/Q01 ^{*4} QnU	
1417	[CONTROL-BUS. ERR.] A reset signal error was detected on the system bus. Collateral information • Common Information: • Individual Information: Diagnostic Timing • Always	function module, CPU module or base unit is faulty. (Contact your local Mitsubishi representative.)	Stop	QnPRH	12. 12.
1418	[CONTROL-BUS.ERR.] In the redundant system, at power-on/reset or switching system, the control system cannot access the extension base unit since it failed to acquire the access right. Collateral information • Common Information:- • Individual Information:- Diagnostic Timing • At power-ON/ At reset/ At Switching execution	Reset the CPU module and RUN it again. If the same error is displayed again, the CPU module, the Q6 WRB, or hardware of extension cable is faulty. (Contact your local Mitsubishi representative, explaining a detailed description of the problem.)		QnPRH ^{*9}	1 Error Code List 1.3 Error code list (1000 to
1430	[MULTI-C.BUS ERR.] The error of host CPU is detected in the Multiple CPU high speed bus. Collateral information • Common Information: • Individual Information: Diagnostic Timing • At power ON/ At reset	Reset the CPU module and RUN it again. If the same error is displayed again, the CPU module has hardware failure. (Contact your local Mitsubishi representative, explaining a detailed description of the problem.)		QnU ^{*10}	1999)

- *4 *8 *9 *10
- Function version is B or later. The module whose first 5 digits of serial No. is "08032" or later. The module whose first 5 digits of serial No. is "09012" or later. The Universal model QCPU except the Q00UJCPU, Q00UCPU, Q01UCPU, and Q02UCPU.

12-13

Error Code	Error Contents and Cause	Corrective Action	LED Status CPU Status	Corresponding CPU
1431	[MULTI-C.BUS ERR.] The communication error with other CPU is detected in the Multiple CPU high speed bus. Collateral information • Common Information:Module No. (CPU No.) • Individual Information:– Diagnostic Timing • At power ON/ At reset	 Take noise reduction measures. Check the main base unit mounting status of the CPU module. Reset the CPU module and RUN it again. If the same error is displayed again, the CPU module has hardware failure. (Contact your local Mitsubishi representative, explaining a detailed description of the problem.) 		
1432	[MULTI-C.BUS ERR.] The communication time out with other CPU is detected in the Multiple CPU high speed bus. Collateral information • Common Information:Module No. (CPU No.) • Individual Information:– Diagnostic Timing • At power ON/ At reset	Reset the CPU module and RUN it again. If the same error is displayed again, the CPU module has hardware failure. (Contact your local Mitsubishi representative, explaining a detailed description of the problem.)		
1433	[MULTI-C.BUS ERR.]	Take noise reduction measures. Check the main base unit mounting status of the		
1434	detected in the Multiple CPU high speed bus. Collateral information Common Information:Module No. (CPU No.) Individual Information:- Diagnostic Timing Always	 One of the main base drift mounting status of the CPU module. Reset the CPU module and RUN it again. If the same error is displayed again, the CPU module has hardware failure. (Contact your local Mitsubishi representative, explaining a detailed description of the problem.) 	RUN: Off ERR.: Flicker	QnU* ¹⁰
1436	[MULTI-C.BUS ERR.] The error of the Multiple CPU high speed main base unit is detected. (The error of the Multiple	Reset the CPU module and RUN it again. If the same error is displayed again, the CPU module has hardware failure. (Contact your local Mitsubishi representative, explaining a detailed description of the problem.)	CPU Status: Stop	
1437	CPU high speed bus is detected.) Collateral information • Common Information: • Individual Information: Diagnostic Timing • At power ON/ At reset	 Take noise reduction measures. Check the main base unit mounting status of the CPU module. Reset the CPU module and RUN it again. If the same error is displayed again, the CPU module has hardware failure. (Contact your local Mitsubishi representative, explaining a detailed description of the problem.) 		
1439	[MULTI-C.BUS ERR.] An error of the multiple CPU high speed main base unit was detected. (An error of the multiple CPU high speed bus was detected.) Collateral information • Common Information: • Individual Information: Diagnostic Timing • At power ON/ At reset	Reset the CPU module and RUN it again. If the same error is displayed again, the CPU module has hardware failure. (Contact your local Mitsubishi representative, explaining a detailed description of the problem.)		
1500	 [AC/DC DOWN] A momentary power supply interruption has occurred. The power supply went off. Collateral information Common Information:- Individual Information:- Diagnostic Timing Always 	Check the power supply.	RUN: On ERR.: Off CPU Status: Continue	QCPU

*10 The Universal model QCPU except the Q00UJCPU, Q00UCPU, Q01UCPU, and Q02UCPU.

Error Code	Error Contents and Cause	Corrective Action	LED Status CPU Status	Corresponding CPU
1510	[SINGLE PS. DOWN] The power supply voltage of either of redundant power supply modules on the redundant base unit dropped. Collateral information • Common Information:Base No./ Power supply No. • Individual Information: Diagnostic Timing • Always	Check the power supplied to the redundant power supply modules mounted on the redundant base unit.	RUN: On ERR.: On	Qn(H) ^{*6} QnPH ^{*6} Q=PPU
1520	[SINGLE PS. ERROR] On the redundant base unit, the one damaged redundant power supply module was detected. Collateral information • Common Information:Base No./ Power supply No. • Individual Information: Diagnostic Timing • Always	Hardware fault of the redundant power supply module. (Contact your local Mitsubishi representative, explaining a detailed description of the problem.)	CPU Status: Continue	QnPRH QnU ^{*12}
1600	 [BATTERY ERROR^{*3}] The battery voltage in the CPU module has dropped below stipulated level. The lead connector of the CPU module battery is not connected. The lead connector of the CPU module battery is not securely engaged. Collateral information Common Information:Drive Name Individual Information:- Diagnostic Timing Always 	 Change the battery. If the battery is for program memory, standard RAM or for the back-up power function, install a lead connector. Check the lead connector of the CPU module for looseness. Firmly engage the connector if it is loose. 	RUN: On ERR.: Off CPU Status: Continue	QCPU
1601	[BATTERY ERROR ^{*3}] Voltage of the battery on memory card has dropped below stipulated level. Collateral information • Common Information:Drive Name • Individual Information:- Diagnostic Timing • Always	Change the battery.		Qn(H) QnPH QnPRH QnU ^{*14}
1610	[FLASH ROM ERROR] The number of writing to flash ROM (standard ROM and system securement area) exceeds 100,000 times. (Number of writings >100,000 times) ■Collateral information • Common Information: • Individual Information: ■Diagnostic Timing • When writing to ROM	Change the CPU module.	RUN: On ERR.: On CPU Status: Continue	QnU

12

BAT. LED is displayed at BATTERY ERROR.

- *3 *6 *12
- The module whose first 5 digits of serial No. is "04101" or later. The module whose first 5 digits of serial No. is "10042" or later. The Universal model QCPU except the Q00UJCPU, Q00UCPU, and Q01UCPU. *14

12-15

12.1.4 Error code list (2000 to 2999)

The following shows the error messages from the error code 2000 to 2999, the contents and causes of the errors, and the corrective actions for the errors.

Error Code (SD0)	Error Contents and Cause	Corrective Action	LED Status CPU Status	Corresponding CPU
2000	[UNIT VERIFY ERR.] In a multiple CPU system, a CPU module incompatible with the multiple CPU system is mounted. Collateral information • Common Information:Module No. (Slot No.) [For Remote I/O network] Network No./Station No. • Individual Information:- Diagnostic Timing • When an END instruction executed	Replace the CPU module incompatible with the multiple CPU system with a CPU module compatible with the multiple CPU system.		Qn(H) ^{*3} QnPH
	[UNIT VERIFY ERR.] The I/O module status is different from the I/O module information at power ON. • I/O module (or intelligent function module) is not installed properly or installed on the base unit. ■Collateral information • Common Information:Module No. (Slot No.) [For Remote I/O network] Network No./Station No. • Individual Information: ■Diagnostic Timing • When an END instruction executed	Read the error common information at the GX Developer, and check and/or change the module that corresponds to the numerical value (module number) there. Alternatively, monitor special registers SD150 to SD157 using GX Developer, and check and replace the module where the bit of its data is "1".	RUN: Off/On ERR.: Flicker/On CPU Status: Stop/ Continue ^{*1}	Q00J/Q00/Q01
	[UNIT VERIFY ERR.] I/O module information power ON is changed. • I/O module (or intelligent function module/special function module) not installed properly or installed on the base unit. ECollateral information • Common Information:Module No. (Slot No.) [For Remote I/O network] Network No./Station No. • Individual Information: EDiagnostic Timing • When an END instruction executed	 Read the common information of the error using the peripheral device, and check and/or change the module that corresponds to the numerical value (module number) there. Alternatively, monitor the special registers SD1400 to SD1431 at a peripheral device, and change the fuse at the output module whose bit has a value of "1". When a GOT is bus-connected to the main base unit or extension base unit, check the connection status of the extension cable and the grounding status of the GOT. 		Qn(H) QnPH QnPRH QnU
2001	[UNIT VERIFY ERR.] During operation, a module was mounted on the slot where the empty setting of the CPU module was made. Collateral information • Common Information:Module No. (CPU No.) • Individual Information:– Diagnostic Timing • When an END instruction executed	During operation, do not mount a module on the slot where the empty setting of the CPU module was made.	RUN: Off/On ERR.: Flicker/On CPU Status: Stop/ Continue ^{*2}	Q00J/Q00/Q01 ^{*3} QnU
2010	 [BASE LAY ERROR] More than applicable number of extension base units have been used. When a GOT was bus-connected, the CPU module was reset while the power of the GOT was OFF. Collateral information Common Information:Base No. Individual Information: Diagnostic Timing At power ON/At reset 	 Use the allowable number of extension base units or less. Power on the Progammable Controller and GOT again. 	RUN: Off ERR.: Flicker CPU Status: Stop	Q00J/Q00/Q01 ^{*3} QnPRH Q00UJ Q00U/Q01U Q02U

*1 CPU operation can be set in the parameters at error occurrence. (LED indication varies.)

*2 *3 Either error stop or continue can be selected for each module by the parameters.

The function version is B or later.

Error Code (SD0)	Error Contents and Cause	Corrective Action	LED Status CPU Status	Corresponding CPU	
2011	[BASE LAY ERROR] The QA1S6_B, QA6_B, or QA6ADP+A5_B/A6_B was used as the base unit. Collateral information • Common Information:Base No. • Individual Information: Diagnostic Timing • At power ON/At reset	Do not use the QA1S6⊟B, QA6⊟B, or QA6ADP+A5⊟B/A6⊟B as the base unit.		Q00J/Q00/Q01 ^{*3} QnPH QnPRH QnU	
2012	 [BASE LAY ERROR] The GOT is bus-connected to the main base unit of the redundant system. The following errors are detected in the CPU redundant system compatible with the extension base unit. The base unit other than the Q6□WRB is connected to the extension stage No.1. The base unit is connected to any one of the extension stages No.2 to No.7, although the Q6□WRB does not exist in the extension stage No.1. The other system CPU module is incompatible with the extension base unit. The Q5□B, QA1S6□B, QA6□B or QA6ADP+A5□B/A6□B is connected. The number of slots of the main base unit for both systems is different. Information of the Q6□WRB cannot be read correctly. ■Collateral information:	 Remove a bus connection cable for GOT connection connected to the main base unit. Use the Q6□WRB (fixed to the extension stage No.1) Use the CPU module compatible with the extension base unit for the other system. Do not use the Q5□B, QA1S6□B, QA6□B or QA6ADP+A5□B/A6□B for the base unit. Use the main base unit which has the same number of slots. Hardware failure of the Q6□WRB. (Contact your local Mitsubishi representative, explaining a detailed description of the problem.) 	RUN: Off ERR.: Flicker CPU Status: Stop	QnPRH ^{*6}	12
2013	[BASE LAY ERROR] Stage number of the Q6⊟WRB is recognized as other than extension stage No.1 in the redundant system. ■Collateral information • Common Information:Base No. • Individual Information: ■Diagnostic Timing • At power ON/At reset [EXT.CABLE ERR.]	Hardware failure of the Q6⊟WRB. (Contact your local Mitsubishi representative, explaining a detailed description of the problem.)			12.1 Error Code Lis 12.1.4 Error code li
2020	 The following errors are detected in the redundant system. At power-on/reset, the standby system has detected the error in the path between the control system and the Q6□WRB. The standby system has detected the error in the path between the host system CPU and the Q6□WRB at END processing. ■Collateral information Common Information:- Individual Information:- ■Diagnostic Timing At power-ON/At reset/ When an END instruction executed 	Check to see if the extension cable between the main base unit and the Q6_WRB is connected correctly. If not, connect it after turning OFF the main base unit where the extension cable will be connected. If the cable is connected correctly, hardware of the CPU module, Q6_WRB, or extension cable is faulty. (Contact your local Mitsubishi representative, explaining a detailed description of the problem.)		QnPRH ^{*6}	st st (2000 to 2999)

*3 *6 The function version is B or later. The module whose first 5 digits of serial No. is "09012" or later.

Error Code (SD0)	Error Contents and Cause	Corrective Action	LED Status CPU Status	Corresponding CPU
	[SP. UNIT LAY ERR.] The slot to which the Ql60 is mounted is set to other than Inteli (intelligent function module) or Interrupt (interrupt module) in the I/O assignment of PLC parameter. Collateral information • Common Information:Module No. (Slot No.) • Individual Information: Diagnostic Timing • At power ON/At reset	Make setting again to match the PLC parameter I/O assignment with the actual loading status.		Qn(H) ^{*3} QnPH QnPRH
2100	 [SP. UNIT LAY ERR.] In the I/O assignment setting of PLC parameter, Inteli (intelligent function module) was allocated to an I/O module or vice versa. In the I/O assignment setting of PLC parameter, a module other than CPU (or nothing) was allocated to the location of a CPU module or vice versa. In the I/O assignment setting of the PLC parameter, switch setting was made to the module that has no switch setting. In the I/O assignment setting of the PLC parameter dialog box, the number of points assigned to the intelligent function module is less than the number of points of the mounted module. Collateral information Common Information:-Module No. (Slot No.) Individual Information:- Diagnostic Timing At power ON/At reset 	 Make the PLC parameter's I/O assignment setting again so it is consistent with the actual status of the intelligent function module and the CPU module. Delete the switch setting in the I/O assignment setting of the PLC parameter. 	RUN: Off ERR.: Flicker CPU Status: Stop	Qn(H) QnPH QnPRH QnU
	 [SP. UNIT LAY ERR.] In the parameter I/O allocation settings, an Inteli (intelligent function module) was allocated to a location reserved for an I/O module or vice versa. In the parameter I/O allocation settings, a module other than CPU (or nothing) was allocated to a location reserved for a CPU module or vice versa. In the I/O assignment setting of the PLC parameter dialog box, the number of points assigned to the intelligent function module is less than the number of points of the mounted module. ECollateral information Common Information:- Diagnostic Timing At power ON/At reset 	Reset the parameter I/O allocation setting to conform to the actual status of the intelligent function module and the CPU module.		Q00J/Q00/Q01
2101	 ISP. UNIT LAY ERR.] 13 or more A-series special function modules (except for the A1SI61) that can initiate an interrupt to the CPU module have been installed. Collateral information Common Information:Module No. (Slot No.) Individual Information:– Diagnostic Timing At power ON/At reset 	Reduce the A series special function modules (except the A1SI61) that can make an interrupt start to the CPU module to 12 or less.		Qn(H)

Error Code (SD0)	Error Contents and Cause	Corrective Action	LED Status CPU Status	Corresponding CPU
2102	 [SP. UNIT LAY ERR.] Seven or more A1SD51S have been installed. Collateral information Common Information:Module No. (Slot No.) Individual Information:– Diagnostic Timing At power ON/At reset 	Keep the number of A1SD51S to six or fewer.		Qn(H)
	 [SP. UNIT LAY ERR.] Two or more QI60/A1SI61 modules are mounted in a single CPU system. Two or more QI60/A1SI61 modules are set to the same control CPU in a multiple CPU system. Two or more A1SI61 modules are loaded in a multiple CPU system. Collateral information Common Information:Module No. (Slot No.) Individual Information: Diagnostic Timing At power ON/At reset [SP. UNIT LAY ERR.] Two or more QI60, A1SI61 interrupt modules have been mounted. Collateral information Common Information:- 	 Reduce the number of Ql60/A1Sl61 modules mounted in the single CPU system to one. Change the number of Ql60/A1Sl61 modules set to the same control CPU to only one in the multiple CPU system. Reduce the number of A1Sl61 modules to only one in the multiple CPU system. When using an interrupt module with each QCPU in a multiple CPU system, replace it with the Ql60. (Use one A1Sl61 module + max. three Ql60 modules or only the Ql60 modules.) 	RUN: Off ERR.: Flicker CPU Status: Stop	Qn(H) ^{*3} QnPH Qn(H) QnPRH
2103	Individual Information:- Diagnostic Timing At power ON/At reset [SP. UNIT LAY ERR.] Two or more QI60 modules are mounted. Common Information	Reduce the OI60 medulos to one		
	Individual Information:			
	 [SP. UNIT LAY ERR.] Two or more Ql60 modules where interrupt pointer setting has not been made are mounted. Collateral information Common Information:Module No. (Slot No.) Individual Information: Diagnostic Timing At power ON/At reset 	 Reduce the QI60 modules to one. Make interrupt pointer setting to the second QI60 module and later. 		Q00J/Q00/Q01 ^{*3} QnU

12

*3 *5

The function version is B or later. The module whose first 5 digits of serial No. is "04101" or later.

Error Code (SD0)	Error Contents and Cause	Corrective Action	LED Status CPU Status	Corresponding CPU
	 [SP.UNIT LAY ERR.] Two or more MELSECNET/H modules are mounted. Two or more CC-Link IE controller network modules are mounted. Two or more Ethernet modules are mounted. Collateral information Common Information:Module No. Individual Information:- Diagnostic Timing At power ON/At reset 	 Reduce the number of MELSECNET/H modules to one. Reduce the number of CC-Link IE controller network modules to one. Reduce the number of Ethernet modules to one. 		Q00UJ
	 [SP.UNIT LAY ERR.] Five or more MELSECNET/H and CC-Link IE controller network modules in total are mounted in the entire system. Two or more MELSECNET/H modules are mounted in the entire system. Two or more CC-Link IE controller network modules are mounted in the entire system. Two or more Ethernet modules are mounted in the entire system. Collateral information Common Information:-Module No. Individual Information:- Diagnostic Timing At power ON/At reset 	 Reduce the number of MELSECNET/H and CC- Link IE controller network modules to four or less in total in the entire system. Reduce the number of MELSECNET/H modules to one in the entire system. Reduce the number of CC-Link IE controller network modules to one in the entire system. Reduce the number of Ethernet modules to one in the entire system. 		Q00U/Q01U
2106	 [SP.UNIT LAY ERR.] Three or more MELSECNET/H and CC-Link IE controller network modules in total are mounted in the entire system. Three or more Ethernet interface modules are mounted in the entire system. Collateral information Common Information:Module No. Individual Information:- Diagnostic Timing At power ON/At reset 	 Reduce the MELSECNET/H and CC-Link IE controller network modules up to two or less in the entire system. Reduce the Ethernet interface modules up to two or less in the entire system. 	RUN: Off ERR.: Flicker CPU Status: Stop	Q02U
	 [SP.UNIT LAY ERR.] Five or more MELSECNET/H and CC-Link IE controller network modules in total are mounted in the entire system. Five or more Ethernet interface modules are mounted in the entire system. Ecollateral information Common Information:Module No. Individual Information:- Diagnostic Timing At power ON/At reset 	 Reduce the MELSECNET/H and CC-Link IE controller network modules up to four or less in the entire system. Reduce the Ethernet interface modules up to four or less in the entire system. 		QnU*7
	 [SP.UNIT LAY ERR.] Three or more CC-Link IE controller network modules are mounted in the entire system. Five or more MELSECNET/H and CC-Link IE controller network modules in total are mounted in the entire system. Collateral information Common Information:Module No. Individual Information: Diagnostic Timing At power ON/At reset 	 Reduce the CC-Link IE controller network modules up to two or less in the entire system. Reduce the total number of the MELSECNET/H and CC-Link IE controller network modules up to four or less in the entire system. 		Qn(H) ^{*6} QnPH ^{*9} QnPRH ^{*9}

The module whose first 5 digits of serial No. is "09012" or later. The Universal model QCPU except the Q00UJCPU, Q00UCPU, Q01UCPU, and Q02UCPU. The module whose first 5 digits of serial No. is "10042" or later. *6 *7 *9

Error Code (SD0)	Error Contents and Cause	Corrective Action	LED Status CPU Status	Corresponding CPU	
	 [SP. UNIT LAY ERR.] Five or more MELSECNET/H modules have been installed. Five or more Ethernet interface modules have been installed. ECollateral information Common Information:Module No. (Slot No.) Individual Information: EDiagnostic Timing At power ON/At reset 	 Reduce the number of MELSECNET/H modules to four or less. Reduce the number of Ethernet modules to four or less. 		Qn(H) QnPH QnPRH	
2106	 [SP. UNIT LAY ERR.] Two or more MELSECNET/H modules were installed. Two or more Ethernet modules were installed. Three or more CC-Link modules were installed. Ecollateral information Common Information:Module No. (Slot No.) Individual Information: Diagnostic Timing At power ON/At reset 	 Reduce the MELSECNET/H modules to one or less. Reduce the Ethernet modules to one or less. Reduce the CC-Link modules to two or less. 	Q00J/Q00/Q01		12
	 [SP. UNIT LAY ERR.] The same network number or same station number is duplicated in the MELSECNET/H network system. Collateral information Common Information:Module No. (Slot No.) Individual Information: Diagnostic Timing At power ON/At reset 	Check the network number and station number.	RUN: Off ERR.: Flicker CPU Status: Stop	Q00J/Q00/Q01 Qn(H) QnPH QnPRH	
2107	 [SP. UNIT LAY ERR.] The start X/Y set in the PLC parameter's I/O assignment settings is overlapped with the one for another module. Collateral information Common Information:Module No. (Slot No.) Individual Information: Diagnostic Timing At power ON/At reset 	Make the PLC parameter's I/O assignment setting again so it is consistent with the actual status of the intelligent function module/special function modules.		QCPU	
2108	 [SP. UNIT LAY ERR.] Network module A1SJ71LP21, A1SJ71BR11, A1SJ71AP21, A1SJ71AR21, or A1SJ71AT21B dedicated for the A2USCPU has been installed. Network module A1SJ71QLP21 or A1SJ71QBR11 dedicated for the Q2AS has been installed. Collateral information Common Information:Module No. (Slot No.) Individual Information: Diagnostic Timing At power ON/At reset 	Replace the network module for the A2USCPU or the network module for the Q2ASCPU with the MELSECNET/H module.		Qn(H)	12.1 Error Code List 12.1.4 Error code list (2000 to 2)

Error Code (SD0)	Error Contents and Cause	Corrective Action	LED Status CPU Status	Corresponding CPU
2110	 [SP. UNIT ERROR] The location designated by the FROM/TO instruction set is not the intelligent function module/special function module. The module that does not include buffer memory has been specified by the FROM/TO instruction. The intelligent function module/special function module, Network module being accessed is faulty. Station not loaded was specified using the instruction whose target was the CPU share memory. ECollateral information Common Information:Module No. (Slot No.) Individual Information:Program error location Diagnostic Timing When instruction executed 	 Read the individual information of the error using the GX Developer, check the FROM/TO instruction that corresponds to that numerical value (program error location), and correct when necessary. The intelligent function module/special function module that was accessed is experiencing a hardware fault. Therefore, change the faulty 	RUN: Off/On ERR.: Flicker/On CPU Status: Stop/ Continue*1	Q00J/Q00/Q01 Qn(H) ^{*3} QnPH QnPRH QnU
2111	 [SP. UNIT ERROR] The location designated by a link direct device (J□\□) is not a network module. The I/O module (intelligent function module/ special function module) was nearly removed, completely removed, or mounted during running. ■Collateral information Common Information:Module No. (Slot No.) Individual Information:Program error location ■Diagnostic Timing When instruction executed 	module. Alternatively, contact your local Mitsubishi representative.		
2112	 [SP. UNIT ERROR] The module other than intelligent function module/special function module is specified by the intelligent function module/special function module dedicated instruction. Or, it is not the corresponding intelligent function module/special function module. There is no network No. specified by the network dedicated instruction. Or the relay target network does not exit. ■Collateral information Common Information:Module No. (Slot No.) Individual Information:Program error location ■Diagnostic Timing When instruction executed/STOP → RUN 	Read the individual information of the error using a peripheral device, and check the special function module /special function module dedicated instruction (network instruction) that corresponds to the value (program error part) to make modification.		QCPU
2113	 [SP. UNIT ERROR] The module other than network module is specified bythe network dedicated instruction. ■Collateral information Common Information:FFFH (fixed) Individual Information:Program error location ■Diagnostic Timing When instruction executed/STOP → RUN 			Qn(H) QnPH

*1 *3 CPU operation can be set in the parameters at error occurrence. (LED indication varies.) The function version is B or later.

Error Code (SD0)	Error Contents and Cause	Corrective Action	LED Status CPU Status	Corresponding CPU	
2114	 [SP. UNIT ERROR] An instruction, which on execution specifies other stations, has been used for specifying the host CPU. (An instruction that does not allow the host CPU to be specified). ■Collateral information Common Information:Module No. (Slot No.) Individual Information:Program error location ■Diagnostic Timing When instruction executed/ STOP → RUN 	Read the individual information of the error using the GX Developer, check the program corresponding that value (program error location), and make correction. RUN: Off/On ERR.: Flicker/On CPU Status: Stop/Cont		Q00J/Q00/Q01 ^{*3} Qn(H) ^{*3} QnPH QnU	
2115	 [SP. UNIT ERROR] An instruction, which on execution specifies the host CPU, has been used for specifying other CPUs. (An instruction that does not allow other stations to be specified). ■Collateral information Common Information:Module No. (Slot No.) Individual Information:Program error location ■Diagnostic Timing When instruction executed/ STOP → RUN 			Q00J/Q00/Q01 ^{*3} Qn(H) ^{*3} QnPH	12
2116	 [SP. UNIT ERROR] An instruction that does not allow the under the control of another CPU to be specified is being used for a similar task. Instruction was executed for the A or QnA module under control of another CPU. ■Collateral information Common Information:Module No. (Slot No.) Individual Information:Program error location ■Diagnostic Timing When instruction executed/ STOP → RUN 		RUN: Off/On ERR.: Flicker/On CPU Status: Stop/Continue	Q00J/Q00/ Q01 ^{*3} Qn(H) ^{*3} QnPH QnU	
2117	 [SP. UNIT ERROR] A CPU module that cannot be specified in the instruction dedicated to the multiple CPU system was specified. ■Collateral information • Common Information:Module No. (Slot No.) • Individual Information:Program error location ■Diagnostic Timing • When instruction executed/ STOP → RUN 				12.1 E 12.1.4
2118	[SP. UNIT ERROR] When the online module change setting is set to be "enabled" in the PLC parameter in a multiple CPU system, intelligent function module controlled by other CPU using the FROM instruction/intelligent function module device (U□\□G) is specified. ■Collateral information • Common Information:Module No. (Slot No.) • Individual Information:Program error location ■Diagnostic Timing • When instruction executed	 When performing the online module change in a multiple CPU system, correct the program so that access will not be made to the intelligent function module controlled by the other CPU. When accessing the intelligent function module controlled by the other CPU in a multiple CPU system, set the online module change setting to be "disabled" by parameter. 		Qn(H) ^{*3} QnPH QnU ^{*7}	rror Code List Error code list (2000 to 2999)

*3 *7 The function version is B or later. The Universal model QCPU except the Q00UJCPU, Q00UCPU, Q01UCPU, and Q02UCPU.

12-23

Error Code (SD0)	Error Contents and Cause	Corrective Action	LED Status CPU Status	Corresponding CPU
2120	[SP. UNIT LAY ERR.] The locations of the Q5 B/Q6 B, QA1S6 B/ QA6 B, and QA6ADP+A5 B/A6 B are improper. ■Collateral information • Common Information:- • Individual Information:- ■Diagnostic Timing • At power ON/At reset	Check the location of the base unit.		Q00J/Q00/Q01 ^{*4} Qn(H) QnPH
2121	[SP. UNIT LAY ERR.] The CPU module is installed to other than the CPU slot and slots 0 to 2. Collateral information • Common Information: • Individual Information: Diagnostic Timing • At power ON/At reset	Check the loading position of the CPU module and reinstall it at the correct slot.	RUN: Off ERR.: Flicker CPU Status: Stop	Qn(H) QnPH
2122	[SP. UNIT LAY ERR.] The QA1S6_B/QA6_B and QA6ADP+A5_B/ A6_B are used for the main base unit. ECollateral information • Common Information:- • Individual Information:- Diagnostic Timing • At power ON/At reset	Replace the main base unit with a usable one.		Qn(H) QnPH QnPRH
	 [SP. UNIT LAY ERR.] A module is mounted on the 65th slot or later slot. A module is mounted on the slot whose number is greater than the number of slots specified at [Slots] in [Standard setting] of the base setting. A module is mounted on the slot whose number of I/O points exceeds 4096 points. A module is mounted on the slot whose number of I/O points strides 4096 points. ECollateral information Common Information:- Individual Information:- EDiagnostic Timing At power ON/At reset 	 Remove the module mounted on the 65th slot or later slot. Remove the module mounted on the slot whose number is greater than the number of slots specified at [Slots] in [Standard setting] of the base setting. Remove the module mounted on the slot whose number of I/O points exceeds 4096 points. Replace the module with the one whose number of occupied points does not exceed 4096 points. 		Qn(H) QnPH QnPRH QnU ^{*7}
2124	 [SP. UNIT LAY ERR.] A module is mounted on after the 25th slot (on after the 17th slot for the Q00UJ). A module is mounted on the slot whose number is later than the one set in the "Base setting" on the I/O assignment tab of PLC parameter in GX Developer. A module is mounted on the slot for which I/O points greater than 1024 (greater than 256 for the Q00UJ) is assigned. A module is mounted on the slot for which I/O points is assigned from less than 1024 to greater than 1024 (from less than 256 for the Q00UJ). ECollateral information Common Information:- Individual Information:- BDiagnostic Timing At power ON/At reset 	 Remove the module mounted on after the 25th (on after the 17th slot for the Q00UJ). Remove the module mounted on the slot whose number is later than the one set in the "Base setting" on the I/O assignment tab of PLC parameter in GX Developer. Remove the module mounted on the slot for which I/O points greater than 1024 (greater than 256 for the Q00UJ) is assigned. Replace the end module with the one whose number of occupied points is within 1024 (within 256 for the Q00UJ). 		Q00UJ Q00U/Q01U

The function version is A. The Universal model QCPU except the Q00UJCPU, Q00UCPU, Q01UCPU, and Q02UCPU.

Error Code (SD0)	Error Contents and Cause	Corrective Action	LED Status CPU Status	Corresponding CPU		
	 [SP. UNIT LAY ERR.] A module is mounted on the 37th slot or later slot. A module is mounted on the slot whose number is greater than the number of slots specified at [Slots] in [Standard setting] of the base setting. A module is mounted on the slot whose number of I/O points exceeds 2048 points. A module is mounted on the slot whose number of I/O points strides 2048 points. Collateral information Common Information: Individual Information: Diagnostic Timing At power ON/At reset 	 Remove the module mounted on the 37th slot or later slot. Remove the module mounted on the slot whose number is greater than the number of slots specified at [Slots] in [Standard setting] of the base setting. Remove the module mounted on the slot whose number of I/O points exceeds 2048 points. Replace the module with the one whose number of occupied points does not exceed 2048 points. 		Q02U	10	
2124	 [SP. UNIT LAY ERR.] A module is mounted on the 25th slot or later slot. (The 17th slot or later slot for the Q00J.) A module is mounted on the slot whose number is greater than the number of slots specified at [Slots] in [Standard setting] of the base setting. A module is mounted on the slot whose number of I/O points exceeds 1024 points. (256 points for the Q00J.) A module is mounted on the slot whose number of I/O points strides 1024 points. (256 points for the Q00J.) Collateral information Common Information:- Individual Information:- A power ON/At reset 	 Remove the module mounted on the 25th slot or later slot. (The 17th slot or later slot for the Q00J.) Remove the module mounted on the slot whose number is greater than the number of slots specified at [Slots] in [Standard setting] of the base setting. Remove the module mounted on the slot whose number of I/O points exceeds 1024 points. (256 points for the Q00J.) Replace the module with the one whose number of occupied points does not exceed 1024 points. (256 points for the Q00J.) 	RUN: Off ERR.: Flicker CPU Status: Stop	Q00J/Q00/Q01		
	 [SP. UNIT LAY ERR.] 5 or more extension base units were added. (3 bases for Q00J) Collateral information Common Information:- Individual Information:- Diagnostic Timing At power ON/At reset 	Remove 5 or more extension base units. (3 bases for Q00J)		Q00J/Q00/Q01 ^{*4}		
2125	 [SP. UNIT LAY. ERR.] A module which the QCPU cannot recognise has been installed. There was no response form the intelligent function module/special function module. Collateral information Common Information:Module No. (Slot No.) Individual Information: Diagnostic Timing At power ON/ At reset 	 Install a usable module. The intelligent function module/special function module is experiencing a hardware fault. (Contact your local Mitsubishi representative.) 		QCPU	12.1 Error Code List 12.1.4 Error code list (2000	

Error Code (SD0)	Error Contents and Cause	Corrective Action	LED Status CPU Status	Corresponding CPU
2126	 [SP. UNIT LAY. ERR.] CPU module locations in a multiple CPU system are either of the following. There are empty slots between the QCPU and QCPU/motion controller. A module other than the High Performance model QCPU/Process CPU (including the motion controller) is mounted on the left-hand side of the High Performance model QCPU/Process CPU. ECollateral information Common Information::Module No. (Slot No.) Individual Information: EDiagnostic Timing At power ON/ At reset 	 Mount modules on the available slots so that the empty slots will be located on the right-hand side of the CPU module. Remove the module mounted on the left-hand side of the High Performance model QCPU/ Process CPU, and mount the High Performance model QCPU/Process CPU on the empty slot. Mount the motion CPU on the right-hand side of the High Performance model QCPU/Process CPU. 	RUN: Off ERR.: Flicker CPU Status: Stop	Qn(H) ^{*3} QnPH
2128	[SP.UNIT LAY ERR.] The unusable module is mounted on the extension base unit in the redundant system. Collateral information • Common Information:Module No. • Individual Information: Diagnostic Timing • At power-ON/ At reset	Remove the unusable module from the extension base unit.		QnPRH ^{*6}
2150	 [SP. UNIT VER. ERR.] In a multiple CPU system, the control CPU of the intelligent function module incompatible with the multiple CPU system is set to other than CPU No.1. Collateral information Common Information:Module No. (Slot No.) Individual Information: Diagnostic Timing At power ON/At reset/ At writing to progurammable controller 	 Change the intelligent function module for the one compatible with the multiple CPU system (function version B). Change the setting of the control CPU of the intelligent function module incompatible with the multiple CPU system to CPU No.1. 		Q00J/Q00/Q01 QnPH QuU ^{*10}
2151	 [SP. UNIT VER. ERR.] Either of the following modules incompatible with the redundant system has been mounted in a redundant system. CC-Link IE controller network modules MELSECNET/H modules Ethernet modules Collateral information Common Information:Module No. (Slot No.) Individual Information:- Diagnostic Timing At power ON/At reset/ At writing to progurammable controller 	Use either of the following modules compatible with the redundant system. • CC-Link IE controller network modules • MELSECNET/H modules • Ethernet modules		QnPRH

The function version is B or later. The module whose first 5 digits of serial No. is "09012" or later. The Universal model QCPU except the Q00UJCPU.

^{*3} *6 *10

Error Code (SD0)	Error Contents and Cause	Corrective Action	LED Status CPU Status	Corresponding CPU	
2200	 [MISSING PARA.] There is no parameter file in the drive specified as valid parameter drive by the DIP switches. ■Collateral information Common Information:Drive Name Individual Information:- ■Diagnostic Timing At power ON/At reset/ STOP → RUN 	 Check and correct the valid parameter drive settings made by the DIP switches. Set the parameter file to the drive specified as valid parameter drive by the DIP switches. 		Qn(H) QnPH QnPRH	
	 [MISSING PARA.] There is no parameter file at the program memory. ■Collateral information Common Information:Drive Name Individual Information:- ■Diagnostic Timing At power ON/At reset/ STOP → RUN 	Set the parameter file to the program memory.		Q00J/Q00/Q01	1
	 [MISSING PARA.] Parameter file does not exist in all drives where parameters will be valid. ■Collateral information • Common Information:Drive Name • Individual Information:- ■Diagnostic Timing • At power ON/At reset/ STOP → RUN 	Set a parameter file in a drive to be valid.	RUN:	QuU	
2210	[BOOT ERROR] The contents of the boot file are incorrect. Collateral information • Common Information:Drive name • Individual Information: Diagnostic Timing • At power ON/ At reset	Check the boot setting.	Off ERR.: Flicker CPU Status: Stop	Q00J/Q00/Q01 ^{*3} Qn(H) QnPH QnPRH QnU	
2211	[BOOT ERROR] File formatting is failed at a boot. Collateral information · Common Information:Drive name · Individual Information:- Diagnostic Timing · At power ON/ At reset	 Reboot. CPU module hardware fault. (Contact your local Mitsubishi representative, explaining a detailed description of the problem.) 		Qn(H) QnPRH QnU	
2220	 [RESTORE ERROR] The device information (number of points) backuped by the device data backup function is different from the number of device points of the PLC parameter. After this error occurred, perform restore per power-on/reset until the number of device points is identical to the number of device points in the PLC parameter, or until the backup data is deleted. ECollateral information Common Information:-ile name/ Drive name Individual Information:- EDiagnostic Timing At power ON/ At reset 	 Set the number of device points at the time of backup to the device point setting in [PLC parameter]. Then, turn ON from OFF power supply, or reset the CPU and cancel reset. Delete the backuped data, and turn ON from OFF power supply, or reset the CPU and cancel reset. 		QnU	12.1 Error Code List 12.1.4 Error code list (2000 to 2999)

*3 The function version is B or later.

Error Code (SD0)	Error Contents and Cause	Corrective Action	LED Status CPU Status	Corresponding CPU	
2221	 [RESTORE ERROR] The device information backuped by the device data backup function is incomplete. (Turning power supply OFF or reset is suspected.) Do not return the data when this error occurs. Also, delete the incomplete device information at the time of this error occurrence. ECollateral information Common Information:File name/ Drive name Individual Information:- Diagnostic Timing At power ON/ At reset 	Reset the CPU module and run it again.	RUN: Off ERR.: Flicker CPU Status: Stop		
2225	[RESTORE ERROR] The model name of the restoration destination CPU module is different from the one of the backup source CPU module. Collateral information • Common Information: • Individual Information: Diagnostic Timing • At power ON/ At reset	Execute a restore for the CPU module whose name is same as the backup source CPU module.			
2226	 [RESTORE ERROR] The backup data file is destroyed. (The content of the file is different from the check code. Reading the backup data from the memory card is not successfully completed. Since the write protect switch of the SRAM card is set to on (write inhibited), the checked "Restore for the first time only" setting cannot be performed. Ecollateral information Common Information:- Individual Information:- Diagnostic Timing At power ON/ At reset 	 Execute a restore of other backup data because the backup data may be destructed. Set the write protect switch of the SRAM card to off (write enabled). 		QnU	
2227	[RESTORE ERROR] Writing the backup data to the restoration destination drive is not successfully completed. ■Collateral information • Common Information:File name/Drive name • Individual Information:- ■Diagnostic Timing • At power ON/ At reset	Execute a restore for the other CPU module too because the CPU module may be damaged.			
2300	 [ICM. OPE. ERROR] A memory card was removed without switching the memory card in/out switch OFF. The memory card in/out switch is turned ON although a memory card is not actually installed. Collateral information Common Information:Drive name Individual Information:- Diagnostic Timing When memory card is inserted or removed 	 Remove memory card after placing the memory card in/out switch OFF. Turn on the card insert switch after inserting a memory card. 	RUN: Off/On ERR.: Flicker/On CPU Status: Stop/ Continue ^{*1}	Qn(H) QnPH QnPRH QnU ^{*11}	

*11

CPU operation can be set in the parameters at error occurrence. (LED indication varies.) The Universal model QCPU except the Q00UJCPU, Q00UCPU, and Q01UCPU. *1

Error Code (SD0)	Error Contents and Cause	Corrective Action	LED Status CPU Status	Corresponding CPU
2301	 [ICM. OPE. ERROR] The memory card has not been formatted. Memory card format status is incorrect. The QCPU file does not exist in the Flash card. Ecollateral information Common Information:Drive name Individual Information: Diagnostic Timing When memory card is inserted or removed/When memory card is inserted 	 Format memory card. Reformat memory card. Write the QCPU file the Flash card 	RUN: Off/On ERR.: Flicker/On CPU Status: Stop/ Continue ^{*1}	Qn(H) QnPH QnPRH QnU ^{*11}
	 [ICM. OPE. ERROR] SRAM card failure is detected. (It occurs when automatic format is not set.) Writing parameters was performed duruing setting file registers. Collateral information Common Information:Drive name Individual Information:- Diagnostic Timing When memory card is inserted or removed/When memory card is inserted 	Format SRAM card after changing battery of SRAM card. Write a parameter, which set the file register at "Not available", in CPU, and then perform the ioperation.		QnU*11
2302	[ICM. OPE. ERROR] A memory card that cannot be used with the CPU module has been installed. Collateral information • Common Information:Drive name • Individual Information: Diagnostic Timing • When memory card is inserted or removed	 Format memory card. Reformat memory card. Check memory card. 		Qn(H) QnPH QnPRH QnU ^{*11}
2400	 [FILE SET ERROR] Automatic write to standard ROM was performed on the CPU module that is incompatible with automatic write to standard ROM. (Memory card where automatic write to standard ROM was selected in the boot file was fitted and the parameter enable drive was set to the memory card.) Collateral information Common Information:File name/ Drive name Individual Information:Parameter number Diagnostic Timing At power ON/At reset/ At writing to progurammable controller [FILE SET ERROR] The file designated at the PLC file settings in the parameters cannot be found. 	 Execute automatic write to standard ROM on the CPU module which is compatible with automatic write to standard ROM. Using GX Developer, perform write of parameters and programs to standard ROM. Change the memory card for the one where automatic write to standard ROM has not been set, and perform boot operation from the memory card. Read the individual information of the error using peripheral device, check to be sure that the 	RUN: Off ERR.: Flicker CPU Status: Stop	Qn(H) ^{*3} QnPH QnPRH
	Common Information: File name/ Drive name Individual Information: Parameter number Diagnostic Timing At power ON/At reset/ At writing to progurammable controller	 peripheral device, check to be sure that the parameter drive name and file name correspond to the numerical values there (parameter number), and correct. Create a file created using parameters, and load it to the CPU module. 		QCPU

12.1 Error Code List 12.1.4 Error code list (2000 to 2999)

12

*1 *3 *11 CPU operation can be set in the parameters at error occurrence. (LED indication varies.) The function version is B or later. The Universal model QCPU except the Q00UJCPU, Q00UCPU, and Q01UCPU.

Error Code (SD0)	Error Contents and Cause	Corrective Action	LED Status CPU Status	Corresponding CPU
2401	[FILE SET ERROR] Program memory capacity was exceeded by performing boot operation or automatic write to standard ROM. ■Collateral information • Common Information:File name/ Drive name • Individual Information:Parameter number ■Diagnostic Timing • At power ON/At reset/ At writing to progurammable controller [FILE SET ERROR] Program memory capacity was exceeded by performing boot operation. ©Collateral information	 Check and correct the parameters (boot setting). Delete unnecessary files in the program memory. Choose "Clear program memory" for boot in the parameter so that boot is started after the program memory is cleared. 		Qn(H) ^{*3} QnPH QnPRH
	Common Information:File name/ Drive name Individual Information:Parameter number Diagnostic Timing At power ON/At reset/ At writing to progurammable controller			QnU
	 [FILE SET ERROR] The file specified by parameters cannot be made. Collateral information Common Information:File name/ Drive name Individual Information:Parameter number Diagnostic Timing At power ON/At reset/ At writing to progurammable controller 	 Read the individual information of the error using the peripheral device, check to be sure that the parameter drive name and file name correspond to the numerical values there (parameter number), and correct. Check the space remaining in the memory card. 	RUN: Off ERR.: Flicker CPU Status: Stop	QCPU
	 [FILE SET ERROR] Although setting is made to use the device data storage file, there is no empty capacity required for creating the device data storage file in the standard ROM. When the latch data backup function (to standard ROM) is used, there is no empty capacity required for storing backup data in standard ROM. (The parameter number "FFFF_H" is displayed for the error individual information.) Standard RAM capacity is insufficient that error history of the module cannot be stored. ECollateral information Common Information:Parameter number Individual Information At power ON/At reset/ At writing to progurammable controller 	Secure the empty capacity of the standard ROM.		QnU
2410	 [FILE OPE. ERROR] The specified program does not exist in the program memory. This error may occur when the ECALL, EFCALL, PSTOP, PSCAN, POFF or PLOW instruction is executed. The specified file does not exist. Collateral information Common Information:File name/ Drive name Individual Information:Program error location Diagnostic Timing When instruction executed 	 Read the individual information of the error using the peripheral device, check to be sure that the program corresponds to the numerical values there (program location), and correct. Create a file created using parameters, and load it to the CPU module. In case a specified file does not exist, write the file to a target memory and/or check the file specified with the instruction again. 	RUN: Off/On ERR.: Flicker/On CPU Status: Stop/ Continue ^{*1}	Qn(H) QnPH QnPRH QnU

CPU operation can be set in the parameters at error occurrence. (LED indication varies.) The function version is B or later. *1

*3
Error Code (SD0)	Error Contents and Cause	Corrective Action	LED Status CPU Status	Corresponding CPU		
2411	 [FILE OPE. ERROR] The file is the one which cannot be specified by the sequence program (such as comment file). The specified program exists in the program memory, but has not been registered in the program setting of the Parameter dialog box. This error may occur when the ECALL, EFCALL, PSTOP, PSCAN or POFF instruction is executed. Collateral information Common Information:File name/ Drive name Individual Information:Program error location Diagnostic Timing When instruction executed 	Read the individual information of the error using the peripheral device, check to be sure that the program corresponds to the numerical values there (program location), and correct.	RUN: Off/On ERR.: Flicker/On CPU Status: Stop/ Continue ^{*1}	Qn(H) QnPH QnPRH QnU		
2412	 [FILE OPE. ERROR] The SFC program file is one that cannot be designated by the sequence program. Collateral information Common Information:File name/ Drive name Individual Information:Program error location Diagnostic Timing When instruction executed 	Read the individual information of the error using the peripheral device, check to be sure that the program corresponds to the numerical values there (program location), and correct.		Flicker/On CPU Status: Stop/ Continue ^{*1}	Qn(H) QnPH QnPRH QnU	12
2413	 [FILE OPE. ERROR] No data has been written to the file designated by the sequence program. Collateral information Common Information:File name/ Drive name Individual Information:Program error location Diagnostic Timing When instruction executed 	Read the individual information of the error using the peripheral device, check to be sure that the program corresponds to the numerical values there (program location), and correct. Check to ensure that the designated file has not been write protected.		Qn(H) QnPH QnPRH		
2500	 [CAN'T EXE. PRG.] There is a program file that uses a device that is out of the range set in the PLC parameter device setting. After the PLC parameter setting is changed, only the parameter is written into the PLC. Collateral information Common Information:File name/ Drive name Individual Information: Diagnostic Timing 	 Read the common information of the error using the peripheral device, check to be sure that the parameter device allocation setting and the program file device allocation correspond to the numerical values there (file name), and correct if necessary. If PLC parameter device setting is changed, batch-write the parameter and program file into the PLC. 	RUN: Off ERR.: Flicker CPU Status: Stop	QCPU		
	 At power ON/At reset/ STOP → RUN [CAN'T EXE. PRG.] After the index modification of the PLC parameter is changed, only the parameter is written to the PLC. ■Collateral information Common Information:File name/ Drive name Individual Information: ■Diagnostic Timing At power ON/At reset/ STOP → RUN 	When the index modification of the PLC parameter is changed, batch-write the parameter and program file into the PLC.		QnU	2.1 Error Code List 2.1.4 Error code list (2000)	

CPU operation can be set in the parameters at error occurrence. (LED indication varies.) *1

12-31

Error Code (SD0)	Error Contents and Cause	Corrective Action	LED Status CPU Status	Corresponding CPU
2501	 [CAN'T EXE. PRG.] There are multiple program files although "none" has been set at the PLC parameter program settings. ■Collateral information Common Information:File name/ Drive name Individual Information: ■Diagnostic Timing At power ON/At reset/ STOP → RUN 	Edit the PLC parameter program setting to "yes". Alternatively, delete unneeded programs.	RUN: Off ERR.: Flicker CPU Status: Stop	Qn(H) QnPH QnPRH QnU
	 [CAN'T EXE. PRG.] There are three or more program files. The program name differs from the program contents. ■Collateral information Common Information:File name/ Drive name Individual Information: ■Diagnostic Timing At power ON/At reset/ STOP → RUN 	 Delete unnecessary program files. Match the program name with the program contents. 		Q00J/Q00/Q01
2502	[CAN'T EXE. PRG.] The program file is incorrect. Alternatively, the file contents are not those of a sequence program. ■Collateral information • Common Information:File name/ Drive name • Individual Information: ■Diagnostic Timing • At power ON/At reset/ STOP → RUN	Check whether the program version is $* * * .QPG$, and check the file contents to be sure they are for a sequence program.		QCPU
2002	[CAN'T EXE. PRG.] The program file is not the one for the redundant CPU. ■Collateral information • Common Information:File name/ Drive name • Individual Information: ■Diagnostic Timing • At power ON/At reset/ STOP → RUN	Create a program using GX Developer or PX Developer for which the PLC type has been set to the redundant CPU (Q12PRH/Q25PRH), and write it to the CPU module.		QnPRH
2503	[CAN'T EXE. PRG.] There are no program files at all. ■Collateral information • Common Information:File name/ Drive name • Individual Information: ■Diagnostic Timing • At power ON/At reset/ STOP → RUN	Check program configuration		QCPU
2504	[CAN'T EXE. PRG.] Two or more SFC normal programs or control programs have been designated. ■Collateral information • Common Information:File name/ Drive name • Individual Information: ■Diagnostic Timing • At power ON/At reset/ STOP> RUN	Check parameters and program configuration.		Qn(H) QnPH QnPRH QnU
	[CAN'T EXE. PRG.] There are two or more SFC programs. ■Collateral information • Common Information:File name/ Drive name • Individual Information: ■Diagnostic Timing • At power ON/At reset/ STOP → RUN	Reduce the SFC programs to one.		Q00J/Q00/Q01 ^{*3}

Error Code (SD0)	Error Contents and Cause	Corrective Action	LED Status CPU Status	Corresponding CPU
2700	[REMOTE PASS.FAIL] The count of remote password mismatches reached the upper limit. Collateral information • Common Information: • Individual Information: Diagnostic Timing • Always	 Check for illegal accesses. If any illegal access is identified, take actions such as disabling communication of the connection. If no illegal access is identified, clear the error and perform the following. (Clearing the error also clears the count of remote password mismatches.) Check if the remote password sent is correct. Check if the remote password has been locked. Check if concurrent access was made from multiple devices to one connection by UDP. Check if the upper limit of the remote password mismatch count is too low. 	RUN: ON ERR.: ON CPU Status: Continue	QnU* ⁸
2710	[SNTP OPE.ERROR] Time setting failed when the programmable controller was powered ON or reset. Collateral information • Common Information: • Individual Information: Diagnostic Timing • When time setting function is executed	 Check if the time setting function is set up correctly. Check if the specified SNTP server is operating normally, or if any failure has occurred on the network connected to the specified SNTP server computer. 	RUN: Off/ON ERR.: Flicker/ON CPU Status: Stop/Continue	

12

12.1.5 Error code list (3000 to 3999)

The following shows the error messages from the error code 3000 to 3999, the contents and causes of the errors, and the corrective actions for the errors.

Error Code (SD0)	Error Contents and Cause	Corrective Action	LED Status CPU Status	Corresponding CPU
	 [PARAMETER ERROR] In a multiple CPU system, the intelligent function module under control of another CPU is specified in the interrupt pointer setting of the PLC parameter. ■Collateral information Common Information:File name/ Drive name Individual Information:Parameter number ■Diagnostic Timing At power ON/At reset/STOP → RUN/ At writing to progurammable controller 	 Specify the head I/O number of the intelligent function module under control of the host CPU. Delete the interrupt pointer setting of the parameter. 	RUN: Off ERR.: Flicker CPU Status: Stop	Qn(H) ^{*1} QnPH QnU ^{*10}
	[PARAMETER ERROR] The PLC parameter settings for timer time limit setting, the RUN-PAUSE contact, the common pointer number, general data processing, number of empty slots, system interrupt settings, baud rate setting, and service processing setting are outside the range that can be used by the CPU module. ■Collateral information Common Information:File name/ Drive name Individual Information:Parameter number ■Diagnostic Timing At power ON/At reset/STOP → RUN/ At writing to progurammable controller 			QCPU
3000	In a program memory check, the check capacity has not been set within the range applicable for the CPU module. • Read the check capacity has not been set within the range applicable for the CPU module. ■Collateral information • Common Information:File name/ Drive name individual Information:Parameter number ■Diagnostic Timing • At power ON/At reset/STOP → RUN/ At writing to progurammable controller	 Read the individual information of the error using the peripheral device, check the parameter item corresponding to the numerical value (parameter No.), and correct it. Rewrite corrected parameters to the CPU module, reload the CPU power supply and/or 		QnPH QnPRH ^{*5}
	 [PARAMETER ERROR] The parameter settings in the error individual information (special register SD16) are illegal. ■Collateral information Common Information:File name/ Drive name Individual Information:Parameter number ■Diagnostic Timing At power ON/At reset/STOP → RUN/ At writing to progurammable controller 	reset the module. • If the same error occurs, it is thought to be a hardware error. (Contact your local Mitsubishi representative.)		QCPU
	 [PARAMETER ERROR] The ATA card is set to the memory card slot when the specified drive for the file register is set to "memory card (ROM)" and [Use the following file] or [Use the same file name as the program] (either one is allowed) is set in the PLC file setting. ■Collateral information Common Information:File name/ Drive name Individual Information:Parameter number ■Diagnostic Timing At power ON/At reset/STOP → RUN/ At writing to progurammable controller 			QnU ^{*11}

*1 The function version is B or later.

*10 The Universal model QCPU except the Q00UJCPU.

*11 The Universal model QCPU except the Q00UJCPU, Q00UCPU, and Q01UCPU.

^{*5} The module whose first 5 digits of serial No. is "07032" or later.

Error Code (SD0)	Error Contents and Cause	Corrective Action	LED Status CPU Status	Corresponding CPU							
3001	 [PARAMETER ERROR] The parameter settings are corrupted. ■Collateral information Common Information:File name/ Drive name Individual Information:Parameter number ■Diagnostic Timing At power ON/At reset/STOP → RUN/ At writing to progurammable controller 	 Read the individual information of the error using the peripheral device, check the parameter item corresponding to the numerical value (parameter No.), and correct it. Rewrite corrected parameters to the CPU module, reload the CPU power supply and/or reset the module. If the same error occurs, it is thought to be a hardware error. (Contact your local Mitsubishi representative.) 		QCPU							
	[PARAMETER ERROR] When "Use the following file" is selected for the file register in the PLC file setting of the PLC parameter dialog box, the specified file does not exist although the file register capacity has been set. ■Collateral information Common Information:File name/ Drive name Individual Information:Parameter number ■Diagnostic Timing At power ON/At reset/STOP → RUN/ At writing to progurammable controller 		RUN: Off ERR.: Flicker CPU Status: Stop	RUN: Off	RUN: Off	RUN: Off	RUN: Off	RUN: Off	RUN: Off ERR ·	Qn(H) QnPH QnPRH	12
3002	 [PARAMETER ERROR] When [Use the following file] is set for the file register in the PLC file setting of the PLC parameter dialog box and the capacity of file register is not set, the file register file does not exist in the specified target memory. ■Collateral information Common Information:File name/ Drive name Individual Information:Parameter number ■Diagnostic Timing At power ON/At reset/STOP → RUN/ At writing to progurammable controller 	 Read the individual information of the error using the peripheral device, check the parameter item corresponding to the numerical value (parameter No.), and correct it. Rewrite corrected parameters to the CPU module, reload the CPU power supply and/or reset the module. If the same error occurs, it is thought to be a hardware error. (Contact your local Mitsubishi representative.) 		QnU ^{*10}							
	 [PARAMETER ERROR] When [Use the following file.] is set for the device data storage file in [PLC file] of [PLC parameter], and [Capacity] is not set, the device data storage file does not exist in the target memory. ■Collateral information Common Information:File name/ Drive name Individual Information:Parameter number ■Diagnostic Timing At power ON/At reset/STOP → RUN/ At writing to progurammable controller 			QnU	12.1 Error Code L 12.1.5 Error code						

Error Code (SD0)	Error Contents and Cause	Corrective Action	LED Status CPU Status	Corresponding CPU
	 [PARAMETER ERROR] The automatic refresh range of the multiple CPU system exceeded the file register capacity. Collateral information Common Information:File name/ Drive name Individual Information:Parameter number Diagnostic Timing When an END instruction executed 	Change the file register file for the one refresh- enabled in the whole range.		Qn(H) ^{*1} QnPH QnU ^{*10}
3003	 [PARAMETER ERROR] The number of devices set at the PLC parameter device settings exceeds the possible CPU module range. ■Collateral information Common Information:File name/ Drive name Individual Information:Parameter number ■Diagnostic Timing At power-On/ At reset/ STOP → RUN/ At writing to progurammable controller 	 Read the individual information of the error using the peripheral device, check the parameter item corresponding to the numerical value (parameter No.), and correct it. If the error is still generated following the correction of the parameter settings, the possible cause is the memory errorm of the CPU module's program memory or the memory card. (Contact your local Mitsubishi representative.) 		OCPU
3004	 [PARAMETER ERROR] The parameter file is incorrect. Alternatively, the contents of the file are not parameters. ■Collateral information Common Information:File name/ Drive name Individual Information:Parameter number ■Diagnostic Timing At power-On/ At reset/ STOP → RUN/ At writing to progurammable controller 	Check whether the parameter file version is $* * *$.QPA, and check the file contents to be sure they are parameters.	RUN: Off ERR.: Flicker	
3005	 [PARAMETER ERROR] The contents of the parameter are broken. ■Collateral information Common Information:File name/ Drive name Individual Information:Parameter number ■Diagnostic Timing At power-ON/ At reset/ STOP → RUN 	 Read the individual information of the error using the peripheral device, check the parameter item corresponding to the numerical value (parameter No.), and correct it. Write the modified parameter items to the CPU module again, and power-on the Programmable Controller or reset the CPU module. When the same error occurs again, the hardware is faulty. Contact your local Mitsubishi representative, explaining a detailed description of the problem. 	CPU Status: Stop	Qn(H) ^{*7} QnPH ^{*9} QnPRH ^{*9}
3006	 [PARAMETER ERROR] The high speed interrupt is set in a Q02CPU. The high speed interrupt is set in a multiple CPU system. The high speed interrupt is set when aQA1S6□B or QA6□B is used. No module is installed at the I/O address designated by the high speed interrupt. ■Collateral information Common Information:File name/ Drive name Individual Information:Parameter number ■Diagnostic Timing At power-On/ At reset/ STOP → RUN/ At writing to progurammable controller 	 Delete the setting of the Q02CPU's high speed interrupt. To use high speed interrupts, change the CPU module to one of the Q02H/Q06H/Q12H/Q25HCPU. To use a multiple CPU system, delete the setting of the high-speed interrupt. To use high speed interrupts, change the system to a single CPU system. To use either the QA1S6_B or QA6_B, delete the setting of the high speed interrupt. To use high speed interrupt. To use high speed interrupts, do not use the QA1S6_B/QA6_B. Re-examine the I/O address designated by the high speed interrupt setting. 		Qn(H) ^{*4}

- The function version is B or later. The module whose first 5 digits of serial No. is "04012" or later. The module whose first 5 digits of serial No. is "09012" or later. The module whose first 5 digits of serial No. is "10042" or later. The Universal model QCPU except the Q00UJCPU. *1 *4 *7 *9 *10

Error Code (SD0)	Error Contents and Cause	Corrective Action	LED Status CPU Status	Corresponding CPU	
3007	 [PARAMETER ERROR] The parameter file in the drive specified as valid parameter drive by the DIP switches is inapplicable for the CPU module. Collateral information Common Information:File name/ Drive name Individual Information:Parameter number Diagnostic Timing At power-On/ At reset/ STOP → RUN/ At writing to progurammable controller 	Create parameters using GX Developer, and write them to the drive specified as valid parameter drive by the DIP switches.	RUN: Off ERR.: Flicker CPU Status: Stop	QnPRH	12
3009	 [PARAMETER ERROR] In a multiple CPU system, the modules for AnS, A, Q2AS and QnA have been set to multiple control CPUs. ■Collateral information Common Information:File name/ Drive name Individual Information:Parameter number ■Diagnostic Timing At power-On/ At reset/ STOP → RUN/ At writing to progurammable controller 	Re-set the parameter I/O assignment to control them under one CPU module. (Change the parameters of all CPUs in the multiple CPU system.)		Qn(H) ^{*1}	
3010	 [PARAMETER ERROR] The parameter-set number of CPU modules differs from the actual number in a multiple CPU system. ■Collateral information Common Information:File name/ Drive name Individual Information:Parameter number ■Diagnostic Timing At power-On/ At reset/ STOP → RUN/ At writing to progurammable controller 	Match the number of (CPU modules in multiple CPU setting) - (CPUs set as empty in I/O assignment) with that of actually mounted CPU modules.		Qn(H) ^{*1} QnPH	
3012	 [PARAMETER ERROR] Multiple CPU setting or control CPU setting differs from that of the reference CPU settings in a multiple CPU system. ■Collateral information Common Information:File name/ Drive name Individual Information:Parameter number ■Diagnostic Timing At power-On/ At reset/ STOP → RUN/ At writing to progurammable controller 	Match the multiple CPU setting or control CPU setting in the PLC parameter with that of the reference CPU (CPU No.1) settings.		Q00/Q01 ^{*1} Qn(H) ^{*1} QnU	12.1

Error Code (SD0)	Error Contents and Cause	Corrective Action	LED Status CPU Status	Corresponding CPU
3013	 [PARAMETER ERROR] Multiple CPU auto refresh setting is any of the followings in a multiple CPU system. When a bit device is specified as a refresh device, a number other than a multiple of 16 is specified for the refresh-starting device. The device specified is other than the one that may be specified. The number of send points is an odd number. ■Collateral information Common Information:File name/ Drive name Individual Information:Parameter number ■Diagnostic Timing At power-On/ At reset/ STOP → RUN/ At writing to progurammable controller 	 Check the following in the multiple CPU auto refresh setting and make correction. When specifying the bit device, specify a multiple of 16 for the refresh starting device. Specify the device that may be specified for the refresh device. Set the number of send points to an even number. 	RUN: Off ERR.: Flicker CPU Status: Stop	Qn(H) ^{*1} QnPH
	 [PARAMETER ERROR] In a multiple CPU system, the multiple CPU auto refresh setting is any of the following. The total number of transmission points is greater than the maximum number of refresh points. ■Collateral information Common Information:File name/ Drive name Individual Information:Parameter number ■Diagnostic Timing At power-On/ At reset/ STOP → RUN/ At writing to progurammable controller 	Check the following in the multiple CPU auto refresh setting and make correction. • The total number of transmission points is within the maximum number of refresh points.		Q00/Q01 ^{*1}
	 [PARAMETER ERROR] In a multiple CPU system, the multiple CPU auto refresh setting is any of the following. The device specified is other than the one that may be specified. The number of send points is an odd number. The total number of send points is greater than the maximum number of refresh points. The setting of the refresh range crosses over the boundary between the internal user device and the extended data register (D) or extended link register (W). ■Collateral information Common Information:File name/ Drive name Individual Information:Parameter number ■Diagnostic Timing At power-On/ At reset/ STOP → RUN/ At writing to progurammable controller 	 Check the following in the multiple CPU auto refresh setting and make correction. Specify the device that may be specified for the refresh device. Set the number of send points to an even number. Set the total number of send points within the range of the maximum number of refresh points. Set the refresh range so that it does not cross over the boundary between the internal user device and the extended data register (D) or extended link register (W). 		QnU ^{*10}
3014	 [PARAMETER ERROR] In a multiple CPU system, the online module change parameter (multiple CPU system parameter) settings differ from those of the reference CPU. In a multiple CPU system, the online module change setting is enabled although the CPU module mounted does not support online module chang parameter. ■Collateral information Common Information:File name/ Drive name Individual Information:Parameter number ■Diagnostic Timing At power-On/ At reset/ STOP → RUN/ At writing to progurammable controller 	 Match the online module change parameter with that of the reference CPU. If the CPU module that does not support online module change is mounted, replace it with the CPU module that supports online module change. 		Qn(H) QnPH QnU ^{*8}

*1 *8 *10

The function version is B or later. The Universal model QCPU except the Q00UJCPU, Q00UCPU, Q01UCPU, and Q02UCPU. The Universal model QCPU except the Q00UJCPU.

Error Code (SD0)	Error Contents and Cause	Corrective Action	LED Status CPU Status	Corresponding CPU	
3015	 [PARAMETER ERROR] In a multiple CPU system configuration, the CPU verified is different from the one set in the parameter setting. ■Collateral information Common Information:File name/ Drive name Individual Information:Parameter number/CPU No. ■Diagnostic Timing At power-On/ At reset/ STOP → RUN/ At writing to progurammable controller 	Read the individual information of the error using the peripheral device, check the parameter item corresponding to the numerical value (parameter No./CPU No.) and parameter of target CPU, and correct them.			
3016	 [PARAMETER ERROR] The CPU module incompatible with multiple CPU synchronized boot-up is set as the target for the synchronous startup setting]. Collateral information Common Information:File name/ Drive name Individual Information:Parameter number/ CPU No. Diagnostic Timing At power ON/ At reset/ At writing to progurammable controller 	Delete the CPU module incompatible with multiple CPU synchronized boot-up from the setting.		QnU ^{*8}	
3040	[PARAMETER ERROR] The parameter file is damaged. Collateral information • Common Information: • Individual Information: Diagnostic Timing • At power ON/At reset	With GX Developer, write [PLC parameter/Network parameter/Remote password] to a valid drive then reload the power supply for system and/or reset the CPU module. If the same error occurs, it is thought to be hardware error. (Contact your local Mitsubishi representative.)	RUN: Off ERR.: Flicker CPU Status:		
3041	 [PARAMETER ERROR] Parameter file of intelligent function module is damaged. Collateral information Common Information:- Individual Information:- Diagnostic Timing At power ON/At reset 	With GX Developer, write [Intelligent function module parameter] to a valid drive to write the parameters then reload the power supply for system and/or reset the CPU module. If the same error occurs, it is thought to be a hardware error. (Contact your local Mitsubishi representative.)	CPU Status: Stop	On/H)*5	
3042	[PARAMETER ERROR] The system file that have stored the remote password setting information is damaged. Collateral information • Common Information:- • Individual Information:- Diagnostic Timing • At power ON/At reset	 With GX Developer, write [PLC parameter/ Network parameter/Remote password] to a valid drive then reload the power supply for system and/or reset the CPU module. If the same error occurs, it is thought to be a hardware error. (Contact your local Mitsubishi representative.) When a valid drive for parameter is set to other than [program memory], set the parameter file (PARAM) at the boot file setting to be able to transmit to the program memory. With GX Developer, write [PLC parameter/ Network parameter/Remote password] to a valid drive then reload the power supply for system and/or reset the CPU module. If the same error occurs, it is thought to be hardware error. (Contact your local Mitsubishi representative.) 		QnPH ^{*5} QnPRH ^{*5}	וב. ו.ט בווטו נטעפ ווזג (טעעע וע טפפט)

*5 *8

The module whose first 5 digits of serial No. is "07032" or later. The Universal model QCPU except the Q00UJCPU, Q00UCPU, Q01UCPU, and Q02UCPU.

Error Code (SD0)	Error Contents and Cause	Corrective Action	LED Status CPU Status	Corresponding CPU
3100	 [LINK PARA. ERROR] In a multiple CPU system, the CC-Link IE controller network module controlled by another CPU is specified as the head I/O number of the CC-Link IE controller network module. ■Collateral information Common Information:File name/ Drive name Individual Information:Parameter number ■Diagnostic Timing At power-ON/ At reset/ STOP → RUN 	 Delete the network parameter of the CC-Link IE controller network module controlled by another CPU. Change the setting to the head I/O number of the CC-Link IE controller network module controlled by host CPU. 	RUN: Off ERR.: Flicker CPU Status: Stop	Qn(H) ^{*7} QnPH ^{*9} QnU
	[LINK PARA. ERROR] The network parameter of the CC-Link IE controller network operating as the normal station is overwritten to the control station. Or, the network parameter of the CC-Link IE controller network operating as the control station is overwritten to the normal station. (The network parameter is updated on the module by resetting.) ■Collateral information • Common Information:File name/ Drive name • Individual Information:Parameter number ■Diagnostic Timing • At power-ON/ At reset/ STOP → RUN	Reset the CPU module.		
	 [LINK PARA. ERROR] The number of modules actually mounted is different from that is set in Network parameter for MELSECNET/H. The head I/O number of the actually mounted module is different from the one set in the network parameter of the CC-Link IE controller network. Data cannot be handled in the parameter exists. The network type of CC-Link IE controller network is overwritten during power-on. (When changing the network type, switch RESET to RUN.) ■Collateral information Common Information:File name/ Drive name Individual Information:Parameter number ■Diagnostic Timing At power-ON/ At reset/ STOP → RUN [LINK PARA. ERROR] The CC-Link IE controller network module is specified for the head I/O number of network 	 Check the network parameter and actual mounting status, and if they differ, make them matched. When network parameters are modified, write them to the CPU module. Check the setting of extension base unit stage number. Check the connection status of extension base unit and extension cable. When the GOT is busconnected to the main base unit or extension base unit, also check its connection status. If an error occurs even after performing the above checks, the hardware may be faulty. (Contact your local Mitsubishi representative, available and extension description of the problem). 		Qn(H) ^{*7} QnPH ^{*9} QnPRH ^{*9} QnU
	 parameter in the MELSECNET/H. The MELSECNET/H module is specified for the head I/O number of network parameter in the CC-Link IE controller network. ■Collateral information Common Information:File name/ Drive name Individual Information:Parameter number ■Diagnostic Timing At power-ON/ At reset/ STOP → RUN 	explaining a detailed description of the problem.)		

^{*7}

Error Code (SD0)	Error Contents and Cause	Corrective Action	LED Status CPU Status	Corresponding CPU	
	 [LINK PARA. ERROR] Although the CC-Link IE controller network module is mounted, network parameter for the CC-Link IE controller network module is not set. Although the CC-Link IE controller network and MELSECNET/H modules are mounted, network parameter for the MELSECNET/H module is not set. ■Collateral information Common Information:File name/ Drive name Individual Information:Parameter number ■Diagnostic Timing At power-ON/ At reset/ STOP → RUN 	 Check the network parameter and actual mounting status, and if they differ, make them matched. When network parameters are modified, write them to the CPU module. Check the setting of extension base unit stage number. Check the connection status of extension base unit and extension cable. When the GOT is busconnected to the main base unit or extension base unit, also check its connection status. If an error occurs even after performing the above checks, the hardware may be faulty. (Contact your local Mitsubishi representative, explaining a detailed description of the problem.) 		Qn(H)* ⁷ QnPH* ⁹ QnPRH* ⁹ QnU	12
	 [LINK PARA. ERROR] In a multiple CPU system, the MELSECNET/H under control of another CPU is specified as the head I/O number in the network setting parameter of the MELSECNET/H. ■Collateral information Common Information:File name/ Drive name Individual Information:Parameter number ■Diagnostic Timing At power ON/At reset/STOP → RUN 	 Delete the MELSECNET/H network parameter of the MELSECNET/H under control of another CPU. Change the setting to the head I/O number of the MELSECNET/H under control of the host CPU. 		Q00/Q01 ^{*1} Qn(H) ^{*1} QnPH QnU ^{*10}	
3100	 [LINK PARA. ERROR] The network parameter of the MELSECNET/H operating as the normal station is overwritten to the control station. Or, the network parameter of the MELSECNET/H operating as the control station is overwritten to the normal station. (The network parameter is updated on the module by resetting.) ■Collateral information Common Information:File name/ Drive name Individual Information:Parameter number ■Diagnostic Timing At power ON/At reset/STOP → RUN 	Reset the CPU module.	RUN: Off ERR.: Flicker CPU Status: Stop	Qn(H) ^{*1} QnPH QnPRH QnU	
	 [LINK PARA. ERROR] The number of modules actually mounted is different from that is set in Network parameter for MELSECNET/H. The head I/O number of actually installed modules is different from that designated in the network parameter of MELSECNET/H. Some data in the parameters cannot be handled. The network type of MELSECNET/H is overwritten during power-on. (When changing the network type, switch RESET to RUN.) The mode switch of MELSECNET/H module^{*5} is outside the range. ■Collateral information Common Information:Parameter number ■Diagnostic Timing At power ON/At reset/STOP → RUN 	 Check the network parameters and actual mounting status, and if they differ, make them matched. If any network parameter has been corrected, write it to the CPU module. Check the extension base unit stage No. setting. Check the connection status of the extension base units and extension cables. When the GOT is bus-connected to the main base unit and extension base units, also check the connection status. If the error occurs after the above checks, the possible cause is a hardware fault. (Contact your local Mitsubishi representative, explaining a detailed description of the problem.) Set the mode switch of MELSECNET/H module^{*5} within the range. 		QCPU	12.1 Error Code List 12.1.5 Error code list (3000 to 3999)

- *1 *5 *7 *9 *10 The function version is B or later. The module whose first 5 digits of serial No. is "07032" or later. The module whose first 5 digits of serial No. is "09012" or later. The module whose first 5 digits of serial No. is "10042" or later. The Universal model QCPU except the Q00UJCPU.

Error Code (SD0)	Error Contents and Cause	Corrective Action	LED Status CPU Status	Corresponding CPU
3101	 [LINK PARA. ERROR] The link refresh range exceeded the file register capacity. Collateral information Common Information:File name/ Drive name Individual Information:Parameter number Diagnostic Timing When an END instruction executed 	Change the file register file for the one that enables entire range refresh.	RUN: Off ERR.: Flicker	Qn(H) ^{*1} QnPH QnPRH QnU ^{*10}
	 [LINK PARA. ERROR] When the station number of the MELSECNET/H module is 0, the PLC-to-PLC network parameter has been set. When the station number of the MELSECNET/H module is other than 0, the remote master parameter setting has been made. ■Collateral information Common Information:File name/ Drive name Individual Information:Parameter number ■Diagnostic Timing At power ON/At reset/STOP → RUN 	Correct the type or station number of the MELSECNET/H module in the network parameter to meet the used system.		Qn(H) ^{*1} QnPH QnPRH
	 [LINK PARA. ERROR] The refresh parameter for the CC-Link IE controller network is outside the range. ■Collateral information Common Information:File name/ Drive name Individual Information:Parameter number ■Diagnostic Timing At power ON/At reset/STOP → RUN 	 Check the network parameters and mounting status, and if they differ, match the network parameters and mounting status. 		Qn(H)* ⁷ QnPH* ⁹ QnPRH* ⁹ QnU
	 [LINK PARA. ERROR] The network No. specified by a network parameter is different from that of the actually mounted network. The head I/O No. specified by a network parameter is different from that of the actually mounted I/O unit. The network class specified by a network parameter is different from that of the actually mounted network. The network class specified by a network parameter is different from that of the actually mounted network. The network refresh parameter of the MELSECNET/H, MELSECNET/10 is out of the specified area. ■Collateral information Common Information:File name/ Drive name Individual Information:Parameter number ■Diagnostic Timing At power ON/At reset/STOP → RUN 	 If any network parameter has been corrected, write it to the CPU module. Confirm the setting of the number of extension stages of the extension base units. Check the connection status of the extension base units and extension cables. When the GOT is bus-connected to the main base unit and extension base units, also check their connection status. If the error occurs after the above checks, the cause is a hardware fault. (Contact your local Mitsubishi representative, explaining a detailed description of the problem.) 	CPU Status: Stop	QCPU
	 [LINK PARA. ERROR] A multi-remote I/O network was configured using a module that does not support the MELSECNET/H multi-remote I/O network. ■Collateral information Common Information:File name/ Drive name Individual Information:Parameter number ■Diagnostic Timing At power ON/At reset/STOP → RUN 	Use a module that supports the MELSECNET/H multi-remote I/O network.		QnPH

*1 *7 *9 *10

- The function version is B or later. The module whose first 5 digits of serial No. is "09012" or later. The module whose first 5 digits of serial No. is "10042" or later. The Universal model QCPU except the Q00UJCPU.

Error Code (SD0)	Error Contents and Cause	Corrective Action	LED Status CPU Status	Corresponding CPU	
3101	 [LINK PARA. ERROR] The system A of the MELSECNET/H remote master station has been set to other than Station No. 0. The system B of the MELSECNET/H remote master station has been set to Station No. 0. ■Collateral information Common Information:File name/ Drive name Individual Information:Parameter number ■Diagnostic Timing At power ON/At reset/STOP → RUN 	 Set the system A of the MELSECNET/H remote master station to Station No. 0. Set the system B of the MELSECNET/H remote master station to any of Station No. 1 to 64. 		QnPRH	
	[LINK PARA. ERROR] Since the number of points of the B/W device set in [Device] of the PLC parameter is lower than the number of B/W refresh device points shown in the following table when parameters of the MELSECNET/H are not set, the refresh between the CPU module and the MELSECNET/H cannot be performed Refresh No. of refresh device points of W device 8192 points 8192 points 1 (8192 points) 8192 points 1 (2048 points×2) modules) 6144 points 6144 points 3 (2048 points×4) modules) 4 12048 points×4 modules) 8 8192 points 8192 points 4 12048 points×4 modules) 8 8192 points 192 points 4 12048 points×4 modules) 8 8192 points 192 points	Set the refresh parameter of the MELSECNET/H in accordance with the number of points of B/W devices set in [Device] of the PLC parameter.	RUN: Off ERR.: Flicker CPU Status: Stop	Qn(H) ^{*7} QnPH ^{*7} QnPRH ^{*7} QnU	12
	 [LINK PARA. ERROR] The setting of the network refresh range crosses over the boundary between the internal user device and the extended data register (D) or extended link register (W). ■Collateral information Common Information:File name/ Drive name Individual Information:Parameter number ■Diagnostic Timing At power ON/At reset/STOP → RUN 	Set the network refresh range so that it does not cross over the boundary between the internal user device and the extended data register (D) or extended link register (W).		QnU	12.1 Error Code List 12.1.5 Error code list

Error Code (SD0)	Error Contents and Cause	Corrective Action	LED Status CPU Status	Corresponding CPU
3102	 [LINK PARA. ERROR] A CC-Link IE controller network parameter error was detected. ■Collateral information Common Information:File name/ Drive name Individual Information:Parameter number ■Diagnostic Timing At power ON/At reset/STOP → RUN 	Correct and write the network parameters.		Qn(H)* ⁷ QnPH* ⁹ QnPRH* ⁹ QnU
	 [LINK PARA. ERROR] The network module detected a network parameter error. A MELSECNET/H network parameter error was detected. ■Collateral information Common Information:File name/ Drive name Individual Information:Parameter number ■Diagnostic Timing At power ON/At reset/STOP → RUN 	If the error occurs after correction, it suggests a hardware fault. (Contact your local Mitsubishi representative.)		QCPU
	 [LINK PARA. ERROR] The station No. specified in pairing setting are not correct. • The stations are not numbered consecutively. • Pairing setting has not been made for the CPU module at the normal station. ■Collateral information • Common Information:File name/ Drive name • Individual Information:Parameter number ■Diagnostic Timing • At power ON/At reset/STOP → RUN 	Refer to the troubleshooting of the network module, and if the error is due to incorrect pairing setting, reexamine the pairing setting of the network parameter.	RUN: Off ERR.: Flicker CPU Status: Stop	QnPRH
	 [LINK PARA. ERROR] The CC-Link IE controller network module whose first 5 digits of serial No. is "09041" or earlier is mounted. ■Collateral information Common Information:File name/ Drive name Individual Information:Parameter number ■Diagnostic Timing At power ON/At reset/STOP → RUN 	Mount the CC-Link IE controller network module whose first 5 digits of serial No. is "09042" or later.		QnU
	 [LINK PARA. ERROR] Group cyclic function in CC-Link IE controller network that does not correspond to group cyclic function is set. ■Collateral information Common Information:File name/ Drive name Individual Information:Parameter number ■Diagnostic Timing At power ON/At reset/STOP → RUN 	Set group cyclic function in function version D or later of CC-Link IE controller network.		QnU ^{*9}
	 [LINK PARA. ERROR] Paring setting in CC-Link IE controller network modules installed in CPUs except for redundant CPUs was performed. ■Collateral information Common Information:File name/ Drive name Individual Information:Parameter number ■Diagnostic Timing At power ON/At reset/STOP → RUN 	Examine the paring setting for the network parameter in the control staion.		Q00J/Q00/Q01 Qn(H) ^{*9} QnPH ^{*9} QnU ^{*9}

The module whose first 5 digits of serial No. is "09012" or later. The module whose first 5 digits of serial No. is "10042" or later. *7

Error Code (SD0)	Error Contents and Cause	Corrective Action	LED Status CPU Status	Corresponding CPU	
3102	 [LINK PARA. ERROR] LB/LW own station send range at LB/LW4000 or later was set. LB/LW setting (2) was performed. Collateral information Common Information:File name/ Drive name Individual Information:Parameter number Diagnostic Timing At power ON/At reset/STOP → RUN 	Examine the network range assignments for the network parameter in the control station.	RUN: Off ERR.: Flicker CPU Status:	Q00J/Q00/Q01	
	 [LINK PARA. ERROR] In a multiple CPU system, Ethernet interface module under control of another station is specified to the start I/O number of the Ethernet network parameter. ■Collateral information Common Information:File name/ Drive name Individual Information:Parameter number ■Diagnostic Timing At power ON/At reset/STOP → RUN 	 Delete the Ethernet network parameter of Ethernet interface module under control of another station. Change the setting to the start I/O number of Ethernet interface module under control of the host station. 		Q00/Q01 ^{*1} Qn(H) ^{*1} QnPH QnU ^{*10}	1
3103	 [LINK PARA. ERROR] Although the number of modules has been set to one or greater number in the Ethernet module count parameter setting, the number of actually mounted module is zero. The start I/O No. of the Ethernet network parameter differs from the I/O No. of the actually mounted module. ■Collateral information Common Information:File name/ Drive name Individual Information:Parameter number ■Diagnostic Timing At power ON/At reset/STOP → RUN 	Correct and write the network parameters. If the error occurs after correction, it suggests a bardware fault (Contact your local Mitsubishi		QCPU	
	 [LINK PARA. ERROR] Ethernet module whose network type is set to "Ethernet (main base)" is mounted on the extension base unit in the redundant system. Ethernet module whose network type is set to "Ethernet (extension base)" is mounted on the main base unit in the redundant system. ECollateral information Common Information:File name/ Drive name Individual Information:Parameter number Diagnostic Timing At power ON/At reset/STOP → RUN 	representative.)	Stop	QnPRH* ⁷	12.1 Error Code Lit 12.1.5 Error code li
3104	 [LINK PARA. ERROR] The Ethernet, MELSECNET/H and MELSECNET/10 use the same network number. The network number, station number or group number set in the network parameter is out of range. The specified I/O number is outside the range of the used CPU module. The Ethernet-specific parameter setting is not normal. ■Collateral information Common Information:File name/ Drive name Individual Information:Parameter number ■Diagnostic Timing At power ON/At reset/STOP → RUN 	 Correct and write the network parameters. If the error occurs after correction, it suggests a hardware fault. (Contact your local Mitsubishi representative.) 		QCPU	st (3000 to 3999)

*1 *7 *10 The function version is B or later.

The module whose first 5 digits of serial No. is "09012" or later. The Universal model QCPU except the Q00UJCPU.

Error Code (SD0)	Error Contents and Cause	Corrective Action	LED Status CPU Status	Corresponding CPU
3105	 [LINK PARA. ERROR] In a multiple CPU system, the CC-Link module under control of another station is specified as the head I/O number of the CC-Link network parameter. ■Collateral information Common Information:File name/ Drive name Individual Information:Parameter number ■Diagnostic Timing At power ON/At reset/STOP → RUN 	 Delete the CC-Link network parameter of the CC-Link module under control of another station. Change the setting to the start I/O number of the CC-Link module under control of the host station. 	RUN: Off ERR.: Flicker CPU Status: Stop	Q00/Q01 ^{*1} Qn(H) ^{*1} QnPH QnU ^{*10}
	 [LINK PARA. ERROR] Though the number of CC-Link modules set in the network parameters is one or more, the number of actually mounted modules is zero. The start I/O number in the common parameters is different from that of the actually mounted module. The station type of the CC-Link module count setting parameters is different from that of the actually mounted station. ■Collateral information Common Information:File name/ Drive name Individual Information:Parameter number ■Diagnostic Timing At power ON/At reset/STOP → RUN 	 Correct and write the network parameters. If the error occurs after correction, it suggests a 		QCPU
	 [LINK PARA. ERROR] CC-Link module whose station type is set to "master station (compatible with redundant function)" is mounted on the extension base unit in the redundant system. CC-Link module whose station type is set to "master station (extension base)" is mounted on the main base unit in the redundant system. ■Collateral information Common Information:File name/ Drive name Individual Information:Parameter number ■Diagnostic Timing At power ON/At reset/STOP → RUN 	representative.)		QnPRH*7

The function version is B or later. The module whose first 5 digits of serial No. is "09012" or later. The Universal model QCPU except the Q00UJCPU.

*10

Error Code (SD0)	Error Contents and Cause	Corrective Action	LED Status CPU Status	Corresponding CPU		
3106	 [LINK PARA. ERROR] The CC-Link link refresh range exceeded the file register capacity. Collateral information Common Information:File name/ Drive name Individual Information:Parameter number Diagnostic Timing When an END instruction executed 	Change the file register file for the one refresh- enabled in the whole range.			Qn(H) ^{*1} QnPH QnPRH QnU	
	 [LINK PARA. ERROR] The network refresh parameter for CC-Link is out of range. ■Collateral information Common Information:File name Individual Information:Parameter number ■Diagnostic Timing At power ON/At reset/STOP → RUN 	Check the parameter setting.		QCPU	1	
	 [LINK PARA. ERROR] The setting of the network refresh range crosses over the boundary between the internal user device and the extended data register (D) or extended link register (W). ■Collateral information Common Information:File name Individual Information:Parameter number ■Diagnostic Timing At power ON/At reset/STOP → RUN 	Set the network refresh range so that it does not cross over the boundary between the internal user device and the extended data register (D) or extended link register (W).	RUN: Off ERR.: Flicker CPU Status: Stop	RUN: Off ERR.: Flicker CPU Status: Stop	QnU	
3107	 [LINK PARA. ERROR] The CC-Link parameter setting is incorrect. The set mode is not allowed for the version of the mounted CC-Link module. ■Collateral information Common Information:File name Individual Information:Parameter number ■Diagnostic Timing At power ON/At reset/STOP → RUN 	Check the parameter setting.			QCPU	
3200	 [SFC PARA. ERROR] The parameter setting is illegal. Though Block 0 was set to "Automatic start" in the SFC setting of the PLC parameter dialog box, Block 0 does not exist. ■Collateral information Common Information:File name Individual Information:Parameter number ■Diagnostic Timing STOP → RUN 	Read the common information of the error using the peripheral device, check error step corresponding to its numerical value (program error location) and correct the problem		Q00J/Q00/Q01 ^{*1} QnPH QnPRH QnU	12.1 Error Code List 12.1.5 Error code list	
3201	[SFC PARA. ERROR] The block parameter setting is illegal. ■Collateral information • Common Information:File name • Individual Information:Parameter number ■Diagnostic Timing • STOP → RUN	iocation), and correct the problem.		Qn(H) QnPH QnPRH	t (3000 to 3999)	

*1 The function version is B or later.

Error Code (SD0)	Error Contents and Cause	Corrective Action	LED Status CPU Status	Corresponding CPU		
3202	 [SFC PARA. ERROR] The number of step relays specified in the device setting of the PLC parameter dialog box is less than that used in the program. ■Collateral information Common Information:File name Individual Information:Parameter number ■Diagnostic Timing STOP → RUN 	Read the common information of the error using the peripheral device, check error step	RUN: Off ERR.: Flicker CPU Status: Stop			Qn(H) QnPH QnPRH
3203	 [SFC PARA. ERROR] The execution type of the SFC program specified in the program setting of the PLC parameter dialog box is other than scan execution. ■Collateral information Common Information:File name Individual Information:Parameter number ■Diagnostic Timing At power-ON/ At reset/ STOP → RUN*3 	corresponding to its numerical value (program error location), and correct the problem.		Qn(H) QnPH QnPRH QnU		
3300	 [SP. PARA ERROR] The start I/O number in the intelligent function module parameter set on GX Configurator differs from the actual I/O number. ■Collateral information Common Information:File name Individual Information:Parameter number^{*2} ■Diagnostic Timing At power-On/ At reset/ STOP → RUN/ At writing to progurammable controller 	Check the parameter setting.		QCPU		
	 [SP. PARA ERROR] The refresh setting of the intelligent function module exceeded the file register capacity. The intelligent function module set in GX Configurator differs from the actually mounted module. ■Collateral information Common Information:File name Individual Information:Parameter number*2 ■Diagnostic Timing At power-On/ At reset/ STOP → RUN/ At writing to progurammable controller 	 Change the file register file for the one which allows refresh in the whole range. Check the parameter setting. 		Q00J/Q00/Q01 Qn(H) ^{*1} QnPH QnPRH QnU		
3301	 [SP. PARA ERROR] The intelligent function module's refresh parameter setting is outside the available range. ■Collateral information Common Information:File name Individual Information:Parameter number*2 ■Diagnostic Timing At power-On/ At reset/ STOP → RUN/ At writing to progurammable controller 	Check the parameter setting.		QCPU		
	 [SP. PARA ERROR] The setting of the refresh parameter range crosses over the boundary between the internal user device and the extended data register (D) or extended link register (W). ■Collateral information Common Information:File name Individual Information:Parameter number^{*2} ■Diagnostic Timing At power-On/ At reset/ STOP → RUN/ At writing to progurammable controller 	Set the refresh parameter range so that it does not cross over the boundary between the internal user device and the extended data register (D) or extended link register (W).		QnU		

The function version is B or later.

Parameter No. is the value gained by dividing the head I/O number of parameter in the intelligent function module set by GX Configurator by 10H. The diagnostic timing of CPU modules except for Universal QCPU can be performed only when switching the CPU modules to run.

*1 *2 *3

Error Code (SD0)	Error Contents and Cause	Corrective Action	LED Status CPU Status	Corresponding CPU	
3302	 [SP. PARA ERROR] The intelligent function module's refresh parameter are abnormal. ■Collateral information Common Information:File name Individual Information:Parameter number*2 ■Diagnostic Timing At power-On/ At reset/ STOP → RUN/ At writing to progurammable controller 	Check the parameter setting.		QCPU	
3303	 [SP. PARA ERROR] In a multiple CPU system, the automatic refresh setting or other parameter setting was made to the intelligent function module under control of another station. ■Collateral information Common Information:File name/ Drive name Individual Information:Parameter number ■Diagnostic Timing At power-On/ At reset/ STOP → RUN/ At writing to progurammable controller 	 Delete the automatic refresh setting or other parameter setting of the intelligent function module under control of another CPU. Change the setting to the automatic refresh setting or other parameter setting of the intelligent function module under control of the host CPU. 		Q00/Q01 ^{*1} Qn(H) ^{*1} QnPH QnU ^{*10}	12
3400	[REMOTE PASS. ERR.] The head I/O number of the target module of the remote password is set to other than 0 ^H to 0FF0 ^H . ■Collateral information • Common Information: • Individual Information: ■Diagnostic Timing • At power ON/At reset/STOP → RUN	Change the head I/O number of the target module to be within the $0_{\rm H}$ to 0FF0_H range.	CPU Status: Stop	Qn(H) ^{*1} QnPH QnPRH QnU ^{*7}	
	[REMOTE PASS. ERR.] The head I/O number of the target module of the remote password is set to other than 0 _H to 07E0 _H . ■Collateral information • Common Information: • Individual Information: ■Diagnostic Timing • At power ON/At reset/STOP → RUN	Change the head I/O number of the target module to be within the $0_{\rm H}$ to $07E0_{\rm H}$ range.		Q02U	
	[REMOTE PASS. ERR.] The head I/O number of the target module of the remote password is outside the following range. • Q00JCPU: 0H to 1E0H • Q00CPU/Q01CPU: 0H to 3E0H ■Collateral information • Common Information:- • Individual Information:- ■Diagnostic Timing • At power ON/At reset/STOP → RUN	Change the head I/O number of the target module of the remote password for the number within the following range. • Q00JCPU: 0Hto 1E0H • Q00CPU/Q01CPU: 0Hto 3E0H		Q00J/Q00/Q01 ^{*1}	12.1 Error Code List 12.1.5 Error code list (300

*1 *2 *7 The function version is B or later.

Parameter No. is the value gained by dividing the head I/O number of parameter in the intelligent function module set by GX Configurator by 10H. The module whose first 5 digits of serial No. is "09012" or later.

Error Code (SD0)	Error Contents and Cause	Corrective Action	LED Status CPU Status	Corresponding CPU	
	 [REMOTE PASS. ERR.] Position specified as the head I/O number of the remote password file is incorrect due to one of the following reasons: Module is not loaded. Other than a the intelligent function module (I/O module) Intelligent function module other than serial communication module, modem interface module or Ethernet module Serial communication module or Ethernet module of function version A The intelligent function module where remote password is available is not mounted. ■Collateral information Common Information:- Individual Information:- The power ON/At reset/STOP → RUN 	Mount serial communication module, modem interface module or Ethernet module of function version B or later in the position specified in the head I/O No. of the remote password file.	CPU Status	RUN:	Qn(H) ^{*1} QnPH QnPRH QnU
3401	 [REMOTE PASS. ERR.] Any of the following modules is not mounted on the slot specified for the head I/O number of the remote password. Serial communication module of function version B or later Ethernet module of function version B or later Modem interface module of function version B or later Collateral information Common Information:- Individual Information:- Diagnostic Timing At power ON/At reset/STOP → RUN 	 Mount any of the following modules in the position specified for the head I/O number of the remote password. Serial communication module of function version B or later Ethernet module of function version B or later Modem interface module of function version B or later 	Off ERR.: Flicker CPU Status: Stop	Q00J/Q00/Q01 ^{*1}	
	 [REMOTE PASS. ERR.] Serial communication module, modem interface module or Ethernet module of function version B or later controlled by another CPU was specified in a multiple CPU system. ■Collateral information Common Information:- Individual Information:- ■Diagnostic Timing At power ON/At reset/STOP → RUN 	 Change it for the Ethernet module of function version B or later connected by the host CPU. Delete the remote password setting. 		Qn(H) ^{*1} QnPH QnU ^{*10}	

*1

The function version is B or later. The Universal model QCPU except the Q00UJCPU. *10

12.1.6 Error code list (4000 to 4999)

The following shows the error messages from the error code 4000 to 4999, the contents and causes of the errors, and the corrective actions for the errors.

Error Code (SD0)	Error Contents and Cause	Corrective Action	LED Status CPU Status	Corresponding CPU		
4000	 [INSTRCT. CODE ERR] The program contains an instruction code that cannot be decoded. An unusable instruction is included in the program. Collateral information Common Information:Program error location Individual Information:- Diagnostic Timing At power ON/At reset/STOP → RUN When instruction executed 	Read the common information of the error using a peripheral device, check error step corresponding to its numerical value (program error location), and correct the problem.		QCPI	QCPU	
4001	 [INSTRCT. CODE ERR] The program contains a dedicated instruction for SFC although it is not an SFC program. ■Collateral information Common Information:Program error location Individual Information: ■Diagnostic Timing At power ON/At reset/STOP → RUN When instruction executed 			Q00J/Q00/Q01 ^{*2} Qn(H) QnPH QnPRH QnU		
4002	 [INSTRCT. CODE ERR] The name of dedicated instruction specified by the program is incorrect. The dedicated instruction specified by the program cannot be executed by the specified module. ■Collateral information Common Information:Program error location Individual Information: ■Diagnostic Timing At power ON/At reset/STOP → RUN When instruction executed 		RUN: Off ERR.: Flicker CPU Status: Stop		12.1.6 Er	
4003	 [INSTRCT. CODE ERR] The number of devices for the dedicated instruction specified by the program is incorrect. ■Collateral information Common Information:Program error location Individual Information: ■Diagnostic Timing At power ON/At reset/STOP → RUN When instruction executed 			QCPU	ror code list (4000 to 4999	
4004	 [INSTRCT. CODE ERR] The device which cannot be used by the dedicated instruction specified by the program is specified. ■Collateral information Common Information:Program error location Individual Information:- ■Diagnostic Timing At power ON/At reset/STOP → RUN When instruction executed 				(6	

12.1 Error Code List

Error Code (SD0)	Error Contents and Cause	Corrective Action	LED Status CPU Status	Corresponding CPU
4010	 [MISSING END INS.] There is no END (FEND) instruction in the program. ■Collateral information Common Information:Program error location Individual Information: ■Diagnostic Timing At power ON/At reset/STOP → RUN 			QCPU
4020	[CAN'T SET(P)] The total number of internal file pointers used by the program exceeds the number of internal file pointers set in the parameters. ■Collateral information • Common Information:Program error location • Individual Information: ■Diagnostic Timing • At power ON/At reset/STOP → RUN	RUN: Off ERR.: Flicker Read the common information of the error using a peripheral device, check error step corresponding to its numerical value (program error location), and correct the problem.	RUN: Off ERR.: Flicker	Qn(H) QnPH QnPRH QnU
4021	 [CAN'T SET(P)] The common pointer Nos. assigned to files overlap. The local pointer Nos. assigned to files overlap. ■Collateral information Common Information:Program error location Individual Information: ■Diagnostic Timing At power ON/At reset/STOP → RUN 		Flicker CPU Status: Stop	QCPU
4030	[CAN'T SET(I)] The allocation pointer Nos. assigned by files overlap. ■Collateral information • Common Information:Program error location • Individual Information: ■Diagnostic Timing • At power ON/At reset/STOP → RUN			
	[OPERATION ERROR] The instruction cannot process the contained data. Collateral information • Common Information:Program error location • Individual Information: Diagnostic Timing • When instruction executed			QCPU
4100	[OPERATION ERROR] Access error of ATA card occurs by SP.FREAD/SP.FWRITE instructions. Collateral information • Common Information:Program error location • Individual Information: Diagnostic Timing • When instruction executed	 Take measurements against noise. Reset and restart the CPU module. When the same error is displayed again, the ATA card has hardware failure. (Please consult your local Mitsubishi service center or representative, explaining a detailed description of the problem.) 	RUN: Off/On ERR.: Flicker/On CPU Status: Stop/ Continue ^{*1}	Qn(H) QnPH QnPRH QnU ^{*11}
	[OPERATION ERROR] The file being accessed by other functions with SP.FWRITE instruction was accessed. Collateral information • Common Information:Program error location • Individual Information:– Diagnostic Timing • When instruction executed	 Stop the file accessed with other functions to execute SP.FWRITE instruction. Stop the access with othrer functions and the SP.FWRITE instructuion to execute at same time. 		QnU ^{*11}

*11

CPU operation can be set in the parameters at error occurrence. (LED indication varies.) The Universal model QCPU except the Q00UJCPU, Q00UCPU, and Q01UCPU. *1

Error Code (SD0)	Error Contents and Cause	Corrective Action	LED Status CPU Status	Corresponding CPU	
4101	 [OPERATION ERROR] The number of setting data dealt with the instruction exceeds the applicable range. The storage data and constant of the device specified by the instruction exceeds the applicable range. When writing to the host CPU shared memory, the write prohibited area is specified for the write destination address. The range of storage data of the device specified by the instruction exceeds the range of the number of device points. The device specified by the instruction exceeds the range of the number of device points. The interrupt pointer No. specified by the instruction exceeds the applicable range. Collateral information Common Information:-Program error location Individual Information:-Diagnostic Timing When instruction exceeds the applicable range. Or, file register is not set. Collateral information Collateral information Common Information:-Diagnostic Timing When instruction exceeds the applicable range. Or, file register is not set. 	Read the common information of the error using the peripheral device, check error step corresponding to its numerical value (program error location), and correct the problem.	RUN: Off/On ERR.: Flicker/On CPU Status: Stop/ Continue ^{*1}	QCPU QnU*10	
	 Diagnostic Timing When instruction executed (OPERATION ERROR) The block data that crosses over the boundary between the internal user device and the extended data register (D) or extended link register is specified (including 32-bit binary, real number (single precision, double precision), indirect address, and control data) Collateral information Common Information:Program error location Individual Information:– 			QnU	F
	Diagnostic Timing When instruction executed				

12

*1 *10 CPU operation can be set in the parameters at error occurrence. (LED indication varies.) The Universal model QCPU except the Q00UJCPU.

Error Code (SD0)	Error Contents and Cause	Corrective Action	LED Status CPU Status	Corresponding CPU
	[OPERATION ERROR] In a multiple CPU system, the link direct device (J□\□) was specified for the network module under control of another station. ■Collateral information • Common Information:Program error location • Individual Information: ■Diagnostic Timing • When instruction executed	 Delete from the program the link direct device which specifies the network module under control of another CPU. Using the link direct device, specify the network module under control of the host CPU. 		Q00/Q01 ^{*2} Qn(H) ^{*2} QnPH QnU ^{*10}
4102	 [OPERATION ERROR] The network No. or station No. specified for the dedicated instruction is wrong. The link direct device (J□\□) setting is incorrect. The module No./ network No./number of character strings exceeds the range that can be specified. ■Collateral information Common Information:- ■Diagnostic Timing When instruction executed 			QCPU
	 [OPERATION ERROR] The specification of character string (" ") specified by dedicated instruction cannot be used for the character string. Collateral information Common Information:Program error location Individual Information: Diagnostic Timing When instruction executed 	Read the common information of the error using the peripheral device, check error step corresponding to its numerical value (program error location), and correct the problem.	RUN: Off/On ERR.: Flicker/On CPU Status: Stop/ Continue ^{*1}	QnU
4103	[OPERATION ERROR] The configuration of the PID dedicated instruction is incorrect. Collateral information • Common Information:Program error location • Individual Information: Diagnostic Timing • When instruction executed			Continue ^{*1}
4105	[OPERATION ERROR] PLOADP/PUNLOADP/PSWAPP instructins were executed while setting program memory check. Collateral information • Common Information:Program error location • Individual Information:- Diagnostic Timing • When instruction executed	 Delete the program memory check setting. When using the program memory check, delete PLOADP/PUNLOADP/PSWAPP instructions. 		QnPH ^{*5}
4107	[OPERATION ERROR] 33 or more multiple CPU dedicated instructions were executed from one CPU module. Collateral information • Common Information:Program error location • Individual Information:- Diagnostic Timing • When instruction executed	Using the multiple CPU dedicated instruction completion bit, provide interlocks to prevent one CPU module from executing 33 or more multiple CPU dedicated instructions.		Q00/Q01 ^{*2} Qn(H) ^{*2} QnPH Q00U/Q01U Q02U

CPU operation can be set in the parameters at error occurrence. (LED indication varies.) The function version is B or later. The module whose first 5 digits of serial No. is "07032" or later. The Universal model QCPU except the Q00UJCPU. *1 *2 *5 *10

Error Code (SD0)	Error Contents and Cause	Corrective Action	LED Status CPU Status	Corresponding CPU	
4109	[OPERATION ERROR] With high speed interrupt setting PR, PRC, UDCNT1, UDCNT2, PLSY or PWM instruction is executed. Collateral information • Common Information:Program error location • Individual Information: Diagnostic Timing • When instruction executed	Delete the high-speed interrupt setting. When using high-speed interrupt, delete the PR, PRC, UDCNT1, UDCNT2, PLSY and PWM instructions.	RUN: Off/On ERR.: Flicker/On CPU Status: Stop/ Continue ^{*1}	Qn(H) ^{*3}	
4111	[OPERATION ERROR] An attempt was made to perform write/read to/from the CPU shared memory write/read disable area of the host station CPU module with the instruction. Collateral information • Common Information:Program error location • Individual Information: Diagnostic Timing • When instruction executed	Read the common information of the error using GX Developer, and check and correct the error step		Q00/Q01 ^{*2} QnU	
4112	[OPERATION ERROR] The CPU module that cannot be specified with the multiple CPU dedicated instruction was specified. Collateral information · Common Information:Program error location · Individual Information:- Diagnostic Timing · When instruction executed	location).		Q00/Q01 ^{*2} QnU ^{*10}	
4113	 [OPERATION ERROR] When the SP.DEVST instruction is executed, the number of writing to the standard ROM of the day exceeds the value specified by SD695. The value outside the specified range is set to SD695. Collateral information Common Information:Program error location Individual Information:- Diagnostic Timing When instruction executed 	 Check that the number of execution of the SP.DEVST instruction is proper. Execute the SP.DEVST instruction again the following day or later day. Or, arrange the value of SD695. Correct the value of SD695 so that it does not exceed the range. 	RUN: Off/On ERR.: Flicker/On CPU Status: Stop/Continue	QnU	
4120	[OPERATION ERROR] Since the manual system switching enable flag (special register SM1592) is OFF, manual system switching cannot be executed by the control system switching instruction (SP. CONTSW). Collateral information • Common Information:Program error location • Individual Information:- Diagnostic Timing • When instruction executed	To execute control system switching by the SP. CONTSW instruction, turn ON the manual system switching enable flag (special register SM1592).	RUN: Off/On ERR.: Flicker/On CPU Status: Stop/ Continue ^{*1}	QnPRH	12.1.6 Error code list (4
4121	 [OPERATION ERROR] In the separate mode, the control system switching instruction (SP. CONTSW) was executed in the standby system CPU module. In the debug mode, the control system switching instruction (SP. CONTSW) was executed. Collateral information Common Information:Program error location Individual Information:- Diagnostic Timing When instruction executed 	 Reexamine the interlock signal for the SP. CONTSW instruction, and make sure that the SP. CONTSW instruction is executed in the control system only. (Since the SP. CONTSW instruction cannot be executed in the standby system, it is recommended to provide an interlock using the operation mode signal or like.) As the SP. CONTSW instruction cannot be executed in the debug mode, reexamine the interlock signal related to the operation mode. 	RUN: Off/On ERR.: Flicker/On CPU Status: Stop/ Continue ^{*1}	QnPRH	000 to 4999)

12-55

12.1 Error Code List

12

^{*1} *2 *3 *10 CPU operation can be set in the parameters at error occurrence. (LED indication varies.) The function version is B or later. The module whose first 5 digits of serial No. is "04012" or later. The Universal model QCPU except the Q00UJCPU.

Error Code (SD0)	Error Contents and Cause	Corrective Action	LED Status CPU Status	Corresponding CPU
4122	 [OPERATION ERROR] The dedicated instruction was executed to the module mounted on the extension base unit in the redundant system. The instruction for accessing the intelligent function module mounted on the extension base unit from the standby system at separate mode was executed. Collateral information Common Information:Program error location Individual Information:- Diagnostic Timing When instruction executed 	 Delete the dedicated instruction for the module mounted on the extension base unit. Delete the instruction for accessing the intelligent function module mounted on the extension base unit from the standby system. 	RUN: Off/On ERR.: Flicker/On CPU Status: Stop/Continue	QnPRH ^{*6}
4130	[OPERATION ERROR] Instructions to read SFC step comment (S(P).SFCSCOMR) and SFC transition condition comment (S(P).SFCTCOMR) are executed for the comment file in ATA card Collateral information • Common Information:Program error location • Individual Information: Diagnostic Timing • When END/other instruction executed	Target comment file is to be other than the comment file in ATA card.	RUN: Off/On ERR.: Flicker/On CPU Status: Stop/ Continue ^{*1}	Qn(H) ^{*4} QnPH ^{*5} QnPRH
4131	[OPERATION ERROR] The SFC program is started up by the instruction while the other SFC program has not yet been completed. Collateral information • Common Information:Program error location • Individual Information: Diagnostic Timing • When instruction executed	Check the SFC program specified by the instruction. Or, check the executing status of the SFC program.	RUN: Off/On ERR.: Flicker/On CPU Status: Stop/Continue	
4140	 [OPERATION ERROR] Operation where the input data is special value ("-0", unnormalized number, nonnumeric, ±∞) is performed. ■Collateral information • Common Information:Program error location • Individual Information: ■Diagnostic Timing • When instruction executed 	Read the common information of the error using the peripheral device, check the error step corresponding to the numerical value (program error part), and correct it.	RUN: Off/On ERR.: Flicker/On CPU Status: Stop/ Continue ^{*1}	QnU
4141	[OPERATION ERROR] Overflow occurs at operation. Collateral information • Common Information:Program error location • Individual Information: Diagnostic Timing • When instruction executed	Read the common information of the error using the peripheral device, check the error step corresponding to the numerical value (program error part), and correct it.		
4200	 [FOR NEXT ERROR] No NEXT instruction was executed following the execution of a FOR instruction. Alternatively, there are fewer NEXT instructions than FOR instructions. Collateral information Common Information:Program error location Individual Information:- Diagnostic Timing When instruction executed 	Read the common information of the error using the peripheral device, check error step corresponding to its numerical value (program error location), and correct the problem.	RUN: Off ERR.: Flicker CPU Status: Stop	QCPU

CPU operation can be set in the parameters at error occurrence. (LED indication varies.) The module whose first 5 digits of serial No. is "07012" or later. The module whose first 5 digits of serial No. is "07032" or later. The module whose first 5 digits of serial No. is "09012" or later. *1 *4 *5 *6

Error Code (SD0)	Error Contents and Cause	Corrective Action	LED Status CPU Status	Corresponding CPU
4201	[FOR NEXT ERROR] A NEXT instruction was executed although no FOR instruction has been executed. Alternatively, there are more NEXT instructions than FOR instructions. ■Collateral information • Common Information:Program error location • Individual Information:- ■Diagnostic Timing • When instruction executed	Read the common information of the error using the peripheral device, check error step corresponding to its numerical value (program error location), and correct the problem.		
4202	[FOR NEXT ERROR] More than 16 nesting levels are programmed. Collateral information • Common Information:Program error location • Individual Information: Diagnostic Timing • When instruction executed	Keep nesting levels at 16 or under.		
4203	[FOR NEXT ERROR] A BREAK instruction was executed although no FOR instruction has been executed prior to that. Collateral information • Common Information:Program error location • Individual Information:- Diagnostic Timing • When instruction executed	Read the common information of the error using the peripheral device, check error step	DUN	
4210	[CAN'T EXECUTE(P)] The CALL instruction is executed, but there is no subroutine at the specified pointer. Collateral information • Common Information:Program error location • Individual Information: Diagnostic Timing • When instruction executed	corresponding to its numerical value (program error location), and correct the problem.	RUN: Off ERR.: Flicker CPU Status: Stop	QCPU
4211	[CAN'T EXECUTE(P)] There was no RET instruction in the executed subroutine program. Collateral information • Common Information:Program error location • Individual Information:- Diagnostic Timing • When instruction executed ICAN'T EXECUTE(P)	Read the common information of the error using the peripheral device, check error step corresponding to its numerical value (program error		
4212	The RET instruction exists before the FEND instruction of the main routine program. Collateral information • Common Information:Program error location • Individual Information: Diagnostic Timing • When instruction executed	location), and correct the problem.		
4213	[CAN'T EXECUTE(P)] More than 16 nesting levels are programmed. Collateral information • Common Information:Program error location • Individual Information: Diagnostic Timing • When instruction executed	Keep nesting levels at 16 or under.		

Error Code (SD0)	Error Contents and Cause	Corrective Action	LED Status CPU Status	Corresponding CPU
4220	[CAN'T EXECUTE(I)] Though an interrupt input occurred, the corresponding interrupt pointer does not exist. ECollateral information • Common Information:Program error location • Individual Information:- EDiagnostic Timing • When instruction executed			
4221	[CAN'T EXECUTE(I)] An IRET instruction does not exist in the executed interrupt program. Collateral information • Common Information:Program error location • Individual Information: Diagnostic Timing • When instruction executed	Read the common information of the error using		QCPU
	[CAN'T EXECUTE(I)] The IRET instruction exists before the FEND instruction of the main routine program. Collateral information • Common Information:Program error location • Individual Information: Diagnostic Timing • When instruction executed	the peripheral device, check error step corresponding to its numerical value (program error location), and correct the problem.		
4223	 [CAN'I EXECUTE(I)] The IRET instruction was executed in the fixed scan execution type program. The STOP instruction was executed in the fixed scan execution type program. Collateral information Common Information:Program error location Individual Information:- Diagnostic Timing When instruction executed 	F	RUN: Off ERR.: Flicker CPU Status: Stop	QnU
4225	[CAN'T EXECUTE(I)] The interrupt pointer for the module mounted on the extension base unit is set in the redundant system. Collateral information · Common Information:- · Individual Information:- Diagnostic Timing · At power-ON/At reset	Delete the setting of interrupt pointer for the module mounted on the extension base unit, since it cannot be used.		QnPRH ^{*6}
4230	[INST. FORMAT ERR.] The number of CHK and CHKEND instructions is not equal. Collateral information • Common Information:Program error location • Individual Information: Diagnostic Timing • When instruction executed	Read the common information of the error using the peripheral device, check error step		Qn(H) QnPH
4231	[INST. FORMAT ERR.] The number of IX and IXEND instructions is not equal. Collateral information • Common Information:Program error location • Individual Information: Diagnostic Timing • When instruction executed	corresponding to its numerical value (program error location), and correct the problem.		QCPU

Error Code (SD0)	Error Contents and Cause	Corrective Action	LED Status CPU Status	Corresponding CPU	
4235	[INST. FORMAT ERR.] The configuration of the check conditions for the CHK instruction is incorrect. Alternatively, a CHK instruction has been used in a low speed execution type program. ECollateral information • Common Information:Program error location • Individual Information: EDiagnostic Timing • When instruction executed			Qn(H) QnPH	
4350	 [MULTI-COM.ERROR] The multiple CPU high-speed transmission dedicated instruction used in the program specifies the wrong CPU module. Or, the setting in the CPU module is incompatible with the multiple CPU high-speed transmission dedicated instruction. The reserved CPU is specified. The uninstalled CPU is specified. The head I/O number of the target CPU/16 (n1) is outside the range of 3E_H to 3E3_H. The CPU module where the instruction cannot be executed is specified. The instruction is executed in a single CPU system. The host CPU is specified. The host CPU is specified. The instruction is executed without setting the "Use multiple CPU high speed communication". ECollateral information Common Information:-rogram error location Individual Information:- Diagnostic Timing When instruction executed 	1 isetting 2 icated 3 (n1) inot be J generation the trion". Read the common information of the error using the peripheral device, check error step corresponding to its numerical value (program error location), and correct the problem. RUN: Off ERR.: Flicker on CPU Status: Stop		QnU*7	1
4351	 [MULTI-COM.ERROR] The multiple CPU high-speed transmission dedicated instruction specified by the program cannot be executed to the specified target CPU module. The instruction name is wrong. The instruction unsupported by the target CPU module is specified. Collateral information Common Information:Program error location Individual Information:- Diagnostic Timing When instruction executed 				12.1.6 Error code list
4352	[MULTI-COM.ERROR] The number of devices for the multiple CPU high- speed transmission dedicated instruction specified by the program is wrong. Collateral information • Common Information:Program error location • Individual Information:- Diagnostic Timing • When instruction executed				(4000 to 4999)

The Universal model QCPU except the Q00UJCPU, Q00UCPU, Q01UCPU, and Q02UCPU. *7

Error Code (SD0)	Error Contents and Cause	Corrective Action	LED Status CPU Status	Corresponding CPU
4353	[MULTI-COM.ERROR] The device which cannot be used for the multiple CPU high-speed transmission dedicated instruction specified by the program is specified. ■Collateral information • Common Information:Program error location • Individual Information:- ■Diagnostic Timing • When instruction executed			QnU ^{*7}
4354	[MULTI-COM.ERROR] The character string which cannot be handled by the multiple CPU high-speed transmission dedicated instruction is specified. ECollateral information • Common Information:Program error location • Individual Information:- EDiagnostic Timing • When instruction executed	Read the common information of the error using the peripheral device, check error step corresponding to its numerical value (program error location), and correct the problem.	RUN:	
4355	[MULTI-COM.ERROR] The number of read/write data (number of request/ receive data) for the multiple CPU high-speed transmission dedicated instruction specified by the program is not valid. Collateral information • Common Information:Program error location • Individual Information: Diagnostic Timing • When instruction executed			QnU ^{*7}
4400	 [SFCP. CODE ERROR] No SFCP or SFCPEND instruction in SFC program. ■Collateral information Common Information:Program error location Individual Information: ■Diagnostic Timing STOP → RUN 		Off ERR.: Flicker CPU Status: Stop	Qn(H) QnPH QnPRH
4410	[CAN'T SET(BL)] The block number designated by the SFC program exceeds the range. ■Collateral information • Common Information:Program error location • Individual Information: ■Diagnostic Timing • STOP → RUN	Write the program to the CPU module again using GX Developer.		
4411	[CAN'T SET(BL)] Block number designations overlap in SFC program. ■Collateral information • Common Information:Program error location • Individual Information: ■Diagnostic Timing • STOP → RUN			Q00J/Q00/Q01 ^{*2} Qn(H) QnPH QnPRH QnU
4420	 [CAN'T SET(S)] A step number designated in an SFC program exceeds the range. ■Collateral information Common Information:Program error location Individual Information: ■Diagnostic Timing STOP → RUN 			

^{*2} *7

The function version is B or later. The Universal model QCPU except the Q00UJCPU, Q00UCPU, Q01UCPU, and Q02UCPU.

Error Code (SD0)	Error Contents and Cause	Corrective Action	LED Status CPU Status	Corresponding CPU
4421	[CAN'T SET(S)] Total number of steps in all SFC programs exceed the maximum. ■Collateral information • Common Information:Program error location • Individual Information: ■Diagnostic Timing • STOP → RUN	Write the program to the CPU module again using GX Developer.	ogram to the CPU module again using per. total number of step relays so that it ceed the total number of (maximum of each block. program to the CPU module again Developer. ecting the setting of the SFC data rite it to the CPU module. ecting the device setting range set in parameter, write it to the CPU module. ogram to the CPU module again using per.	Q00J/Q00/Q01 ^{*2} Qn(H) QnPH
4422	[CAN'T SET(S)] Step number designations overlap in SFC program. ■Collateral information • Common Information:Program error location • Individual Information: ■Diagnostic Timing • STOP → RUN			QnPRH QnU
4423	[CAN'T SET(S)] The total number of (maximum step No.+1) of each block exceeds the total number of step relays. ■Collateral information • Common Information:Program error location • Individual Information: ■Diagnostic Timing • STOP → RUN	Correct the total number of step relays so that it does not exceed the total number of (maximum step No.+1) of each block.		
4430	 [SFC EXE. ERROR] The SFC program cannot be executed. The data of the block data setting is illegal. The SFC data device of the block data setting is beyond the device setting range set in the PLC parameter. ■Collateral information Common Information:File name/Drive name Individual Information: ■Diagnostic Timing STOP → RUN 	 Write the program to the CPU module again using GX Developer. After correcting the setting of the SFC data device, write it to the CPU module. After correcting the device setting range set in the PLC parameter, write it to the CPU module. 		Q00J/Q00/Q01 ^{*2} QnU
4431	 [SFC EXE. ERROR] The SFC program cannot be executed. The block parameter setting is abnormal. ■Collateral information Common Information:File name/Drive name Individual Information: ■Diagnostic Timing STOP → RUN 	Write the program to the CPU module again using		
4432	 [SFC EXE. ERROR] The SFC program cannot be executed. The structure of the SFC program is illegal. ■Collateral information Common Information:File name/Drive name Individual Information: ■Diagnostic Timing STOP → RUN 	GX Developer.		

Error Code (SD0)	Error Contents and Cause	Corrective Action	LED Status CPU Status	Corresponding CPU
4500	[SFCP. FORMAT ERR.] The numbers of BLOCK and BEND instructions in an SFC program are not equal. ■Collateral information • Common Information:Program error location • Individual Information:- ■Diagnostic Timing • STOP → RUN		RUN: Off ERR.: Flicker CPU Status: Stop	Qn(H)
4501	 [SFCP. FORMAT ERR.] The configuration of the STEP* to TRAN* to TSET to SEND instructions in the SFC program is incorrect. ■Collateral information Common Information:Program error location Individual Information: ■Diagnostic Timing STOP → RUN 	Write the program to the CPU module again using the peripheral device.		QnPH QnPRH
4502	 [SFCP. FORMAT ERR.] The structure of the SFC program is illegal. STEPI* instruction does not exist in the block of the SFC program. ■Collateral information Common Information:Program error location Individual Information: ■Diagnostic Timing STOP → RUN 			Q00J/Q00/Q01*2 Qn(H) QnPH QnPRH QnU
4503	 [SFCP. FORMAT ERR.] The structure of the SFC program is illegal. The step specified in the TSET instruction does not exist. In jump transition, the host step number was specified as the destination step number. ■Collateral information Common Information:Program error location Individual Information:- ■Diagnostic Timing STOP → RUN 	 Write the program to the CPU module again using GX Developer. Read the common information of the error using GX Developer, and check and correct the error step corresponding to that value (program error location). 		
4504	 [SFCP. FORMAT ERR.] The structure of the SFC program is illegal. The step specified in the TAND instruction does not exist. ■Collateral information Common Information:Program error location Individual Information: ■Diagnostic Timing STOP → RUN 	Write the program to the CPU module again using GX Developer.		

Error Code (SD0)	Error Contents and Cause	Corrective Action	LED Status CPU Status	Corresponding CPU
4505	 [SFCP. FORMAT ERR.] The structure of the SFC program is illegal. In the operation output of a step, the SET Sn/ BLmSn or RST Sn/BLmSn instruction was specified for the host step. ■Collateral information Common Information:Program error location Individual Information: ■Diagnostic Timing STOP → RUN 	Read the common information of the error using GX Developer, and check and correct the error step corresponding to that value (program error location).	RUN: Off ERR.: Flicker CPU Status: Stop	Q00J/Q00/Q01 ^{*2} QnU
4506	 [SFCP. FORMAT ERR.] The structure of the SFC program is illegal. In a reset step, the host step number was specified as the destination step. ■Collateral information Common Information:Program error location Individual Information: ■Diagnostic Timing STOP → RUN 			
4600	[SFCP. OPE. ERROR] The SFC program contains data that cannot be processed. Collateral information • Common Information:Program error location • Individual Information: Diagnostic Timing • When instruction executed			
4601	 [SFCP. OPE. ERROR] Exceeds device range that can be designated by the SFC program. Collateral information Common Information:Program error location Individual Information:- Diagnostic Timing When instruction executed 	Read common information of the error using the peripheral device, check error step corresponding to its numerical value (program error location), and correct the problem.	RUN: Off/On ERR.: Flicker/On CPU Status: Stop/ Continue ^{*1}	Qn(H) QnPH QnPRH
4602	[SFCP. OPE. ERROR] The START instruction in an SFC program is preceded by an END instruction. Collateral information • Common Information:Program error location • Individual Information: Diagnostic Timing • When instruction executed			

12

CPU operation can be set in the parameters at error occurrence. (LED indication varies.) The function version is B or later.

*1 *2

Error Code (SD0)	Error Contents and Cause	Corrective Action	LED Status CPU Status	Corresponding CPU
4610	 [SFCP. EXE. ERROR] The active step information at presumptive start of the SFC program is incorrect. ■Collateral information Common Information:Program error location Individual Information: ■Diagnostic Timing STOP → RUN 	Read common information of the error using the peripheral device, check error step corresponding to its numerical value (program error location) and	RUN: On ERR.:	
4611	 [SFCP. EXE. ERROR] Key-switch was reset during RUN when presumptive start was designated for SFC program. ■Collateral information Common Information:Program error location Individual Information: ■Diagnostic Timing STOP → RUN 	correct the problem. The program is automatically subjected to an initial start.	On CPU Status: Continue	Qn(H) QnPH QnPRH
4620	[BLOCK EXE. ERROR] Startup was executed at a block in the SFC program that was already started up. ■Collateral information • Common Information:Program error location • Individual Information:- ■Diagnostic Timing • When instruction executed	Read common information of the error using the peripheral device, check error step corresponding to its numerical value (program error location), and correct the problem.		
4621	[BLOCK EXE. ERROR] Startup was attempted at a block that does not exist in the SFC program. Collateral information • Common Information:Program error location • Individual Information: Diagnostic Timing • When instruction executed	 Read the common information of the error using GX Developer, and check and correct the error step corresponding to that value (program error location). Turn ON if the special relay SM321 is OFF. 	RUN: Off ERR.: Flicker CPU Status: Stop	Q00J/Q00/Q01 ^{*2} Qn(H) QnPH QnPRH QnU
4630	[STEP EXE. ERROR] Startup was executed at a block in the SFC program that was already started up. Collateral information • Common Information:Program error location • Individual Information:- Diagnostic Timing • When instruction executed	Read common information of the error using the peripheral device, check error step corresponding to its numerical value (program error location), and correct the problem.		Qn(H) QnPH QnPRH

^{*2} The function version is B or later.

Error Code (SD0)	Error Contents and Cause	Corrective Action	LED Status CPU Status	Corresponding CPU
4631	 [STEP EXE. ERROR] Startup was attempted at the step that does not exist in the SFC program. Or, the step that does not exist in the SFC program was specified for end. Forced transition was executed based on the transition condition that does not exit in the SFC program. Or, the transition condition for forced transition that does not exit in the SFC program. Or, the transition condition for forced transition that does not exit in the SFC program was canceled. ECollateral information Common Information:Program error location Individual Information:- Diagnostic Timing When instruction executed 	 Read the common information of the error using the peripheral device, and check and correct the error step corresponding to that value (program error location). Turn ON if the special relay SM321 is OFF. 	RUN: Off ERR :	Q00J/Q00/Q01 ^{*2} Qn(H) QnPH QnPRH QnU
4632	[STEP EXE. ERROR] There were too many simultaneous active steps in blocks that can be designated by the SFC program. ■Collateral information • Common Information:-Program error location • Individual Information: ■Diagnostic Timing • When instruction executed [STEP EXE_ENDOD]	Read common information of the error using the peripheral device, check error step corresponding to its numerical value (program error location) and	CPU Status: Stop	Qn(H) QnPH OnPRH
4633	ISTEP EAE. EKKOKJ There were too many simultaneous active steps in all blocks that can be designated. Collateral information Common Information:Program error location Individual Information:- Diagnostic Timing When instruction executed	to its numerical value (program error location), and correct the problem.		QnU

*2 The function version is B or later.

12.1.7 Error code list (5000 to 5999)

The following shows the error messages from the error code 5000 to 5999, the contents and causes of the errors, and the corrective actions for the errors.

Error Code (SD0)	Error Contents and Cause	Corrective Action	LED Status CPU Status	Corresponding CPU	
5000	 [WDT ERROR] The scan time of the initial execution type program exceeded the initial execution monitoring time specified in the PLC RAS setting of the PLC parameter. Ecollateral information Common Information:Time (value set) Individual Information:Time (value actually measured) Diagnostic Timing Always 	 Read the individual information of the error from the peripheral device, check its value (time), and shorten the scan time. Change the initial execution monitoring time or the WDT value in the PLC RAS setting of the PLC parameter. Resolve the endless loop caused by jump transition. 	RUN: Off ERR.: Flicker CPU Status: Stop	RUN: Off ERR.: Flicker	Qn(H) QnPH QnPRH QnU
	 [WDT ERROR] The power supply of the standby system is turned OFF. The tracking cable is disconnected or connected without turning off or resetting the standby system. The tracking cable is not secured by the connector fixing screws. Collateral information Common Information:Time (value set) Individual Information:Time (value actually measured) Diagnostic Timing Always 	 Since power-off of the standby system increases the control system scan time, reset the WDT value, taking the increase of the control system scan time into consideration. When the tracking cable is disconnected during operation, securely connect it and restart the CPU module. If the same error is displayed again, the tracking cable or CPU module has a hardware fault. (Contact your local Mitsubishi representative, explaining a detailed description of the problem.) 			QnPRH
	 [WDT ERROR] The scan time of the program exceeded the WDT value specified in the PLC RAS setting of the PLC parameter. Collateral information Common Information:Time (value set) Individual Information:Time (value actually measured) Diagnostic Timing Always 	 Read the individual information of the error using the peripheral device, check its value (time), and shorten the scan time. Change the initial execution monitoring time or the WDT value in the PLC RAS setting of the PLC parameter. Resolve the endless loop caused by jump transition. 		QCPU	
5001	 [WDT ERROR] The power supply of the standby system is turned OFF. The tracking cable is disconnected or connected without turning off or resetting the standby system. The tracking cable is not secured by the connector fixing screws. Collateral information Common Information:Time (value set) Individual Information:Time (value set) Individual Information Common Strems Diagnostic Timing Always 	 Since power-off of the standby system increases the control system scan time, reset the WDT value, taking the increase of the control system scan time into consideration. When the tracking cable is disconnected during operation, securely connect it and restart the CPU module. If the same error is displayed again, the tracking cable or CPU module has a hardware fault. (Contact your local Mitsubishi representative, explaining a detailed description of the problem.) 		QnPRH	
Error Code (SD0)	Error Contents and Cause	Corrective Action	LED Status CPU Status	Corresponding CPU	
------------------------	--	---	--	---	-------------------
	 [PRG. TIME OVER] The program scan time exceeded the constant scan setting time specified in the PLC RAS setting of the PLC parameter. Collateral information Common Information:Time (value set) Individual Information:Time (value actually measured) Diagnostic Timing Always 	 Review the constant scan setting time. Review the constant scan setting time and low speed program execution time in the PLC. 	RUN: On ERR.: On CPU Status: Continue	Qn(H) QnPH QnPRH QnU	
5010	 [PRG. TIME OVER] The low speed program execution time specified in the PLC RAS setting of the PLC parameter exceeded the excess time of the constant scan. Collateral information Common Information:Time (value set) Individual Information:Time (value actually measured) Diagnostic Timing Always 	parameter so that the excess time of constant scan can be fully secured.		Qn(H) QnPH QnPRH RUN: On ERR.:	12
	 [PRG. TIME OVER] The program scan time exceeded the constant scan setting time specified in the PLC RAS setting of the PLC parameter. Collateral information Common Information:Time (value set) Individual Information:Time (value actually measured) Diagnostic Timing Always 	Review the constant scan setting time in the PLC parameter so that the excess time of constant scan can be fully secured.		itus: ue Q00J/Q00/Q01	
5011	[PRG TIME OVER] The scan time of the low speed execution type program exceeded the low speed execution watch time specified in the PLC RAS setting of the PLC parameter dialog box. Collateral information • Common Information:Time (value set) • Individual Information:Time (value actually measured)	Read the individual information of the error using the peripheral device, check the numerical value (time) there, and shorten scan time if necessary. Change the low speed execution watch time in the PLC RAS setting of the PLC parameter dialog box.		Qn(H) QnPH	
	 Diagnostic Timing Always 				12.1 Ei 12.1.7

12.1.8 Error code list (6000 to 6999)

The following shows the error messages from the error code 6000 to 6999, the contents and causes of the errors, and the corrective actions for the errors.

Error Code (SD0)	Error Contents and Cause	Corrective Action	LED Status CPU Status	Corresponding CPU
6000	 [FILE DIFF.] In a redundant system, the control system and standby system do not have the same programs and parameters. The file type detected as different between the two systems can be checked by the file name of the error common information. The program is different. (File name = ********.QPG) The PLC parameters/network parameters/ redundant parameters are different. (File name = PARAM.QPA) The remote password is different. (File name = PARAM.QPA) The intelligent function module parameters are different. (File name = IPARAM.QPA) The device initial values are different. (File name = #*******.QDI) The capacity of each write destination within the CPU for online pchange of multiple program blocks is different. (File name = MBOC.QMB) (This can be detected from the standby system of the redundant system.) Collateral information Common Information:- IDiagnostic Timing At power ON/At reset/ At tracking cable connection/At changing to backup mode/At completion of write during RUN/ At system switching/At switching both systems into RLIN 	 Match the programs and parameters of the control system and standby system. Verify the systems by either of the following procedures 1), 2) to clarify the differences between the files of the two systems, then correct a wrong file, and execute "Write to PLC" again. After reading the programs/parameters of System A using GX Developer or PX Developer, verify them with those of System B. Verify the programs/parameters of GX Developer or PX Developer saved in the offline environment with those written to the CPU modules of both systems. When the capacity of each write destination within the CPU for online change of multiple program blocks is different between the two systems, take corrective action 1) or 2). Using the memory copy from control system to standby system, copy the program memory from the control system to the standby system. Format the CPU module program memories of both systems. (For the capacity of each write destination within the CPU module program blocks, set the same value to both systems.) 	RUN: Off ERR.: Flicker CPU Status: Stop	QnPRH
6001	 [FILE DIFF.] In a redundant system, the valid parameter drive settings (SW2, SW3) made by the DIP switches are not the same. Collateral information Common Information:- Individual Information:- Diagnostic Timing At power ON/At reset/At tracking cable connection/At operation mode change 	Match the valid parameter drive settings (SW2, SW3) by the DIP switches of the control system and standby system.		

Error Code (SD0)	Error Contents and Cause	Corrective Action	LED Status CPU Status	Corresponding CPU
6010	[OPE. MODE DIFF.] The operational status of the control system and standby system in the redundant system is not the same. (This can be detected from the standby system of the redundant system.) Collateral information • Common Information: • Individual Information: Diagnostic Timing • Always	Synchronise the operation statuses of the control system and standby system.	RUN: On ERR.: On CPU Status: Continue	
6020	[OPE. MODE DIFF.] At power ON/reset, the RUN/STOP switch settings of the control system and standby system are not the same in a redundant system. (This can be detected from the control system or standby system of the redundant system.) ■Collateral information • Common Information: • Individual Information: ■Diagnostic Timing • At power ON/At reset	Set the RUN/STOP switches of the control system and standby system to the same setting.		
6030	 [UNIT LAY. DIFF.] In a redundant system, the module configuration differs between the control system and standby system. The network module mode setting differs between the two systems. (This can be detected from the control system or standby system of the redundant system.) Ecollateral information Common Information:Module No. Individual Information:– EDiagnostic Timing At power ON/At reset/At tracking cable connection/At operation mode change 	 Match the module configurations of the control system and standby system. In the redundant setting of the network parameter dialog box, match the mode setting of System B to that of System A. 	RUN: Off ERR.: Flicker CPU Status: Stop	QnPRH
6035	 [UNIT LAY. DIFF.] In a redundant system, the CPU module model name differs between the control system and standby system. (This can be detected from the standby system of the redundant system.) Collateral information Common Information: Individual Information: Diagnostic Timing At power ON/At reset/At tracking cable connection/At operation mode change 	Match the model names of the control system and standby system.		

Error Code (SD0)	Error Contents and Cause	Corrective Action	LED Status CPU Status	Corresponding CPU
6036	[UNIT LAY. DIFF.] A difference in the remote I/O configuration of the MELSECNET/H multiplexed remote I/O network between the control system and standby system of a redundant system was detected. (This can be detected from the control system or standby system of the redundant system.) Collateral information • Common Information:Module No. • Individual Information: Diagnostic Timing • Always	Check the network cables of the MELSECNET/H multiplexed remote I/O network for disconnection.	DI INI-	
6040	[CARD TYPE DIFF.] In a redundant system, the memory card installation status (installed/not installed) differs between the control system and standby system. Collateral information • Common Information: • Individual Information: Diagnostic Timing • At power ON/At reset	Match the memory card installation statuses (set/ not set) of the control system and standby system.	- RUN: Off ERR.: Flicker CPU Status: Stop	QnPRH
6041	[CARD TYPE DIFF.] In a redundant system, the memory card type differs between the control system and standby system. Collateral information · Common Information: · Individual Information: Diagnostic Timing · At power ON/At reset	Match the memory card types of the control system and standby system.		
6050	[CAN'T EXE. MODE] The function inexecutable in the debug mode or operation mode (backup/separate mode) was executed. (This can be detected from the control system or standby system of the redundant system.) Collateral information • Common Information: • Individual Information: Diagnostic Timing • Always	Execute the function executable in the debug mode or operation mode (backup/separate mode).	RUN: On ERR.: On CPU Status: Continue	
6060	 [CPU MODE DIFF.] In a redundant system, the operation mode (backup/separate) differs between the control system and standby system. (This can be detected from the standby system of the redundant system.) Collateral information Common Information: Individual Information: Diagnostic Timing At power ON/At reset/At tracking cable connection 	Match the operation modes of the control system and standby system.	RUN: Off ERR.: Flicker CPU Status: Stop	

Error Code (SD0)	Error Contents and Cause	Corrective Action	LED Status CPU Status	Corresponding CPU
6061	[CPU MODE DIFF.] In a redundant system, the operation mode (backup/separate) differs between the control system and standby system. (This can be detected from the standby system of the redundant system.) ■Collateral information • Common Information:- • Individual Information:- ■Diagnostic Timing • When an END instruction executed	Match the operation modes of the control system and standby system.	RUN: Off ERR.:	
6062	 [CPU MODE DIFF.] Both System A and B are in the same system status (control system). (This can be detected from the system B of the redundant system.) Collateral information Common Information: Individual Information: Diagnostic Timing At power ON/At reset/At tracking cable connection 	Power the CPU module (System B) which resulted in a stop error, OFF and then ON.	Flicker CPU Status: Stop	
6100	 [TRK. TRANS. ERR.] An error (e.g. retry limit exceeded) occurred in tracking data transmission. (This error may be caused by tracking cable removal or other system power-off (including reset).) The error occurred at a startup since the redundant system startup procedure was not followed. Collateral information Common Information:Tracking transmission data classification Individual Information:- Diagnostic Timing Always 	Check the CPU module or tracking cable. If the error still occurs, this indicates the CPU module or tracking cable is foult. (Contract your lead)	RUN: On	QnPRH
6101	 [TRK. TRANS. ERR.] A timeout error occurred in tracking (data transmission). (This error may be caused by tracking cable removal or other system power-off (including reset).) The error occurred at a startup since the redundant system startup procedure was not followed. (This can be detected from the control system or standby system of the redundant system.) Ecollateral information Common Information:-racking transmission data classification Individual Information:- 	 or tracking cable is faulty. (Contact your local Mitsubishi representative, explaining a detailed description of the problem.) Confirm the redundant system startup procedure, and execute a startup again. 	ERR.: On CPU Status: Continue	

Error Code (SD0)	Error Contents and Cause	Corrective Action	LED Status CPU Status	Corresponding CPU
6102	[TRK. TRANS. ERR.] A data sum value error occurred in tracking (data reception). (This can be detected from the control system or standby system of the redundant system.) ■Collateral information • Common Information:- • Individual Information:- ■Diagnostic Timing • Always			
6103	 [TRK. TRANS. ERR.] A data error (other than sum value error) occurred in tracking (data reception). (This error may be caused by tracking cable removal or other system power-off (including reset).) The error occurred at a startup since the redundant system startup procedure was not followed. (This can be detected from the control system or standby system of the redundant system.) ECollateral information Common Information: Individual Information: Diagnostic Timing Always 	 Check the CPU module or tracking cable. If the error still occurs, this indicates the CPU module or tracking cable is faulty. (Contact your local Mitsubishi representative, explaining a detailed description of the problem.) Confirm the redundant system startup procedure, and execute a startup again. 		
6105	 IRK. IRANS. ERR.] An error (e.g. retry limit exceeded) occurred in tracking (data transmission). (This error may be caused by tracking cable removal or other system power-off (including reset).) The error occurred at a startup since the redundant system startup procedure was not followed. (This can be detected from the control system or standby system of the redundant system.) Collateral information Common Information:-Tacking transmission data classification Individual Information:- Diagnostic Timing Always 		RUN: On ERR.: On CPU Status: Continue	QnPRH
6106	 [TRK. TRANS. ERR.] A timeout error occurred in tracking (data transmission). (This error may be caused by tracking cable removal or other system power-off (including reset).) The error occurred at a startup since the redundant system startup procedure was not followed. (This can be detected from the control system or standby system of the redundant system.) Collateral information Common Information:Tracking transmission data classification Individual Information:- Diagnostic Timing Always 	 Check the CPU module or tracking cable. If the error still occurs, this indicates the CPU module or tracking cable is faulty. (Contact your local Mitsubishi representative, explaining a detailed description of the problem.) Confirm the redundant system startup procedure, and execute a startup again. 		

Error Code (SD0)	Error Contents and Cause	Corrective Action	LED Status CPU Status	Corresponding CPU	
6107	[TRK. TRANS. ERR.] A data sum value error occurred in tracking (data reception). (This can be detected from the control system or standby system of the redundant system.) Collateral information • Common Information:- • Individual Information:- Diagnostic Timing • Always			QnPRH	
6108	 [TRK. TRANS. ERR.] A data error (other than sum value error) occurred in tracking (data reception). (This error may be caused by tracking cable removal or other system power-off (including reset).) The error occurred at a startup since the redundant system startup procedure was not followed. (This can be detected from the control system or standby system of the redundant system.) Collateral information Common Information: Individual Information: Diagnostic Timing Always 	 Check the CPU module or tracking cable. If the error still occurs, this indicates the CPU module or tracking cable is faulty. (Contact your local Mitsubishi representative, explaining a detailed description of the problem.) Confirm the redundant system startup procedure, and execute a startup again. 	RI IN-		
6110	[TRK. SIZE ERROR] The tracking capacity exceeded the allowed range. (This can be detected from the control system or standby system of the redundant system.) ■Collateral information • Common Information:Tracking capacity excess error factor • Individual Information: ■Diagnostic Timing • When an END instruction executed	Reexamine the tracking capacity.	RUN: On ERR.: On CPU Status: Continue		
6111	[TRK. SIZE ERROR] The control system does not have enough file register capacity for the file registers specified in the tracking settings. (This can be detected from the control system or standby system of the redundant system.) Collateral information • Common Information: • Individual Information: Diagnostic Timing • When an END instruction executed	Switch to the file registers of which capacity is greater than the file registers specified in the tracking settings.			
6112	 [TRK. SIZE ERROR] File registers greater than those of the standby system were tracked and transmitted from the control system. (This can be detected from the standby system of the redundant system.) Collateral information Common Information:– Individual Information:– Diagnostic Timing When an END instruction executed 	Switch to the file registers of which capacity is greater than the file registers specified in the tracking settings.			

Error Code (SD0)	Error Contents and Cause	Corrective Action	LED Status CPU Status	Corresponding CPU
6120	 [TRK. CABLE ERR.] A start was made without the tracking cable being connected. A start was made with the tracking cable faulty. As the tracking hardware on the CPU module side was faulty, communication with the other system could not be made via the tracking cable. (This can be detected from the control system or standby system of the redundant system.) Ecollateral information Common Information:- Individual Information:- Diagnostic Timing At power ON/At reset 	Make a start after connecting the tracking cable. If the same error still occurs, this indicates the tracking cable or CPU module side tracking transmission hardware is faulty. (Contact your local Mitsubishi representative, explaining a detailed description of the problem.)	RUN: Off ERR.: Flicker CPU Status: Stop	
6130	 [TRK. DISCONNECT] The tracking cable was removed. The tracking cable became faulty while the CPU module is running. The CPU module side tracking hardware became faulty. (This can be detected from the control system or standby system of the redundant system.) Collateral information Common Information:- Individual Information:- Diagnostic Timing Always 	 If the tracking cable was removed, connect the tracking cable to the connectors of the CPU modules of the two systems. When the error is not resolved after connecting the tracking cable to the connectors of the CPU modules of the two systems and resetting the error, the tracking cable or CPU module side tracking hardware is faulty. (Contact your local Mitsubishi representative, explaining a detailed description of the problem.) 	RUN: On ERR.: On CPU Status: Continue	*
6140	 [TRK.INIT. ERROR] The other system did not respond during initial communication at power ON/reset. The error occurred at a startup since the redundant system startup procedure was not followed. (This can be detected from the control system or standby system of the redundant system.) Collateral information Common Information:- Individual Information:- Diagnostic Timing At power ON/At reset 	 Power the corresponding CPU module OFF and then ON again, or reset it and then unreset. If the same error still occurs, this indicates the CPU module is faulty. (Contact your local Mitsubishi representative, explaining a detailed description of the problem.) Confirm the redundant system startup procedure, and execute a startup again. 	RUN: Off ERR.: Flicker CPU Status: Stop	QnPRH
6200	[CONTROL EXE.] The standby system has been switched to the control system in a redundant system. (Detected by the CPU that was switched from the standby system to the control system) Since this error code does not indicate the error information of the CPU module but indicates its status, the error code and error information are not stored into SD0 to 26, but are stored into the error log every system switching. (Check the error information by reading the error log using GX Developer.) ■Collateral information : • Common Information: ■Diagnostic Timing • Always	_	RUN: On ERR.: Off CPU Status: No error	

Error Code (SD0)	Error Contents and Cause	Corrective Action	LED Status CPU Status	Corresponding CPU
6210	[STANDBY] The control system has been switched to the standby system in a redundant system. (Detected by the CPU that was switched from the control system to the standby system) Since this error code does not indicate the error information of the CPU module but indicates its status, the error code and error information are not stored into SD0 to 26, but are stored into the error log every system switching. (Check the error information by reading the error log using GX Developer.) ECollateral information • Common Information:Reason(s) for system switching • Individual Information:– EDiagnostic Timing • Always	_	RUN: On ERR.: Off CPU Status: No error	
6220	[CAN'T SWITCH] System switching cannot be executed due to standby system error/ tracking cable error/ online module change in execution at separate mode. Causes for switching system at control system are as follows: • System switching by SP. CONTSW instruction • System switching request from network module Ecollateral information • Common Information:Reason(s) for system switching • Individual Information:Reason(s) for system switching failure EDiagnostic Timing • At switching execution	 Check the status of the standby system and resolve the error. Complete the online module change. 	RUN: On ERR.: On CPU Status: No error	QnPRH
6300	 [STANDBY SYS. DOWN] Any of the following errors was detected in the backup mode. The standby system has not started up in the redundant system. The standby system has developed a stop error in the redundant system. The CPU module in the debug mode was connected to the operating control system. (This can be detected from the control system of the redundant system.) Collateral information Common Information: Individual Information: Diagnostic Timing Always 	 Check whether the standby system is on or not, and if it is not on, power it on. Check whether the standby system has been reset or not, and if it has been reset, unreset it. Check whether the standby system has developed a stop error or not, and if it has developed a stop error or not, and if it has developed the error, remove the error factor and restart it. When the CPU module in the debug mode was connected to the control system operating in the backup mode, make connection so that the control system and standby system are combined correctly. 	RUN: On ERR.: On CPU Status: Continue	

Error Code (SD0)	Error Contents and Cause	Corrective Action	LED Status CPU Status	Corresponding CPU
6310	 [CONTROL SYS. DOWN] Any of the following errors was detected in the backup mode. The control system has not started up in the redundant system. The control system has developed a stop error in the redundant system. The CPU module in the debug mode was connected to the operating standby system. The error occurred at a startup since the redundant system startup procedure was not followed. (This can be detected from the standby system of the redundant system.) ■Collateral information Individual Information: ■Diagnostic Timing Always 	 The standby system exists but the control system does not exist. Check whether the system other than the standby system is on or not, and if it is not on, power it on. Check whether the system other than the standby system has been reset or not, and if it is has been reset, unreset it. Check whether the system other than the standby system has developed a stop error or not, and if has developed the error, remove the error factor, set the control system and standby system to the same operating status, and restart. When the CPU module in the debug mode was connected to the control system are combined correctly. Confirm the redundant system startup procedure, and execute a startup again. 	RUN: Off ERR.: Flicker CPU Status: Stop	QnPRH
6311	[CONTROL SYS. DOWN]			
6312	 As consistency check data has not transmitted from the control system in a redundant system, the other system cannot start as a standby system. The error occurred at a startup since the redundant system startup procedure was not followed. (This can be detected from the standby system of the redundant system.) Collateral information Common Information:- Individual Information:- Diagnostic Timing At power ON/At reset 	 Replace the tracking cable. If the same error still occurs, this indicates the CPU module is faulty. (Contact your local Mitsubishi representative, explaining a detailed description of the problem.) Confirm the redundant system startup procedure, and execute a startup again. 	RUN: Off ERR.: Flicker CPU Status: Stop	
6313	[CONTROL SYS. DOWN] The control system detected the error of the system configuration and informed it to the standby system (host system) in the redundant system. Collateral information • Common Information:- • Individual Information:- Diagnostic Timing • At power ON/At reset	Restart the system after checking that the connection between base unit and the system configuration (type/number/parameter of module) are correct.	RUN: Off ERR.: Flicker CPU Status: Stop	QnPRH ^{*1}
6400	 [PRG. MEM. CLEAR] The memory copy from control system to standby system was executed, and the program memory was cleared. Collateral information Common Information:- Individual Information:- Diagnostic Timing At execution of the memory copy from control system to standby system 	After the memory copy from control system to standby system is completed, switch power OFF and then ON, or make a reset.	RUN: Off ERR.: Flicker CPU Status: Stop	QnPRH

Error Code (SD0)	Error Contents and Cause	Corrective Action	LED Status CPU Status	Corresponding CPU
6410	[MEM.COPY EXE] The memory copy from control system to standby system was executed. (This can be detected from the control system of the redundant system.) Collateral information • Common Information:– • Individual Information:– Diagnostic Timing • At execution of the function of copying memory from control system to standby system	_	RUN: On ERR.: On CPU Status: Continue	
6500	 [TRK. PARA. ERROR] The file register file specified in the tracking setting of the PLC parameter dialog box does not exist. Collateral information Common Information:File name/Drive name Individual Information:Parameter number Diagnostic Timing At power ON/At reset 	Read the individual information of the error using GX Developer, and check and correct the drive name and file name. Create the specified file.	RUN: Off ERR.: Flicker CPU Status: Stop	QnPRH
6501	[TRK. PARA. ERROR] The file register range specified in the device detail setting of the tracking setting of the PLC parameter dialog box exceeded the specified file register file capacity. Collateral information • Common Information:File name/Drive name • Individual Information:Parameter number Diagnostic Timing • At power ON/At reset	Read the individual information of the error using GX Developer, and increase the file register capacity.		

12.1.9 Error code list (7000 to 10000)

The following shows the error messages from the error code 7000 to 10000, the contents and causes of the errors, and the corrective actions for the errors.

Error Code (SD0)	Error Contents and Cause	Corrective Action	LED Status CPU Status	Corresponding CPU
7000	 [MULTI CPU DOWN] In the operating mode of a multiple CPU system, a CPU error occurred at the CPU where "All station stop by stop error of CPU " was selected. In a multiple CPU system, a CPU module incompatible with the multiple CPU system was mounted. CPU modules other than CPU No.1 were removed from the base unit in operation, or reset. ECollateral information Common Information::Module No.(CPU No.) Individual Information:- Diagnostic Timing Always 	 Read the individual information of the error using GX Developer, identify the error of the CPU module, and remove the error. Remove the CPU module incompatible with the multiple CPU system from the main base unit. Check the mounting status of CPU modules other than CPU No.1 and whether the CPU modules were reset. 	RI IN:	Q00/Q01 ^{*1} Qn(H) ^{*1} QnPH QnU ^{*6}
	[MULTI CPU DOWN] In a multiple CPU system, CPU other than CPU No.1 cannot be started up due to stop error of the CPU No.1 at power-on, which occurs to CPU No.2 to No.4. Collateral information • Common Information:Module No.(CPU No.) • Individual Information:– Diagnostic Timing • At power ON/At reset	Read the individual information of the error using GX Developer, identify the error of the CPU module, and remove the error.		Q00/Q01 ^{*1} Qn(H) ^{*1} QnPH QnU ^{*6}
7002	 [MULTI CPU DOWN] There is no response from the target CPU module in a multiple CPU system during initial communication. In a multiple CPU system, a CPU module incompatible with the multiple CPU system was mounted. Collateral information Common Information:Module No.(CPU No.) Individual Information:- Diagnostic Timing At power ON/At reset 	 Reset the CPU module and RUN it again. If the same error is displayed again, this suggests the hardware fault of any of the CPU modules. (Contact your local Mitsubishi representative.) Remove the CPU module incompatible with the multiple CPU system from the main base unit. Or, replace the CPU module incompatible with the multiple CPU system with the compatible one. 	Off ERR.: Flicker CPU Status: Stop	Q00/Q01 ^{*1} Qn(H) ^{*1} QnPH
	 [MULTI CPU DOWN] There is no response from the target CPU module in a multiple CPU system during initial communication. ECollateral information Common Information:Module No.(CPU No.) Individual Information: Diagnostic Timing At power ON/At reset 	 Reset the CPU module and RUN it again. If the same error is displayed again, this suggests the hardware fault of any of the CPU modules. (Contact your local Mitsubishi representative.) 		QnU ^{*6}
7003	[MULTI CPU DOWN] There is no response from the target CPU module in a multiple CPU system at initial communication stage. Collateral information • Common Information:Module No.(CPU No.) • Individual Information: Diagnostic Timing • At power ON/At reset	Reset the CPU module and RUN it again. If the same error is displayed again, this suggests the hardware fault of any of the CPU modules. (Contact your local Mitsubishi representative.)		Q00/Q01*1 Qn(H)*1 QnPH

*1 The function version is B or later.

*6 The Universal model QCPU except the Q00UJCPU.

Error Code (SD0)	Error Contents and Cause	Corrective Action	LED Status CPU Status	Corresponding CPU
7004	[MULTI CPU DOWN] In a multiple CPU system, a data error occurred in communication between the CPU modules. Collateral information • Common Information:Module No.(CPU No.) • Individual Information: Diagnostic Timing • Always	 Check the system configuration to see if modules are mounted in excess of the number of I/O points. When there are no problems in the system configuration, this indicates the CPU module hardware is faulty. (Contact your local Mitsubishi representative, explaining a detailed description of the problem.) 	RUN: Off ERR.: Flicker CPU Status: Stop	Q00/Q01 ^{*1} QnU ^{*6}
	 [MULTI EXE. ERROR] In a multiple CPU system, a faulty CPU module was mounted. In a multiple CPU system, a CPU module incompatible with the multiple CPU system was mounted. (The CPU module compatible with the multiple CPU system was used to detect an error.) In a multiple CPU system, any of the CPU No. 2 to 4 was reset with power ON. (The CPU whose reset state was cancelled was used to detect an error.) ECollateral information Common Information:Module No.(CPU No.) Individual Information:– Diagnostic Timing At power ON/At reset 	 Read the individual information of the error using GX Developer, and replace the faulty CPU module. Replace the CPU module with the one compatible with the multiple CPU system. Do not reset any of the No. 2 to 4 CPU modules. Reset CPU No. 1 and restart the multiple CPU system. 	RUN: Off ERR.: Flicker CPU Status: Stop	Q00/Q01 ^{*1} Qn(H) ^{*1} QnPH QnU ^{*6}
7010	 [MULTI EXE. ERROR] The PC CPU module-compatible software package (PPC-DRV-01)*⁵ whose version is 1.06 or earlier is used in a multiple CPU system. Collateral information Common Information:Module No.(CPU No.) Individual Information: Diagnostic Timing At power ON/At reset 	Change the version of the PC CPU module- compatible software package (PPC-DRV-01)*5 to 1.07 or later.	RUN: Off ERR.: Flicker CPU Status: Stop	Q00/Q01 ^{*1}
	[MULTI EXE. ERROR] The Q172(H)CPU(N) or Q173(H)CPU(N) is mounted on the multiple CPU high-speed main base unit (Q3□DB). (This may result in a module failure.) ■Collateral information • Common Information:Module No.(CPU No.) • Individual Information: ■Diagnostic Timing • At power ON/At reset	Replace the Q172(H)CPU(N) and Q173(H)CPU(N) with the Motion CPU compatible with the multiple CPU high-speed main base unit.	RUN: Off ERR.: Flicker CPU Status: Stop	Qn(H) ^{*4} QnPH ^{*4}
	 IMULTIEXE. ERRORJ The Universal model QCPU (except Q02UCPU) and Q172(H)CPU(N) are mounted on the same base unit. (This may result in a module failure.) ECollateral information Common Information:Module No.(CPU No.) Individual Information: EDiagnostic Timing At power ON/At reset 	Check the QCPU and Motion CPU that can be used in a multiple CPU system, and change the system configuration.	RUN: Off ERR.: Flicker CPU Status: Stop	

*1 *4 *6 The function version is B or later.

The module whose first 5 digits of serial No. is "09082" or later. The Universal model QCPU except the Q00UJCPU.

Error Code (SD0)	Error Contents and Cause	Corrective Action	LED Status CPU Status	Corresponding CPU
	[MULTI EXE. ERROR] Either of the following settings was made in a multiple CPU system. • Multiple CPU automatic refresh setting was made for the inapplicable CPU module. • "I/O sharing when using multiple CPUs" setting was made for the inapplicable CPU module. ECollateral information • Common Information:Module No.(CPU No.) • Individual Information:- EDiagnostic Timing • At power ON/At reset	 Correct the multiple CPU automatic refresh setting. Correct the "I/O sharing when using multiple CPUs" setting. 	RUN: Off ERR.: Flicker CPU Status: Stop	Q00/Q01 ^{*1} QnU ^{*6}
7011	 [MULTI EXE. ERROR] The system configuration for using the Multiple CPU high speed transmission function is not met. The QnUCPU is not used for the CPU No.1. The Multiple CPU high speed main base unit (Q3□DB) is not used. Points other than 0 is set to the send range for the CPU module incompatible with the multiple CPU high speed transmission function. Points other than 0 is set to the send range for the CPU module incompatible with the multiple CPU high speed transmission function. Points other than 0 is set to the send range for the CPU module incompatible with the multiple CPU. ■Collateral information Common Information:Module No.(CPU No.) Individual Information: ■Diagnostic Timing At power ON/At reset 	 Change the system configuration to meet the conditions for using the Multiple CPU high speed transmission function. Set the send range of CPU, that does not correspond to multiple CPU compatible area, at 0 point, when performing automatic refreshing in multiple CPU compatible area. 	RUN: Off ERR.: Flicker CPU Status: Stop	QnU*3
7013	[MULTI EXE. ERROR] The Q172(H)CPU(N) or Q173(H)CPU(N) is mounted to the CPU slot or slots 0 to 2. (The module may break down.) Collateral information • Common Information:Module No.(CPU No.) • Individual Information:– Diagnostic Timing • At power ON/At reset	 Check the QCPU and Motion CPU that can be used in a multiple CPU system, and change the system configuration. Remove the Motion CPU incompatible with the multiple CPU system. 	RUN: Off ERR.: Flicker CPU Status: Stop	QnU
7020	[MULTI CPU ERROR] In the operating mode of a multiple CPU system, an error occurred in the CPU where "system stop" was not selected. (The CPU module where no error occurred was used to detect an error.) ECollateral information • Common Information:Module No.(CPU No.) • Individual Information: EDiagnostic Timing • Always	Read the individual information of the error using the peripheral device, check the error of the CPU module resulting in CPU module fault, and remove the error.	RUN: On ERR.: On CPU Status: Continue	Q00/Q01 ^{*1} Qn(H) ^{*1} QnPH QnU ^{*6}
7030	[CPU LAY. ERROR] An assignment error occurred in the CPU- mountable slot (CPU slot, I/O slot 0, 1) in excess of the number of CPU modules specified in the multiple CPU setting of the PLC parameter dialog box. Collateral information • Common Information::Module No.(CPU No.) • Individual Information::- Diagnostic Timing • At power ON/At reset	 Set the same value to the number of CPU modules specified in the multiple CPU setting of the PLC parameter dialog box and the number of mounted CPU modules (including CPU (empty)). Make the type specified in the I/O assignment setting of the PLC parameter dialog box consistent with the CPU module configuration. 	RUN: Off ERR.: Flicker CPU Status: Stop	Q00J/Q01/Q01 ^{*1} QnU

The function version is B or later. The Universal model QCPU except the Q00UJCPU, Q00UCPU, Q01UCPU, and Q02UCPU. The Universal model QCPU except the Q00UJCPU.

*1 *3 *6

Error Code (SD0)	Error Contents and Cause	Corrective Action	LED Status CPU Status	Corresponding CPU
7031	[CPU LAY. ERROR] An assignment error occurred within the range of the number of CPUs specified in the multiple CPU setting of the PLC parameter dialog box. Collateral information · Common Information:Module No.(CPU No.) · Individual Information: Diagnostic Timing · At power ON/At reset	 Set the same value to the number of CPU modules specified in the multiple CPU setting of the PLC parameter dialog box and the number of mounted CPU modules (including CPU (empty)). Make the type specified in the I/O assignment setting of the PLC parameter dialog box consistent with the CPU module configuration. 	RUN: Off ERR.: Flicker CPU Status: Stop	Q00J/Q01/Q01*1 QnU
7032	[CPU LAY. ERROR] • The number of CPU modules mounted in a multiple CPU system is wrong. Collateral information • Common Information:Module No.(CPU No.) • Individual Information: Diagnostic Timing • At power ON/At reset	Configure a system so that the number of mountable modules of each CPU module does not exceed the maximum number of mountable modules specified in the specification.	RUN: Off ERR.: Flicker CPU Status: Stop	Q00/Q01 ^{*1} QnU ^{*6}
7035	[CPU LAY. ERROR] The CPU module has been mounted on the inapplicable slot. Collateral information • Common Information::Module No.(CPU No.) • Individual Information: Diagnostic Timing • At power ON/At reset	Mount the CPU module on the applicable slot.	RUN: Off ERR.: Flicker CPU Status: Stop	Q00J/Q00/Q01 ^{*1} QnPRH QnU
7036	[CPU RAY ERROR] The host CPU No. set by the multiple CPU setting and the host CPU No. determined by the mounting position of the CPU module are not the same. Collateral information • Common Information:Module No.(CPU No.) • Individual Information:- Diagnostic Timing • At power ON/At reset	 Mount the mounting slot of the CPU module correctly. Correct the host CPU No. set by the multiple CPU setting to the CPU No. determined by the mounting position of the CPU module. 	RUN: Off ERR.: Flicker CPU Status: Stop	QnU*3
8031	[INCORRECT FILE] The error of stored file (enabled parameter file) is detected. ■Collateral information • Common Information: • Individual Information:File diagnostic information ■Diagnostic Timing • At power-On/ • At reset/ • STOP → RUN/At writing to progurammable controller	Write the file shown as SD17 to SD22 of individual information to the drive shown as SD16(L) of individual information, and turn ON from OFF the power supply of the CPU module or cancel the reset. If the same error is displayed again, the CPU module has hardware failure. Contact your local Mitsubishi representative, explaining a detailed description of the problem.	RUN: Off ERR.: Flicker CPU Status: Stop	QnU
9000	 [F****] Annunciator (F) was set ON Collateral information Common Information:Program error location Individual Information:Annunciator number Diagnostic Timing When instruction executed 	Read the individual information of the error using the peripheral device, and check the program corresponding to the numerical value (annunciator number).	RUN: On ERR.: On/Off ^{*2} CPU Status: Continue RUN: ERR.: USER LED On CPU Status: Continue	QCPU

*1 *3 The function version is B or later. The Universal model QCPU except the Q00UJCPU, Q00UCPU, Q01UCPU, and Q02UCPU.

12-81

Error Code (SD0)	Error Contents and Cause	Corrective Action	LED Status CPU Status	Corresponding CPU
9010	[<chk>ERR ***_***] Error detected by the CHK instruction. Collateral information • Common Information:Program error location • Individual Information:Failure No. Diagnostic Timing • When instruction executed</chk>	Read the individual information of the error using the peripheral device, and check the program corresponding to the numerical value (error number) there.	RUN: On ERR.: Off USER LED On CPU Status: Continue	Qn(H) QnPH QnPRH
9020	[BOOT OK] Storage of data onto ROM was completed normally in automatic write to standard ROM. (BOOT LED also flickers.) Collateral information • Common Information:- • Individual Information:- Diagnostic Timing • At power ON/At reset	Use the DIP switches to set the valid parameter drive to the standard ROM. Then, switch power on again, and perform boot operation from the standard ROM.	RUN: Off ERR.: Flicker CPU Status: Stop	Qn(H) ^{*1} QnPH QnPRH
10000	[CONT. UNIT ERROR] In the multiple CPU system, an error occurred in the CPU module other than the Process CPU/High Performance model QCPU. Collateral information • Common Information:- • Individual Information:- Diagnostic Timing • Always	Check the details of the generated error by connecting to the corresponding CPU module using GX Developer.	RUN: Off ERR.: Flicker CPU Status: Continue	Qn(H) ^{*1} QnPH

^{*1} The function version is B or later.

Q series CPU module can perform the cancel operation for errors only when the errors allow the CPU module to continue its operation.

To cancel the errors, follow the steps shown below.

- 1) Eliminate the cause of the error.
- 2) Store the error code to be canceled in the special register SD50.
- 3) Energize the special relay SM50 (OFF \rightarrow ON).
- 4) The error to be canceled is canceled.

After the CPU module is reset by the canceling of the error, the special relays, special registers, and LEDs associated with the error are returned to the status under which the error occurred.

If the same error occurs again after the cancellation of the error, it will be registered again in the error history.

When multiple enunciators(F) detected are canceled, the first one with No. F only is canceled.

Refer to the following manual for details of error canceling.

→ QCPU User's Manual (Function Explanation, Program Fundamentals)

⊠POINT -

(1) When the error is canceled with the error code to be canceled stored in the SD50, the lower one digit of the code is neglected.

(Example)

If error codes 2100 and 2101 occur, and error code 2100 to cancel error code 2101.

If error codes 2100 and 2111 occur, error code 2111 is not canceled even if error code 2100 is canceled.

(2) Errors developed due to trouble in other than the CPU module are not canceled even if the special relay (SM50) and special register (SD50) are used to cancel the error.

(Example)

Since "SP. UNIT DOWN" is the error that occurred in the base unit (including the extension cable), intelligent function module, etc. the error cause cannot be removed even if the error is canceled by the special relay (SM50) and special register (SD50).

Refer to the error code list and remove the error cause.

MEMO

Appendix 1.1 Definition

- (1) Processing time taken by the QCPU is the total of the following processing times.
 - Total of each instruction processing time
 - END processing time (including I/O refresh time)
 - · Processing time for the function that increases the scan time
- (2) Instruction processing time

This is the total of processing time of each instruction shown in Appendix 1.2, 1.3 and 1.4.

(3) END processing time, I/O refresh time, and processing time for the function that increases the scan time

Refer to the following manual(s) for the END processing time, I/O refresh time, and processing time for the function that increases the scan time.

- (a) For QCPUs
 - QnUCPU User's Manual (Functions Explanation, Program Fundamentals)
 - Qn(H)/QnPH/QnPRHCPU User's Manual (Functions Explanation, Program Fundamentals)

The processing time for the individual instructions are shown in the table on the following pages.

Operation processing times can vary substantially depending on the nature of the sources and destinations of the instructions, and the values contained in the following tables should therefore be taken as a set of general guidelines to processing time rather than as being strictly accurate.

Instruction	Condition (Device)		Processing Time (µs)			
mandedon	Condition (D	evice)	Q00JCPU	Q00CPU	Q01CPU	
LD LDI AND	X0		0.20	0.16	0.10	
ANI OR ORI	D0.0		0.30	0.24	0.15	
LDP LDF ANDP	X0 D0.0		0.30	0.24	0.15	
ANDF ORP ORF						
ANB ORB MPS MRD MPP	_		0.20	0.16	0.10	
INV	When not exe When exec	ecuted suted	0.20	0.16	0.10	
MEP MEF	When not exe When exec	ecuted suted	0.30	0.24	0.15	
FGP	When not executed	$(OFF \rightarrow OFF)$ $(ON \rightarrow ON)$	0.20	0.16	0.10	
	When executed	(OFF $^{\rightarrow}$ ON) (ON $^{\rightarrow}$ OFF)	0.20			
FGF	When not executed	(OFF [→] OFF) (ON [→] ON)	17	9.5	9.4	
	When executed	$(OFF \rightarrow ON)$ $(ON \rightarrow OFF)$	18	14	14	

(1) Sequence instructions

A

Instruction		Condition (Device)		Processing Time (µs)			
				Q00JCPU	Q00CPU	Q01CPU	
		When r	not (OFF→OFF)		0.20	0.16	0.10
	Y	change	ed (ON→ON)				
		Wher change	$\begin{array}{ll} (OFF \rightarrow ON) \\ ed & (ON \rightarrow OFF) \end{array}$		0.20	0.16	0.10
		When r	not (OFF \rightarrow OFF)		0.40	0.32	0.20
	D0.0	change	u (UN→UN)				
		Wher change	$(OFF \rightarrow ON)$		0.40	0.32	0.20
		-	When OFF		24	20	19
OUT	F	When	When displayed		260	210	200
		ON	Display completed		205	165	155
		v	Vhen not executed		1.1	0.88	0.55
	_		After time up		1.1	0.88	0.55
	Т	When		К	1.1	0.88	0.55
		executed	When added	D	1.2	0.96	0.60
		v	Vhen not executed	-	1.1	0.88	0.55
	~		After time up		1.1	0.88	0.55
	C	When		К	1.1	0.88	0.55
		executed	vvnen added	D	1.2	0.96	0.60
	T Wr exec	V	Vhen not executed	-	1.1	0.88	0.55
		After time up			1.1	0.88	0.55
OUTH		When	\A/bara addad	Κ	1.1	0.88	0.55
		executed	when added	D	1.2	0.96	0.60
		V	Vhen not executed		0.20	0.16	0.10
	Y	When	When not changed (ON \rightarrow	ON)	0.20	0.16	0.10
		executed When changed (OFF \rightarrow ON)		0.20	0.16	0.10	
		When not executed		0.40	0.32	0.20	
SET	D0.0	When	When When not changed ($ON \rightarrow ON$)		0.40	0.32	0.20
		executed When changed (OFF→ON)		0.40	0.32	0.20	
		When not executed		0.50	0 44	0.25	
	F	When	When displayed		255	205	195
	•	executed	Display completed	1	195	160	150
		V	Vhen not executed		0.20	0.16	0.10
	Y	When	When not changed (OFF \rightarrow	OFF)	0.20	0.16	0.10
		executed	When changed ($ON \rightarrow OF$	=F)	0.20	0.16	0.10
		v	Vhen not executed	.,	0.40	0.32	0.20
	0.00	When	When not changed ($ON \rightarrow$	ON)	0.40	0.32	0.20
	20.0	executed	When changed (OFF→C	DN)	0.40	0.32	0.20
		V	Vhen not executed		0.20	0.16	0.10
	SM		When executed		0.20	0.16	0.10
		V	Vhen not executed		0.48	0.44	0.25
RST	F	When	When displayed		75	69	65
		executed	Display completed	1	43	35	33
	т о	v	Vhen not executed		0.80	0.64	0.40
	I, C		When executed		1.0	0.80	0.50
	6	V	Vhen not executed		0.40	0.32	0.20
	D		When executed		0.60	0.48	0.30
	7	v	Vhen not executed		0.50	0.40	0.25
	Ζ		When executed		9.4	7.9	7.4
	Б	V	Vhen not executed		_	0.32	0.20
	R		When executed			0.48	0.30

Instruction		Condition (Device)	Processing Time (µs)			
		Condition (Device)	Q00JCPU	Q00CPU	Q01CPU	
PLS			12	9.5	9.2	
PLF			11	9.5	8.9	
EE	v	When not executed	0.68	0.40	0.25	
	'	When executed	7.5	6.2	5.7	
		When not executed	0.50	0.40	0.25	
DELIA		When executed	26	21	21	
		When not executed	0.48	0.40	0.25	
DELIA	DIO	When executed	58	45	43	
SFT		When not executed	0.50	0.34	0.25	
SFTP		When executed	12	8.7	8.3	
MC		MO	0.40	0.32	0.20	
MO		D0.0	3.3	2.9	2.8	
MCR		_	0.20	0.16	0.10	
		Error check performed	660	600	520	
FEND END		No error check performed (• Battery check) (• Fuse blown check) (• I/O module verification)	660	600	520	
NOP		_	0.20	0.16	0.10	
NOPLF PAGE		_	0.20	0.16	0.10	

(2) Basic instructions

The processing time when the instruction is	not executed is calculated as follows:
Q00JCPU ······	0.20 \times (No. of steps for each instruction + 1) μs
Q00CPU	0.16 \times (No. of steps for each instruction + 1) μ s
Q01CPU	0.10 \times (No. of steps for each instruction + 1) μ s

Instruction	Condition (Device)		Processing Time (µs)		
instruction			Q00JCPU	Q00CPU	Q01CPU
LD -	In condu	uctive status	0.80	0.64	0.40
LD -	In non-cor	nductive status	0.80	0.64	0.40
	When n	ot executed	0.70	0.56	0.35
AND =	When executed	In conductive status	0.80	0.64	0.40
	When executed	In non-conductive status	0.80	0.64	0.40
	When not executed		0.70	0.56	0.35
OR =	When executed	In conductive status	0.80	0.64	0.40
		In non-conductive status	0.80	0.64	0.40
	In conductive status		0.80	0.64	0.40
	In non-conductive status		0.80	0.64	0.40
	When not executed		0.70	0.56	0.35
AND < >	When executed	In conductive status	0.80	0.64	0.40
	when executed	In non-conductive status	0.80	0.64	0.40

А

Instruction (Device)		Processing Time (µs)			
Instruction	Condition		Q00JCPU	Q00CPU	Q01CPU
	When not executed		0.70	0.56	0.35
OR < >	When evenuted	In conductive status	0.80	0.64	0.40
	when executed	In non-conductive status	0.80	0.64	0.40
	In conduc	tive status	0.80	0.64	0.40
	In non-cond	uctive status	0.80	0.64	0.40
	When not	t executed	0.70	0.56	0.35
AND >	When executed	In conductive status	0.80	0.64	0.40
	when executed	In non-conductive status	0.80	0.64	0.40
	When not	texecuted	0.70	0.56	0.35
OR >	When executed	In conductive status	0.80	0.64	0.40
	when executed	In non-conductive status	0.80	0.64	0.40
	In conduc	tive status	0.80	0.64	0.40
	In non-cond	uctive status	0.80	0.64	0.40
	When not	t executed	0.70	0.56	0.35
AND < =	When executed	In conductive status	0.80	0.64	0.40
	When executed	In non-conductive status	0.80	0.64	0.40
	When not	texecuted	0.70	0.56	0.35
OR < =	When everyted	In conductive status	0.80	0.64	0.40
	When executed	In non-conductive status	0.80	0.64	0.40
	In conductive status		0.80	0.64	0.40
	In non-cond	uctive status	0.80	0.64	0.40
	When not	t executed	0.70	0.56	0.35
AND <	When executed	In conductive status	0.80	0.64	0.40
		In non-conductive status	0.80	0.64	0.40
	When not executed		0.70	0.56	0.35
OR <	When executed	In conductive status	0.80	0.64	0.40
	When executed	In non-conductive status	0.80	0.64	0.40
LD>=	In conductive status		0.80	0.64	0.40
	In non-conductive status		0.80	0.64	0.40
	When not executed		0.70	0.56	0.35
AND > =	When executed	In conductive status	0.80	0.64	0.40
	Whom excedued	In non-conductive status	0.80	0.64	0.40
	When not	t executed	0.70	0.56	0.35
OR > =	When executed	In conductive status	0.80	0.64	0.40
		In non-conductive status	0.80	0.64	0.40
LDD =	In conduc	tive status	1.0	0.80	0.50
	In non-cond	uctive status	1.0	0.80	0.50
	When not	t executed	0.80	0.64	0.40
ANDD =	When executed	In conductive status	1.0	0.80	0.50
		In non-conductive status	1.0	0.80	0.50
	When not	t executed	0.80	0.64	0.40
ORD =	When executed	In conductive status	1.0	0.80	0.50
		In non-conductive status	1.0	0.80	0.50
LDD < >	In conduc	tive status	1.0	0.80	0.50
	In non-cond	uctive status	1.0	0.80	0.50
	When not	t executed	0.80	0.64	0.40
ANDD < >	When executed	In conductive status	1.0	0.80	0.50
		In non-conductive status	1.0	0.80	0.50

Instruction	Conditi	on (Dovico)	Processing Time (µs)			
Instruction			Q00JCPU	Q00CPU	Q01CPU	
	When not executed		0.80	0.64	0.40	
ORD < >	When executed	In conductive status	1.0	0.80	0.50	
	When executed	In non-conductive status	1.0	0.80	0.50	
	In condu	uctive status	1.0	0.80	0.50	
	In non-cor	nductive status	1.0	0.80	0.50	
	When n	ot executed	0.80	0.64	0.40	
ANDD >	When executed	In conductive status	1.0	0.80	0.50	
	When executed	In non-conductive status	1.0	0.80	0.50	
	When n	ot executed	0.80	0.64	0.40	
ORD >	When executed	In conductive status	1.0	0.80	0.50	
	When executed	In non-conductive status	1.0	0.80	0.50	
	In condu	uctive status	1.0	0.80	0.50	
	In non-cor	nductive status	1.0	0.80	0.50	
	When n	ot executed	0.80	0.64	0.40	
ANDD < =	When executed	In conductive status	1.0	0.80	0.50	
	When executed	In non-conductive status	1.0	0.80	0.50	
	When n	ot executed	0.80	0.64	0.40	
ORD < =	When executed	In conductive status	1.0	0.80	0.50	
		In non-conductive status	1.0	0.80	0.50	
	In conductive status		1.0	0.80	0.50	
	In non-conductive status		1.0	0.80	0.50	
	When not executed		0.80	0.64	0.40	
ANDD <	When executed	In conductive status	1.0	0.80	0.50	
		In non-conductive status	1.0	0.80	0.50	
	When not executed		0.80	0.64	0.40	
ORD <	When executed	In conductive status	1.0	0.80	0.50	
		In non-conductive status	1.0	0.80	0.50	
	In conductive status		1.0	0.80	0.50	
	In non-conductive status		1.0	0.80	0.50	
	When not executed		0.80	0.64	0.40	
ANDD > =	When executed	In conductive status	1.0	0.80	0.50	
	When executed	In non-conductive status	1.0	0.80	0.50	
	When n	ot executed	0.80	0.64	0.40	
ORD > =	When executed	In conductive status	1.0	0.80	0.50	
	When excouled	In non-conductive status	1.0	0.80	0.50	
BKCMP = (\$1) (\$2) (D) n	1	n = 1	130	105	97	
BKCMP = P §1 §2 D n	n	= 96	205	175	165	
BKCMP<> (5) (52 (D) n	n = 1		130	105	98	
BKCMP<>P §1 §2 D n	n	= 96	210	180	165	
BKCMP> §1 §2 (D) n		n = 1	130	105	97	
ВКСМР>Р ⑤ 1 № D п	n	= 96	210	180	165	
BKCMP>= ⑤ ⑥ ① n		n = 1	130	105	98	
BKCMP>=P S1 S2 D n	n	= 96	205	175	165	

A

Instruction	Condition (Device)	P	rocessing Time (µ	3)
		Q00JCPU	Q00CPU	Q01CPU
BKCMP< §1 §2 D n	n = 1	130	105	98
BKCMP <p (\$1)="" (\$2)="" (d)="" n<="" td=""><td>n = 96</td><td>210</td><td>180</td><td>165</td></p>	n = 96	210	180	165
BKCMP<= \$1 \$2 D n	n = 1	130	105	97
BKCMP<=P (\$) (\$2 (D) n	n = 96	205	175	165
+ S D	When executed	1.0	0.80	0.50
+P (S) (D)	When executed	1.0	0.00	0.00
+ \$1 \$2 D	When executed	12	0.96	0.60
+P \$1 \$2 D			0.00	0.00
- S D	When executed	1.0	0.80	0.50
- P § D				
- \$1 \$2 D	When executed	1.2	0.96	0.60
- P \$1 \$2 D				
D+ S D	When executed	1.3	1.04	0.65
D+P S D				
D+ \$1 \$2 D	When executed	1.5	1.2	0.75
D+P (\$1) (\$2) (D)				
D - (S) (D)	When executed	1.3	1.04	0.65
D-P (S) (D)				
D - (51) (52) (D	When executed	1.5	1.2	0.75
D - P (S1) (S2) (D)				
* (51) (52) (D)	When executed	1.1	0.88	0.55
* P S) S2 U				
	—	19	16	15
D*P (S1) (S2) (D)	—	41	34	31
D/ §1 §2 D				
D/P (S) (S) (D)	—	28	23	21
B+ (S) (D)		24	29	26
B+P S D	—	54	20	20
B+ \$1 \$2 D		47	39	37
B+P §1 §2 D				
в- § D	_	34	28	26
в-р (S) (D)				
B - (S) (S2 (D)	_	48	40	38
B-P \$1 \$2 D				
DB+ (S) (D)	_	58	48	44
DB+P (S) (D)				
DB+ (\$1) (\$2) (D)	_	60	49	46
DB+P (51) (52) (D)				<u> </u>
DB - (S) (D)	_	59	48	45
DB - (51) (52) (D)	_	60	51	45
DB - P (51) (52) (D)				

Instruction	Condition (Device)	Р	rocessing Time (µ	S)
Instruction		Q00JCPU	Q00CPU	Q01CPU
B * \$1 \$2 D				
B * P (\$1) (\$2) (D)	_	42	35	33
	_	48	40	37
B/P 5) 52 (U				
DB * (S1) (S2) (D)	_	140	120	110
DB * P \$1 \$2 D				
DB/ §1 §2 D	_	83	69	65
DB/P (S1) (S2) (D)				
BK + §1 §2 D n	n = 1	105	86	80
BK + P §) §2 D n	n = 96	185	155	140
BK - ⑤1 ⑤2 D n	n = 1	105	86	80
BK - P 🕄 🕄 D n	n = 96	185	155	140
INC INCP	_	0.70	0.56	0.35
DINC		0.00	0.70	
DINCP	—	0.90	0.72	0.45
DEC	_	0.70	0.56	0.35
DDEC				
DDECP	_	0.90	0.72	0.45
BCD	_	20	16	15
BCDP				
DBCDP	—	26	21	20
BIN		10	10	
BINP	—	19	16	15
DBIN	_	22	18	17
DBINP				
DBLP	—	19	16	15
WORD	_	23	19	17
WORDP				
GRYP	—	19	16	15
DGRY			10	
DGRYP	—	23	19	17
GBIN	_	52	42	40
GBINP			_	-
DGBIN	—	110	88	84
NEG				
NEGP	—	16	13	12
DNEG	_	19	17	15
DNEGP				

A

Instruction	Condition (Device)	Processing Time (µs)			
			Q00JCPU	Q00CPU	Q01CPU
BKBCD (S) (D) n		n = 1	78	63	57
BKBCDP (S) (D) n		n = 96	315	275	250
BKBIN (S) (D) n		n = 1	74	61	57
BKBINP § D n		n = 96	285	255	230
MOV		(s) = D0, (D) = D1	0.70	0.56	0.35
MOVP		(S) = D0, (D) = J1 \ W1	155	130	120
DMOV		(s) = D0, (D) = D1	0.90	0.72	0.45
DMOVP		(S) = D0, (D) = J1 \ W1	165	135	120
\$MOV		0 characters	46	38	35
\$MOVP		32 characters	98	80	73
CML CMLP		_	0.70	0.56	0.35
DCML DCMLP		—	0.90	0.72	0.45
BMOV (S) (D) n		n = 1	27	21	20
BMOVP (S) (D) n		n = 96	72	62	53
FMOV S D n		n = 1	23	19	17
FMOVP (S) (D) n		n = 96	48	41	36
XCH XCHP		_	7.6	6.3	5.7
DXCH DXCHP			9.5	8.0	7.1
BXCH 🕅 😳 n		n = 1	62	51	48
BXCHP 🛈 🔯 n		n = 96	165	140	125
SWAP SWAPP			17	14	13
CJ		_	10	8.5	8.1
SCJ			10	8.5	8.1
JMP		_	11	8.5	8.1
GOEND		_	3.3	2.9	2.8
DI		— —	13	12	11
El		—	14	11	11
IMASK		-	41	34	35
IRET		-	205	170	155
	×	n = 1	55	46	43
RFS	^	n = 96	79	64	59
RFSP	Y	n = 1	54	45	41
		n = 96	73	61	56

(3) Application instructions

The processing time when the instruction is r	not executed is calculated as follows:
Q00JCPU0	0.20 \times (No. of steps for each instruction + 1) μs
Q00CPU0	0.16 \times (No. of steps for each instruction + 1) μ s
Q01CPU0	$0.10 \times$ (No. of steps for each instruction + 1) μ s

Instruction	Condition (Device)	Р	rocessing Time (µ	Q01CPU		
Instruction		Q00JCPU	Q00CPU	Q01CPU		
WAND (S) (D)						
WANDP (S) (D)	When executed	1.0	0.80	0.50		
WAND (\$) (\$) (D)						
WANDP (51) (52) (D)	When executed	1.2	0.96	0.60		
DAND S D	When executed	13	1 04	0.65		
DANDP S D		1.0	1.04	0.00		
DAND \$1 \$2 D	When executed	1.5	1.2	0.75		
DANDP SI SI D						
BKAND (\$1) (\$2) (D) n	n = 1	110	87	79		
BKANDP (\$1) (\$2) (D) n	n = 96	185	155	140		
wor S D	When executed	1.0	0.80	0.50		
WORP § D			0100	0.00		
WOR (\$1) (\$2) (D)	When executed	1 2	0.96	0.60		
WORP (5) (52 (D)	When exceded	1.2	0.00	0.00		
dor S D	When executed	1.3	1.04	0.65		
DORP § D						
DOR \$1 \$2 D	When executed	15	12	0.75		
DORP (5) (52 (D)						
BKOR (\$1) (\$2) (D) n	n = 1	110	87	81		
BKORP §1 §2 D n	n = 96	185	155	140		
WXOR S D	When executed	1.0	0.80	0.50		
WXORP § D			0.00			
WXOR \$1 \$2 D	When executed	12	0.96	0.60		
WXORP (\$1) (\$2) (D)			0100	0.00		
DXOR (S) (D)	When executed	13	1 04	0.65		
DXORP § D		1.0		0.00		
DXOR § 1 § D	When executed	1.5	1.2	0.75		
DXORP § § D						
BKXOR §1 §2 D n	n = 1	110	87	81		
BKXORP (S) (S2 (D) n	n = 96	185	155	140		

Α

Instruction	Condition (Dovico)		s)	
Instruction	Condition (Device)	Q00JCPU	Q00CPU	Q01CPU
WXNR (S) (D)	When executed	1.0	0.80	0.50
WXNRP (S) (D)	when executed	1.0	0.80	0.50
WXNR (\$1) (\$2) (D)	When executed	1.2	0.96	0.60
WXNRP (5) (2) (D)				
	When executed	1.3	1.04	0.65
DXNR 57 52 (D) DXNRP 51 52 (D)	When executed	1.5	1.2	0.75
BKXNR (\$1) (\$2) (D) n	n = 1	110	87	82
BKXNRP (S1) (S2) (D) n	n = 96	185	155	140
ROR D n	n = 1	13	11	9.7
RORP D n	n = 15	13	11	9.7
RCR D n	n = 1	15	12	12
RCRP D n	n = 15	15	13	12
ROL D n	n = 1	13	11	10
ROLP D n	n = 15	13	11	10
RCL D n	n = 1	15	13	12
RCLP D n	n = 15	16	13	12
DROR D n	n = 1	15	12	12
DRORP D n	n = 31	15	13	12
DRCR D n	n = 1	17	14	14
DRCRP D n	n = 31	18	16	15
DROL 🔘 n	n = 1	14	13	12
DROLP D n	n = 31	14	13	12
DRCL D n	n = 1	18	15	14
DRCLP D n	n = 31	20	17	16
SFR D n	n = 1	13	10	9.7
SFRP D n	n = 15	13	11	9.5
SFL 🛈 n	n = 1	12	10	9.5
SFLP D n	n = 15	12	9.8	9.5
BSFLR D n	n = 1	42	35	33
BSFLRP D n	n = 96	69	58	54
BSFL D n	n = 1	41	34	32
BSFLP D n	n = 96	63	53	50
DSFR D n	n = 1	19	16	15
DSFRP D n	n = 96	71	61	53
DSFL D n	n = 1	19	16	15
DSFLP D n	n = 96	70	60	52

Instruction	Condition		Р	rocessing Time (µs	S)
Instruction	Condition	T (Device)	Q00JCPU	Q00CPU	Q01CPU
BSET D n	n :	= 1	27	22	20
BSETP D n	n =	= 15	27	22	20
BRST ^(D) n	n :	= 1	27	22	21
BRSTP D n	n =	= 15	27	22	21
TEST \$1 \$2 D		_	35	30	27
TESTP (\$1) (\$2) (D)	-	_		5	21
DTEST \$1 \$2 D	-	_	37	31	28
DTESTP (\$1) (\$2) (D)					
BKRST D n	n :	= 1	49	41	38
BKRSTP D n	n =	= 96	64	54	50
	n – 1	All match	56	54	42
SER \$1 \$2 D n	11 - 1	None match	56	54	42
SERP §1 §2 D n	n = 96	All match	280	240	220
		None match	280	240	220
	n = 1	All match	71	67	53
DSER (\$1) (\$2) (D) n		None match	71	67	54
DSERP (\$) (\$2 (D) n	n = 96	All match	495	415	375
		None match	500	415	375
SUM	<u>(s)</u> = 0		32	26	25
SUMP	(S) =	FFFFH	27	22	21
DSUM	S	= 0	54	44	42
DSUMP	(s) = FFFFFFFн		54	44	42
DECO (S) (D) n	n :	= 2	60	50	46
DECOP (S) (D) n	n :	= 8	80	65	61
	n = 2	M1 = ON	66	55	51
ENCO (S) (D) n		M4 = ON	66	54	51
ENCOP (S) (D) n	n = 8	M1 = ON	90	76	71
		M256 = ON	76	74	71
SEG SEGP	-	_	8.0	6.8	6.1
DIS S D n	n	= 1	47	39	36
DISP (S) (D) n	n :	= 4	53	43	40
UNI S D n	n = 1		54	44	41
UNIP (S) (D) n	n = 4		60	49	46
NDIS §1 (D) §2		_	02	76	38
NDISP (5) (D) (52			52	10	50
NUNI § D §2		_	47	39	36
NUNIP (5) (D (52)					

A

Appendix1 OPERATION PROCESSING TIME Appendix 1.2 Operation Processing Time of Basic Model QCPU

Instruction	Condition (Dovico)	Processing Time (µs)			
Instruction		Q00JCPU	Q00CPU	Q01CPU	
WTOB (S) (D) n	n = 1	56	46	42	
WTOBP (S) (D) n	n = 96	190	155	145	
BTOW (S) (D) n	n = 1	56	46	42	
BTOWP (S) (D) n	n = 96	190	155	145	
MAX (S) (D) n	n = 1	48	40	36	
MAXP (S) (D) n	n = 96	300	240	235	
MIN (S) (D) n	n = 1	48	40	36	
MINP (S) (D) n	n = 96	300	240	235	
DMAX (S) (D) n	n = 1	52	43	39	
DMAXP (S) (D) n	n = 96	600	490	460	
DMIN (S) (D) n	n = 1	52	43	39	
DMINP (S) (D) n	n = 96	585	475	445	
	n = 1	66	55	50	
SORT (5) n (52 (9) (92)	n = 96	105	86	80	
	n = 1	98	57	52	
	n = 96	115	96	88	
WSUM (S) (D) n	n = 1	52	43	40	
WSUMP (S) (D) n	n = 96	175	140	135	
DWSUM (S) (D) n	n = 1	61	51	46	
DWSUMP (S) (D) n	n = 96	515	420	395	
FOR n	n = 0	11	8.9	8.1	
NEXT	_	8.8	7.3	6.8	
BREAK	·	37	30	28	
CALL Pn					
CALLP Pn	—	17	14	13	
CALL Pn 🔄 to 😏	_	245	200	190	
CALLP Pn 🕙 to 🗐		210	200	100	
RET	Return to original program	16	13	12	
FCALL Pn FCALLP Pn	_	29	24	22	
FCALL Pn (S) to (S) FCALLP Pn (S) to (S)	_	250	205	190	

Instruction	Condition (Dovies)	Processing Time (µs)		S)
Instruction		Q00JCPU	Q00CPU	Q01CPU
COM	_	110	77	72
IX	_	65	54	51
IXEND	_	30	26	25
	Number of contacts 1	145	120	110
	Number of contacts 14	770	630	585
FIFW	Number of data points 0	36	32	28
FIFWP	Number of data points 96	36	32	28
FIFR	Number of data points 1	45	41	36
FIFRP	Number of data points 96	93	82	70
FPOP	Number of data points 1	40	37	32
FPOPP	Number of data points 96	40	37	32
FINS	Number of data points 0	53	44	38
FINSP	Number of data points 96	100	89	76
FDEL	Number of data points 1	60	50	43
FDELP	Number of data points 96	110	95	82
FROM n1 n2 ^D n3	n3 = 1	125	105	93
FROMP n1 n2 D n3 *1	n3 = 1000	740	695	685
DFRO n1 n2 D n3	n3 = 1	130	110	100
DFROP n1 n2 D n3 *1	n3 = 500	745	695	675
TO n1 n2 ^⑤ n3	n3 = 1	120	105	92
TOP n1 n2 (S) n3 *1	n3 = 1000	735	680	645
DTO n1 n2 S n3	n3 = 1	130	110	99
DTOP n1 n2 (S) n3 *1	n3 = 500	740	680	640

: The FROM/TO instruction differs in processing time according to the number of slots and the loaded modules. (The CPU also differs in processing time according to the extension base type.)

Α

*1

Instruction	Condition (Dovico)	Processing Time (µs)			
mstruction	Condition (Device)	Q00JCPU	Q00JCPU Q00CPU Q01CPL		
LIMIT LIMITP	_	34	28	26	
DLIMIT DLIMITP	_	41	34	30	
BAND BANDP	_	33	28	25	
DBAND DBANDP	_	40	34	30	
ZONE ZONEP	—	31	25	24	
DZONE DZONEP	_	37	29	28	
RSET RSETP	_	_	18	16	
DATERD DATERDP	_	30	25	23	
DATEWR DATEWRP	_	69	57	54	
DATE+	No digit increase	47	39	36	
DATE+P	Digit increase	50	42	38	
DATE -	No digit increase	47	40	36	
DATE - P	Digit increase	50	42	38	
SECOND SECONDP	_	28	24	22	
HOUR HOURP	_	38	32	29	
WDT WDTP	_	18	15	14	
DUTY	_	41	36	32	
ZRRDB ZRRDBP	—	_	24	22	
ZRWRB ZRWRBP	_	_	27	24	
ADRSET ADRSETP	_	23	19	18	
ZPUSH ZPUSHP	_	38	33	30	
ZPOP ZPOPP	_	37	31	29	
ZCOM		105	82	80	

(4) Processing time for QCPU instructions (QCPU instructions only)

Instruction	Condition (Device)	Processing Time (µs)		
		Q00JCPU Q00CPU Q01CF	Q01CPU	
UNIRD	n = 1	96	80	74
UNIRDP	n = 16	440	370	340

Instruction	Condition (Device)			Processing Time (µs)			
mstruction				Q00JCPU	Q00CPU	Q01CPU	
LDE =	Single precision	In conductive status		43.0	35.5	33.0	
		In non-conductive status		46.0	38.0	35.5	
ANDE =	Single precision	When not executed		1.5	1.2	1.0	
		When executed	In conductive status	35.5	29.5	26.5	
			In non-conductive status	42.0	35.0	32.5	
ORE =	Single precision	When not	executed	1.5	1.2	1.0	
		When executed	In conductive status	42.0	35.0	32.5	
			In non-conductive status	37.0	31.0	28.5	
LDE <>	Single precision	In conductive status		46.0	38.0	35.5	
		In non-conductive status		43.5	36.0	33.0	
ANDE < >	Single precision	When not executed		1.5	1.2	1.0	
		When executed	In conductive status	38.5	31.5	29.0	
			In non-conductive status	39.5	33.0	30.5	
	Single precision	When not	executed	1.5	1.2	1.0	
ORE < >		When executed	In conductive status	45.0	37.5	35.0	
		When executed	In non-conductive status	34.5	29.0	26.5	
LDE >	Single precision	In conductive status		46.0	37.5	35.5	
		In non-conductive status		46.0	38.5	35.0	
	Single precision	When not executed		1.5	1.2	1.0	
ANDE >		When executed	In conductive status	38.5	32.0	29.0	
			In non-conductive status	42.0	35.0	32.5	
ORE >	Single precision	When not	executed	1.5	1.2	1.0	
		When executed	In conductive status	45.0	37.5	34.5	
			In non-conductive status	37.0	31.0	29.0	
LDE < =	Single precision	In conductive status		45.5	37.5	35.0	
		In non-conductive status		46.5	38.5	35.5	
	Single precision	When not executed		1.5	1.2	1.0	
ANDE < =		When executed	In conductive status	38.5	31.5	29.0	
			In non-conductive status	42.5	35.5	32.5	
ORE < =	Single precision	When not executed		1.5	1.2	1.0	
		When executed	In conductive status	45.0	37.5	34.5	
			In non-conductive status	37.5	31.5	28.5	
LDE <	Single precision	In conductive status		45.5	37.5	35.0	
		In non-conductive status		46.5	38.5	35.5	
ANDE <	Single precision	When not executed		1.5	1.2	1.0	
		When executed	In conductive status	38.0	31.5	29.0	
			In non-conductive status	42.5	35.5	32.5	
ORE <	Single precision	When not executed		1.5	1.2	1.0	
		When executed	In conductive status	45.0	37.5	34.5	
			In non-conductive status	37.5	31.5	29.0	
LDE > =	Single precision	In conductive status		45.5	38.0	35.5	
		In non-conductive status		46.5	38.0	35.0	
ANDE > =	Single precision	When not executed		1.5	1.2	1.0	
		When executed	In conductive status	38.5	32.0	29.0	
			In non-conductive status	42.5	35.5	32.5	

Instruction	Condition (Dovice)			Processing Time (µs)			
Instruction			Q00JCPU	Q00CPU	Q01CPU		
ORE > =	Single precision	When not executed		1.5	1.2	1.0	
		When executed	In conductive status	45.0	38.5	34.5	
			In non-conductive status	37.5	31.0	28.5	
E+ (S) (D)	Sinale precision	(S) = 0, (D) = 0		29.5	25.0	23.0	
E+P S D		$(s) = 2^{127}, (b) = 2^{127}$		65.5	60.5	49.5	
E+ \$1 \$2 D	Single precision	§1) = 0, §2) = 0		31.0	27.0	24.0	
E+P \$1 \$2 D		$\$1 = 2^{127}, \$2 = 2^{127}$		66.5	56.0	51.0	
E - (S) (D)	Single precision	(S) = 0, (D) = 0		29.5	25.0	23.0	
E -P (S) (D)		(s) = 2^{127} , (d) = 2^{127}		48.5	41.0	37.5	
E - \$1 \$2 D	Single precision	§1) = 0, §2) = 0		31.0	27.0	24.0	
E-P §1 §2 D		$(51) = 2^{127}, (52) = 2^{127}$		50.5	42.5	38.5	
E* \$1 \$2 D	Single precision	§1) = 0, §2) = 0		30.0	25.5	23.0	
E*P \$1 \$2 D		$(51) = 2^{127}, (52) = 2^{127}$		65.5	55.0	49.5	
E/ §1 §2 D	Single precision	§1) = 0, §2) = 1		30.0	26.0	23.0	
E/P \$1 \$2 D		$(51) = 2^{127}, (52) = -2^{126}$		69.5	57.5	53.0	
INT INTP	Single precision	(§) = 0		21.5	18.5	16.0	
		(s) = 32766.5		38.0	32.0	29.5	
DINT DINTP	Single precision	(§) = 0		23.0	19.5	17.5	
		(s) = 1234567890.3		42.0	35.5	32.0	
FLT FLTP	Single precision	(§) = 0		22.5	19.5	17.0	
		(s) = 7FFFн		26.5	23.0	20.0	
DFLT DFLTP	Single precision	(§) = 0		23.0	20.0	17.5	
		(s) = 7FFFFFFн		26.0	23.5	19.5	
ENEG	(s) = 0) = 0		20.5	17.0	15.5	
ENEGP	(S) = E - 1.0			31.5	26.0	24.0	
EMOV EMOVP	_			1.5	1.2	1.0	
ESTR ESTRP	_			604.0	686.0	831.0	
EVAL	Decimal point format all 2-digit specification		138.0	148.0	196.0		
EVALP	Exponent format all 6-digit specification		164.0	177.0	214.0		
Instruction	Con	dition (Dovice)	P	Processing Time (µs)			
---------------	------------------	-----------------	---------	----------------------	--------	--	--
Instruction	Con		Q00JCPU	Q00CPU	Q01CPU		
SIN SINP	Sin	gle precision	204.0	173.0	157.0		
COS COSP	Sin	gle precision	187.0	158.0	144.0		
TAN TANP	Sin	gle precision	224.0	190.0	173.0		
RAD RADP	Sin	gle precision	51.0	43.0	39.0		
DEG DEGP	Sin	gle precision	51.0	43.0	39.0		
SQR SQRP	Sin	gle precision	60.0	51.0	46.5		
EXP	Single precision	(s) = - 10	306.0	259.0	235.0		
EXPP		(s) = 1	306.0	259.0	235.0		
LOG	Single precision	(s) = 1	73.0	61.5	56.0		
LOGP		(s) = 10	301.0	255.0	232.0		
RND RNDP		_	12.5	11.0	10.0		
SRND SRNDP		_	13.5	12.0	11.0		

Instruction	Condition/Nu	Condition/Number of Points Processed			Processing Time (µs)			
Name	Contaition/Mai		Q00JCPU	Q00CPU	Q01CPU			
COM *2	With auto refresh of CPU shared memory	Refresh range: 2k words (0.5k words assigned equally to all CPUs)	_	920	880			
	Without auto refresh of CPU shared memory	_	_	150	135			
	Read from CPU shared	n3 = 1	_	100	90			
FROM	memory of host CPU	n3 = 320		440	420			
FROM	Read from CPU shared	n3 = 1		110	105			
	memory of another CPU	n3 = 320		305	290			
то	Write to CPU shared memory	n3 = 1	_	100	95			
10	of host CPU	n3 = 320	_	440	425			
S.TO	Write to CPU shared memory	n4 = 1	_	205	195			
	of host CPU	n4 = 320	_	545	525			

*2: If the processing overlaps those of the other CPUs in a multiple CPU system, the processing time increases by a maximum of the following time.

For a system having only the main base unit

(Instruction processing time increase) = $4 \times 0.54 \times$ (number of points processed) × (number of other CPUs) (µs)

For a system including extension base units

(Instruction processing time increase) = $4 \times 1.30 \times$ (number of points processed) × (number of other CPUs) (µs)

(6) Table of the time to be added when file register, module access device or link direct device is used

Instruction Name	doto	Device Specification	Р	rocessing Time (µ	3)
Instruction Name	uala	Location	Q00JCPU	Q00CPU	Q01CPU
	Dit	Source		34	32
	DIL	Destination		23	22
File register (7R)	Word	Source		13	12
	word	Destination		9	8
	Double	Source		14	13
	word	Destination		10	9
	Bit	Source	99	82	77
		Destination	167	137	129
Module access device	Word	Source	74	61	58
(Un\G 🔲 , U3En\G0 to G511)		Destination	72	60	56
	Double	Source	76	63	59
	word	Destination	92	75	71
	Dit	Source	178	147	137
	DIL	Destination	303	248	233
Liele dies at dat is a (le) 🗖 👌	Word	Source	154	126	118
Link direct device (Jn\ 🔲)	word	Destination	153	125	117
	Double	Source	155	127	119
	word	Destination	163	133	125

The processing time for the individual instructions are shown in the table on the following pages.

Operation processing time can vary substantially depending on the nature of the sources and destinations of the instructions, and the values contained in the following tables should therefore be taken as a set of general guidelines to processing times rather than as being strictly accurate.

Instruction		Processing Time (µs)				
Instruction	Condition (Device)		Qn	QnH	QnPH	QnPRH
LD LDI AND ANI OR ORI	_	_		0.034	0.034	0.034
LDP LDF ANDP ANDF ORP ORF	_		0.158	0.068	0.068	0.068
ANB ORB MPS MRD MPP	_		0.079	0.034	0.034	0.034
INV	When not executed When executed		0.079	0.034	0.034	0.034
MEP MEF	When not executed When executed		0.173	0.073	0.073	0.073
EGP EGF	When not executed (OFF- (ON- When executed (OFF (ON-	→OFF) →ON) →ON) →OFF)	0.158	0.068	0.068	0.068

(1) Sequence instructions

Instruction	Condition (Dovice)				Processing Time (µs)			
Instruction		Ĺ			Qn	QnH	QnPH	QnPRH
	\\/hor	not chong	(OFF→OFF)		0.159	0.068	0.069	0.068
	wher	i not chang	(ON→ON)		0.156	0.000	0.000	0.008
			(OFF→ON)		0.450	0.000	0.000	
	Wh	en change	d (ON→OFF)		0.158	0.068	0.068	0.068
	<u> </u>		When OFF			1.2	1.2	1.2
	F	When	When displayed		162	69.7	69.7	69.7
		ON	Display completed		126	54	54	54
OUT	<u> </u>		When not executed		0.63	0.27	0.27	0.27
	₋		After time up		0.63	0.27	0.27	0.27
	'	executed	When added K	Κ	0.63	0.27	0.27	0.27
		CACCULCU		D	0.63	0.27	0.27	0.27
			When not executed		0.63	0.27	0.27	0.27
	C	Whon	After time up		0.63	0.27	0.27	0.27
	ľ	executed	When added	Κ	0.63	0.27	0.27	0.27
		oxoodiou	When added	D	0.63	0.27	0.27	0.27
OUTH			When not executed		0.63	0.27	0.27	0.27
	т	When	After time up		0.63	0.27	0.27	0.27
		executed	When added		0.63	0.27	0.27	0.27
				D	0.63	0.27	0.27	0.27
SET		W	/hen not executed		0.158	0.068	0.068	0.068
	Wher	n executed	When not changed (ON \rightarrow ON)		0.158	0.068	0.068	0.068
			When changed (OFF \rightarrow ON)		0.158	0.068	0.068	0.068
			When not executed		0.47	0.20	0.20	0.20
	F	When	When displayed		161	69	69	69
		executed	Display completed		0.47	0.20	0.20	0.20
		N	hen not executed		0.158	0.068	0.068	0.068
	When executed		When not changed (OFF \rightarrow OFF)		0.158	0.068	0.068	0.068
		, executed	When changed (ON \rightarrow OFF)		0.158	0.068	0.068	0.068
	SM	When not executed		0.158	0.068	0.068	0.068	
			When executed		0.158	0.068	0.068	0.068
			When not executed		0.47	0.20	0.20	0.20
	F	When	When displayed		90	38	38	38
RST		executed	Display completed		0.47	0.20	0.20	0.20
	T, C		When not executed		0.63	0.27	0.27	0.27
			When executed		0.63	0.27	0.27	0.27
	D		When not executed		0.24	0.10	0.10	0.10
			When executed		0.24	0.10	0.10	0.10
	z		When not executed		0.47	0.20	0.20	0.20
			When executed		4.3	1.9	1.9	1.9
	R		When not executed		0.40	0.17	0.17	0.17
			when executed		0.40	0.17	0.17	0.17
PLF			_		1.0	0.44	0.44	0.44
FF	Y		When not executed		0.47	0.20	0.20	0.20
	Ŀ		When executed		0.47	0.20	0.20	0.20
DELTA	DY0		When not executed		0.47	0.20	0.20	0.20
DELTAP			When executed		5.9	2.6	2.6	2.6

Instruction	Condition (Device)	Processing Time (µs)				
mstraction		Qn	QnH	QnPH	QnPRH	
SFT	When not executed	0.47	0.20	0.20	0.20	
SFTP	When executed	1.66	0.71	0.71	0.71	
MC	_	0.24	0.10	0.10	0.10	
MCR	_	0.079	0.034	0.034	0.034	
FEND END	Error check performed	380	150	150	500	
	No error check performed (• Battery check) (• Fuse blown check) (• I/O module verification)	380	150	150	500	
NOP	_	0.079	0.034	0.034	0.034	
NOPLF PAGE	_	0.079	0.034	0.034	0.034	

A

(2) Basic instructions

The processing time when the instruction is not executed is calculated as follows: Q02CPU $\cdots 0.079 \times (No. \text{ of steps for each instruction + 1}) \mu s$ Q02HCPU, Q06HCPU, Q12HCPU, Q25HCPU, Q02PHCPU, Q06PHCPU, Q12PHCPU, Q25PHCPU, Q06PHCPU, Q12PHCPU, Q25PHCPU $0.034 \times (No. \text{ of steps for each instruction + 1}) \mu s$

Instruction	Condition		Processing Time (µs)				
Instruction	Condition	I (Device)	Qn	QnH	QnPH	QnPRH	
LD -	In conduc	tive status	0.24	0.10	0.10	0.10	
LD -	In non-cond	uctive status	0.24	0.10	0.10	0.10	
	When not	0.24	0.10	0.10	0.10		
AND =	When	In conductive status	0.24	0.10	0.10	0.10	
	executed	In non-conductive status	0.24	0.10	0.10	0.10	
	When not	executed	0.24	0.10	0.10	0.10	
OR =		In conductive status	0.24	0.10	0.10	0.10	
	When executed	In non-conductive status	0.24	0.10	0.10	0.10	
	In conduc	tive status	0.24	0.10	0.10	0.10	
	In non-cond	uctive status	0.24	0.10	0.10	0.10	
AND < >	When not	0.24	0.10	0.10	0.10		
	When executed	In conductive status	0.24	0.10	0.10	0.10	
	When executed	In non-conductive status	0.24	0.10	0.10	0.10	
	When not	executed	0.24	0.10	0.10	0.10	
OR < >	When executed	In conductive status	0.24	0.10	0.10	0.10	
	When executed	In non-conductive status	0.24	0.10	0.10	0.10	
	In conduc	tive status	0.24	0.10	0.10	0.10	
	In non-cond	uctive status	0.24	0.10	0.10	0.10	
	When not	executed	0.24	0.10	0.10	0.10	
AND >	When executed	In conductive status	0.24	0.10	0.10	0.10	
	When executed	In non-conductive status	0.24	0.10	0.10	0.10	
	When not	executed	0.24	0.10	0.10	0.10	
OR >	When executed	In conductive status	0.24	0.10	0.10	0.10	
	When executed	In non-conductive status	0.24	0.10	0.10	0.10	
	In conduc	tive status	0.24	0.10	0.10	0.10	
	In non-cond	uctive status	0.24	0.10	0.10	0.10	
	When not	executed	0.24	0.10	0.10	0.10	
AND < =	When executed	In conductive status	0.24	0.10	0.10	0.10	
		In non-conductive status	0.24	0.10	0.10	0.10	

			Processing Time (µs)				
Instruction	Condition		Qn	QnH	QnPH	QnPRH	
	When not	executed	0.24	0.10	0.10	0.10	
OR < =		In conductive status	0.24	0.10	0.10	0.10	
	When executed	In non-conductive status	0.24	0.10	0.10	0.10	
	In conduc	tive status	0.24	0.10	0.10	0.10	
LD <	In non-cond	uctive status	0.24	0.10	0.10	0.10	
	When not	executed	0.24	0.10	0.10	0.10	
AND <		In conductive status	0.24	0.10	0.10	0.10	
	vvnen executed	In non-conductive status	0.24	0.10	0.10	0.10	
	When not	executed	0.24	0.10	0.10	0.10	
OR <		In conductive status	0.24	0.10	0.10	0.10	
	vvnen executed	In non-conductive status	0.24	0.10	0.10	0.10	
	In conduc	tive status	0.24	0.10	0.10	0.10	
LD > =	In non-cond	uctive status	0.24	0.10	0.10	0.10	
	When not	executed	0.24	0.10	0.10	0.10	
AND > =		In conductive status	0.24	0.10	0.10	0.10	
	When executed	In non-conductive status	0.24	0.10	0.10	0.10	
	When not	executed	0.24	0.10	0.10	0.10	
OR > =		In conductive status	0.24	0.10	0.10	0.10	
	When executed	In non-conductive status	0.24	0.10	0.10	0.10	
	In conduc	tive status	0.55	0.24	0.24	0.24	
LDD =	In non-cond	uctive status	0.39	0.17	0.17	0.17	
ANDD =	When not	executed	0.39	0.17	0.17	0.17	
		In conductive status	0.55	0.24	0.24	0.24	
	When executed	In non-conductive status	0.39	0.17	0.17	0.17	
	When not	executed	0.39	0.17	0.17	0.17	
ORD =		In conductive status	0.55	0.24	0.24	0.24	
	When executed	In non-conductive status	0.55	0.24	0.24	0.24	
	In conduc	tive status	0.55	0.24	0.24	0.24	
LDD < >	In non-cond	uctive status	0.55	0.24	0.24	0.24	
	When not	executed	0.39	0.17	0.17	0.17	
ANDD < >		In conductive status	0.55	0.24	0.24	0.24	
	When executed	In non-conductive status	0.55	0.24	0.24	0.24	
	When not	executed	0.39	0.17	0.17	0.17	
ORD < >		In conductive status	0.55	0.24	0.24	0.24	
	When executed	In non-conductive status	0.55	0.24	0.24	0.24	
	In conduc	tive status	0.55	0.24	0.24	0.24	
LDD >	In non-cond	uctive status	0.55	0.24	0.24	0.24	
	When not	executed	0.39	0.17	0.17	0.17	
ANDD >		In conductive status	0.55	0.24	0.24	0.24	
	When executed	In non-conductive status	0.55	0.24	0.24	0.24	
	When not	executed	0.39	0.17	0.17	0.17	
ORD >		In conductive status	0.55	0.24	0.24	0.24	
	When executed	In non-conductive status	0.55	0.24	0.24	0.24	
	In conduc	tive status	0.55	0.24	0.24	0.24	
LDD < =	In non-cond	uctive status	0.55	0.24	0.24	0.24	
	When not	executed	0.39	0.17	0.17	0.17	
ANDD < =		In conductive status	0.55	0.24	0.24	0.24	
	When executed	In non-conductive status	0.55	0.24	0.24	0.24	
	When not	executed	0.39	0.17	0.17	0.17	
ORD < =		In conductive status	0.55	0.24	0.24	0.24	
	When executed	In non-conductive status	0.55	0.24	0.24	0.24	
			1	I	1	L	

A

Instruction	Condition (Device)			Processing Time (µs)			
Instruction		Condition		Qn	QnH	QnPH	QnPRH
		In conduc	tive status	0.55	0.24	0.24	0.24
		In non-conductive status		0.55	0.24	0.24	0.24
		When not	executed	0.39	0.17	0.17	0.17
ANDD <	When e	vooutod	In conductive status	0.55	0.24	0.24	0.24
	when e	xeculeu	In non-conductive status	0.55	0.24	0.24	0.24
		When not	executed	0.39	0.17	0.17	0.17
ORD <	When e	vooutod	In conductive status	0.55	0.24	0.24	0.24
	when e	xeculeu	In non-conductive status	0.55	0.24	0.24	0.24
		In conduc	tive status	0.55	0.24	0.24	0.24
		In non-cond	uctive status	0.55	0.24	0.24	0.24
		When not	executed	0.39	0.17	0.17	0.17
ANDD > =	Whon o	vocutod	In conductive status	0.55	0.24	0.24	0.24
	when executed		In non-conductive status	0.55	0.24	0.24	0.24
		When not	executed	0.39	0.17	0.17	0.17
ORD > =	When executed		In conductive status	0.55	0.24	0.24	0.24
			In non-conductive status	0.55	0.24	0.24	0.24
		ln o	anduativa atatua	93	40	6.4	6.4
	Single			14.9	6.4	0.4	0.4
	precision	lue un euro		92	40	6.4	6.4
*1		In non	-conductive status	14.9	6.4	6.4	6.4
LDE = '		la a	andusting status	93	40		
	Double	In C	onductive status	14.9	6.4		
	precision	In non-conductive status		92	40		
				14.9	6.4		
		Wh	en not executed	0.55	0.24	0.24	0.24
	0.1		In conductive status	93	40	6.4	6.4
	Single	When	In conductive status	14.9	6.4	0.4	
	precision	executed	In non conductive status	92	40	6.4	6.4
ANDE *1				14.9	6.4	0.4	0.4
ANDE = '		Wh	en not executed				
	Daubla		In conductive status	93	40		
	Double	When	In conductive status	14.9	6.4		
	precision	executed	In non conductivo status	92	40		
				14.9	6.4		
		Wh	en not executed	0.55	0.24	0.24	0.24
	Oliverte			93	40	6.4	6.4
	Single	When	In conductive status	14.9	6.4	0.4	0.4
	precision	executed	In non conductive status	92	40	6.4	6.4
0.05 *1				14.9	6.4	0.4	0.4
UKE = '		Wh	en not executed	0.55	0.24		
	Devible		In conductive statue	93	40		
	Double	When	in conductive status	14.9	6.4		_
	precision	executed		92	40		
			in non-conductive status	14.9	6.4		

Top : The first 5 digits of the serial No. are "05031" or lower

Bottom : The first 5 digits of the serial No. are "05032" or higher

Instruction Consult (vertex) On One H OneH One	Instruction	Condition (Device)			Processing Time (µs)				
Bingle precision In conductive status 92 40 6.4 6.4 In non-conductive status 92 40 6.4 6.4 6.4 Double precision In non-conductive status 92 40	Instruction		Condition	I (Device)	Qn	QnH	QnPH	QnPRH	
Single precision In conductive status 14.9 6.4 0.4 0.4 LDE<>11 In non-conductive status 92 40 6.4 6.4 6.4 Double precision In conductive status 92 40 - - - ANDE-0 ⁻¹¹ In conductive status 92 40 - - - Single precision When not executed 0.55 0.24 0.24 0.24 ANDE-0 ⁻¹¹ In conductive status 92 40 - - - MADE Single precision When not executed 0.55 0.24 0.24 0.24 Double precision When not executed 0.55 0.24 - - Mode In conductive status 92 40 - - - Double precision When not executed 0.55 0.24 - - - Mone dexecuted 0.55 0.24 - - - - - - - <td></td> <td></td> <td>ا م ا</td> <td></td> <td>92</td> <td>40</td> <td>6.4</td> <td>6.4</td>			ا م ا		92	40	6.4	6.4	
IDEx> "1 precision In non-conductive status 92 40 6.4 6.4 Double precision In conductive status 92 40 - - ANDE<-1		Single	In C	onductive status	14.9	6.4	0.4	0.4	
LDE> 1 In non-conductive status 14.9 6.4 0.4 0.4 Double precision In conductive status 92 40 In non-conductive status 92 40 Main precision When not executed 0.55 0.24 0.24 0.24 Main precision When not executed 0.55 0.24 0.64 6.4 Main precision When not executed 0.55 0.24 0.24 0.24 Main precision When not executed 0.55 0.24 Main precision When not executed 0.55 0.24 Main precision When not executed 0.55 0.24 Main precision When not executed 0.55 0.24 0.24 0.24 Double precision When not executed 0.55 0.24 Double precision In conductive status 93 40		precision	In non-conductive status		92	40	6.4	6.4	
LDE's In conductive status 92 40 In non-conductive status 14.9 6.4 Single precision When not executed 0.65 0.24 0.24 0.24 ANDE<**1	LDF - *1				14.9	6.4	0.4	0.4	
Double precision In torhoductive status 14.9 6.4 ANDE>11 In non-conductive status 92 40 ANDE>11 In non-conductive status 92 40 0.24 0.24 0.24 ANDE>11 In conductive status 14.9 6.4 When precision In conductive status 14.9 6.4 6.4 6.4 Double precision Mhen executed In conductive status 93 40 Double precision When executed In conductive status 92 40 In non-conductive status 92 40 Double precision When not executed 0.55 0.24 0.24 0.24 0.24 Double precision When not executed 93 40 Double precision When not executed 93 40	LDE<> '		In conductive status		92	40			
ANDE<*1 In on-conductive status 92 40 ANDE<*1		Double			14.9	6.4		_	
ANDE<> '1 Init not -conductive status 14.9 6.4 ANDE<		precision	In non	anductive status	92	40			
ANDE<>*1 When not executed 0.55 0.24 0.24 0.24 ANDE<			In non-conductive status		14.9	6.4		_	
ANDE<> '1 Single precision In conductive status 92 40 6.4 6.4 6.4 ANDE<> '1 In non-conductive status 93 40 6.4 6.4 6.4 Double precision In non-conductive status 93 40 6.4 6.4 6.4 Double precision When not executed 0.56 0.24 Mem In conductive status 92 40 When not executed 0.55 0.24 0.24 0.24 0.24 When not executed 0.55 0.24 0.24 0.24 0.24 When not executed 0.55 0.24 0.24 0.24 0.24 Double precision When not executed 0.55 0.24 Double precision When not executed 0.55 0.24 Double precision In conductive status 93 40 Double precision In conductive status 92 </td <td></td> <td></td> <td>Wh</td> <td>en not executed</td> <td>0.55</td> <td>0.24</td> <td>0.24</td> <td>0.24</td>			Wh	en not executed	0.55	0.24	0.24	0.24	
ANDE<> '1 Single precision When executed In conductive status 14.9 6.4 0.4 0.4 ANDE		Cinala		In conductive status	92	40	6.4	6.4	
ANDE<> 1 precision executed In non-conductive status 93 40 6.4 6.4 6.4 Double precision Double precision When not executed 0.55 0.24 Single precision In conductive status 92 40 When not executed 0.55 0.24 Single precision When not executed 0.55 0.24 0.24 0.24 When not executed 0.55 0.24 0.24 0.24 0.24 When not executed 0.55 0.24 0.24 0.24 When not executed 0.55 0.24 0.24 0.24 Non-conductive status 92 400 6.4 6.4 In non-conductive status 92 400 Double precision When not executed 92 400 Double precision In non-conductive status 92 400		Single	When	in conductive status	14.9	6.4	0.4	0.4	
ANDE> "1 ANDE> "1 ANDE ANDE ANDE ANDE ANDE ANDE ANDE ANDE		precision	executed	In non-conductive status	93	40	6.4	6.4	
ANDES * When not executed 0.65 0.24 Double precision When not executed 14.9 6.4 Men executed In conductive status 92 40 Image: status 14.9 6.4 Men executed 0.55 0.24 0.24 0.24 0.24 Image: status 92 40 When not executed 0.55 0.24 0.24 0.24 0.24 When not executed 14.9 6.4 6.4 6.4 6.4 Image: status 93 40 Double precision When not executed 0.55 0.24 Mone not executed 92 40 Double precision In conductive status 92 40 Double precision In non-conductive status 9	*1				14.9	6.4	0.4	0.4	
Double precision When executed In conductive status 92 40 In non-conductive status 92 40 In non-conductive status 92 40 In non-conductive status 92 40 In non-conductive status 93 40 6.4 6.4 6.4 6.4 When not executed 0.55 0.24 0.24 0.24 0.24 0.24 In conductive status 14.9 6.4 6.4 6.4 6.4 Double precision When not executed 0.55 0.24 Multiple precision In conductive status 14.9 6.4 IDouble precision In conductive status 14.9 6.4 IDouble precision In non-conductive status 14.9 6.4 IDouble precision In cond	ANDE<> '		Wh	en not executed	0.55	0.24		—	
Double precision When executed in conductive status 14.9 6.4 Mark in non-conductive status 92 400 Mark Single precision When not executed 0.55 0.24 0.24 0.24 When not executed 0.55 0.24 0.24 0.24 Mark In conductive status 93 40 6.4 6.4 In non-conductive status 93 40 6.4 6.4 Mark In conductive status 92 40 6.4 6.4 Mark In conductive status 93 40 Mark In conductive status 93 40 In non-conductive status 14.9 6.4 In conductive status 92 40 6.4 6.4 6.4 In conductive status 92 40 Double precision		Daubla		la conductive status	92	40			
Precision executed In non-conductive status 92 40 Single precision Single precision When not executed 0.55 0.24 0.24 0.24 When not executed 0.55 0.24 0.24 0.24 0.24 When not executed 0.55 0.24 0.24 0.24 When not executed 14.9 6.4 6.4 6.4 Double precision When not executed 0.55 0.24 Double precision When not executed 93 40 Mone conductive status 93 40 Double precision When not executed 93 40 <td>Double</td> <td>When</td> <td>In conductive status</td> <td>14.9</td> <td>6.4</td> <td></td> <td>_</td>		Double	When	In conductive status	14.9	6.4		_	
ORE<> '1 In non-conductive status 14.9 6.4 ORE<> '1 Single precision When not executed 0.55 0.24 0.24 0.24 ORE<> '1 In conductive status 93 40 6.4 6.4 6.4 Double precision In conductive status 92 40 6.4 6.4 Double precision When not executed 0.55 0.24 Meen not executed 0.55 0.24 Un conductive status 92 40 6.4 6.4 6.4 In conductive status 92 40 Single precision In conductive status 92 40 Double precision In conductive status 92 40 In conductive status 92 40 Double precision In non-conductive status 92 40		precision	executed	In non-conductive status	92	40			
ORE<> "1 When not executed 0.55 0.24 0.24 0.24 ORE<> "1 Single precision When executed In conductive status 93 40 6.4 6.4 6.4 In non-conductive status 92 40 6.4 6.4 6.4 Double precision When not executed 0.55 0.24 - - Double precision When not executed 0.55 0.24 - - In non-conductive status 92 40 - - - Double precision When not executed 92 40 - - In non-conductive status 92 40 - - - Double precision In conductive status 92 40 - - Double precision In non-conductive status 92 40 - - In non-conductive status 92 40 - - - In non-conductive status 92 40 - - <t< td=""><td></td><td></td><td>14.9</td><td>6.4</td><td></td><td>—</td></t<>					14.9	6.4		—	
Single precision When executed In conductive status 93 40 6.4 6.4 6.4 In non-conductive status 92 40 6.4 6.4 6.4 6.4 Double precision When not executed 0.55 0.24 Multiple In conductive status 93 40 Multiple In non-conductive status 92 40 Multiple In conductive status 92 40 Double precision In non-conductive status 92 40 In non-conductive status 92 40 Multiple In non-conductive status 92 40			Wh	en not executed	0.55	0.24	0.24	0.24	
Single precision When executed In conductive status 14.9 6.4 6.4 6.4 0RE<>'1 Men not executed 14.9 6.4 6.4 6.4 6.4 6.4 Double precision When not executed 0.55 0.24 - - - Double precision When not executed 0.55 0.24 - - - Multiple In conductive status 93 40 - - - Up to the precision When not executed 92 40 - - - Multiple In conductive status 92 40 - - - Multiple In conductive status 92 40 - - - Double precision In conductive status 92 40 - - - Double precision In non-conductive status 92 40 - - - In non-conductive status 92 40 - - - <td rowspan="4"></td> <td></td> <td></td> <td>In a surdivation status</td> <td>93</td> <td>40</td> <td></td> <td></td>				In a surdivation status	93	40			
ORE<> '1 executed in non-conductive status 92 40 6.4 6.4 Double precision When not executed 0.55 0.24 Double precision When not executed 93 40 When not executed 92 40 Multiple In conductive status 93 40 When not executed 92 40 In non-conductive status 92 40 Single precision When not executed 92 40 6.4 6.4 14.9 6.4 Double precision In non-conductive status 92 40 Single precision In non-conductive status 92 40 ANDE> '1 Single precision In conductive status 93 40		Single	When	In conductive status	14.9	6.4	6.4	6.4	
ORE<> '1 In non-conductive status 14.9 6.4 6.4 6.4 Double precision When not executed 0.55 0.24 Unoreconductive status 93 40 In conductive status 93 40 In non-conductive status 92 40 In non-conductive status 92 40 Single precision In conductive status 92 40 Double precision In conductive status 92 40 In non-conductive status 92 40 Double precision In non-conductive status 92 40 MNDE> '1 In non-conductive status 92 40 In non-conductive status 92 40 In non-conductive status		precision	executed		92	40			
ORE Image: state precision When not executed 0.55 0.24 Double precision In conductive status 93 40 In conductive status 92 40 In non-conductive status 92 40 Single precision In conductive status 92 40 6.4 6.4 6.4 Double precision In conductive status 92 40 Double precision In non-conductive status 92 40 Double precision In non-conductive status 92 40 Single precision In conductive status 92 40 Mhen not executed 0.55 0.24 0.24 0.24 0.24 In conductive status 92 40 In conductive status 93 40				In non-conductive status	14.9	6.4	6.4	6.4	
$ \begin{tabular}{ c c c c c c } \hline \mbox{Double} \\ \mbox{precision} \hline \end{tabular} & \begin{tabular}{ c c c c c } \mbox{Precision} \hline \end{tabular} & \begin{tabular}{ c c c c c c c } \mbox{Precision} \hline \end{tabular} & \begin{tabular}{ c c c c c c c } \mbox{Precision} \hline \end{tabular} & \begin{tabular}{ c c c c c c c } \mbox{Precision} \hline \end{tabular} & \begin{tabular}{ c c c c c c c } \mbox{Precision} \hline \end{tabular} & \begin{tabular}{ c c c c c c c } \mbox{Precision} \hline \end{tabular} & \begin{tabular}{ c c c c c c c } \mbox{Precision} \hline \end{tabular} & \begin{tabular}{ c c c c c c c c c c c } \mbox{Precision} \hline \end{tabular} & \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	ORE<> '		Wh	en not executed	0.55	0.24			
$ ANDE>^{-1} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$			When executed		93	40			
$ \begin{tabular}{ c c c c c c } \hline Precision & executed & executed & executed & 14.9 & 6.4 & & & & & & & & $		Double precision		In conductive status	14.9	6.4		—	
LDE>*1 When not executed 92 40 6.4 LDE>*1 Single precision In conductive status 92 40 6.4 6.4 6.4 Double precision In conductive status 92 40 6.4 6.4 6.4 Double precision In conductive status 92 40 6.4 6.4 6.4 Double precision In non-conductive status 92 40 Single precision When not executed 0.55 0.24 0.24 0.24 0.24 In non-conductive status 92 40 ANDE>*1 Single precision When not executed 0.55 0.24 0.24 0.24 0.24 In non-conductive status 93 40 6.4 6.4 6.4 6.4 Double precision When not executed 0.55 0.24 - - Double precision When not executed				In non-conductive status	92	40			
$ \begin{tabular}{ c c c c c c } & When not executed & 92 & 40 & & & & & & & & & & & & & & & & & $					14.9	6.4			
LDE> "1 Single precision In conductive status 14.9 6.4 6.4 6.4 Double precision In conductive status 92 40 6.4 6.4 6.4 Double precision In non-conductive status 92 40 92 40 92 40 92 40 92 40 92 40 Single precision When not executed 0.55 0.24 0.24 0.24 In non-conductive status 93 40 Double precision When not executed 0.55 0.24 Double precision In conductive status 92 40			When not executed		92	40			
$ \begin{tabular}{ c c c c c c } & $Pecision$ & $In conductive status$ & 92 & 40 & 6.4 & 6.4 & 6.4 & 6.4 & 6.4 & 14.9 & 6.4 & 14.9 & 6.4 & $-$ & $-$ & $-$ & 14.9 & 6.4 & $-$ & $-$ & $-$ & 14.9 & 6.4 & $-$ & $-$ & $-$ & 14.9 & 6.4 & $-$ & $-$ & $-$ & 14.9 & 6.4 & $-$ & $-$ & $-$ & $-$ & 14.9 & 6.4 & $-$ & $-$ & $-$ & $-$ & 14.9 & 6.4 & $-$ & $-$ & $-$ & $-$ & 14.9 & 6.4 & $-$ & $-$ & $-$ & $-$ & $-$ & 14.9 & 6.4 & $-$ & $-$ & $-$ & $-$ & $-$ & 14.9 & 6.4 & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & 14.9 & 6.4 & $-$ $		Single			14.9	6.4	6.4	6.4	
$ \begin{tabular}{ c c c c c c c c c c } & & & & & & & & & & & & & & & & & & &$		precision	In c	onductive status	92	40			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					14.9	6.4	6.4	6.4	
$ \begin{tabular}{ c c c c c c } \hline Double \\ precision \\ \hline \end{tabular}	LDE>				92	40			
$ ANDE> 1 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $		Double			14.9	6.4		—	
$ ANDE>^{1} \begin{tabular}{ c c c c c c c } \hline & & & & & & & & & & & & & & & & & & $		precision	In non	-conductive status	92	40			
$ ANDE> 1 \ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					14.9	6.4		—	
ANDE> *1 $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			Wh	en not executed	0.55	0.24	0.24	0.24	
ANDE> *1 $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					92	40	_		
ANDE>*1 $executed executed e$		Single	When	In conductive status	14.9	6.4	6.4	6.4	
ANDE> *1 $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		precision	executed		93	40	_		
ANDE> 1 Double precision When not executed 0.55 0.24 When executed In non-conductive status 92 40 In non-conductive status 92 40				In non-conductive status	14.9	6.4	6.4	6.4	
Double precision When executed In conductive status 92 40	ANDE> *1		Wh	en not executed	0.55	0.24			
Double precisionWhen executedIn conductive status0210In non-conductive status9240					92	40			
precision executed 92 40 In non-conductive status 14.9 6.4 —		Double	When executed	In conductive status	14.9	6.4		—	
In non-conductive status 14.9 6.4 — — —		precision		In non-conductive status	92	40			
					14.9	6.4		—	

Top : The first 5 digits of the serial No. are "05031" or lower

Bottom : The first 5 digits of the serial No. are "05032" or higher

Instruction	Condition (Device)			Processing Time (µs)			
Instruction		Condition	(Device)	Qn	QnH	QnPH	QnPRH
		Whe	en not executed	0.55	0.24	0.24	0.24
	Cingle		In conductive status	93	40	6.4	6.4
	Single	When	In conductive status	14.9	6.4	0.4	0.4
	precision	executed		92	40		
+4			In non-conductive status	14.9	6.4	6.4	6.4
ORE>		Whe	en not executed	0.55	0.24		
				93	40		
	Double	When	In conductive status	14.9	6.4		
	precision	executed		92	40		
			In non-conductive status	14.9	6.4		—
				93	40		
	Single	In c	onductive status	14.9	6.4	6.4	6.4
	precision			92	40		
		In non-conductive status		14.9	6.4	6.4	6.4
LDE<= *1				93	40		
	Double	In conductive status		14.9	6.4		—
	precision			92	40		
	precision	In non-conductive status		14.9	64		—
		When not executed		0.55	0.4	0.24	0.24
				0.00	40	0.24	0.24
	Single	W/bop	In conductive status	92	40	6.4	6.4
	precision	when		14.9	0.4		
		executed	In non-conductive status	92	40	6.4	6.4
ANDE<= *1		14/6		14.9	0.4		
	Double precision	When executed		0.55	0.24		
			In conductive status	92	40		_
				14.9	6.4		
			In non-conductive status	92	40		
				14.9	6.4		
		Whe	en not executed	0.55	0.24	0.24	0.24
	Single		In conductive status	92	40	6.4	6.4
	precision	When		14.9	6.4		
	'	executed	In non-conductive status	92	40	6.4	6.4
ORF<= *1				14.9	6.4	-	-
0.1.2		Whe	en not executed	0.55	0.24		_
	Double		In conductive status	92	40		_
	precision	When		14.9	6.4		
		executed	In non-conductive status	92	40		_
				14.9	6.4		
		In c	onductive status	92	40	64	64
	Single	11 0		14.9	6.4	0.4	0.4
	precision	In non	-conductive status	92	40	64	64
		in non	Sondolive Status	14.9	6.4	0.4	0.4
		In o	anductive status	92	40	_	
	Double			14.9	6.4		
	precision	In non	-conductive status	92	40		
		minon	-conductive Status	14.9	6.4		_

Top : The first 5 digits of the serial No. are "05031" or lower

Bottom : The first 5 digits of the serial No. are "05032" or higher

	Conditio	Condition (Device)	Processing Time (µs)				
Instruction		Condition	(Device)	Qn	QnH	QnPH	QnPRH
		When not executed		0.55	0.24	0.24	0.24
	<u>.</u>			92	40	0.4	0.4
	Single	When	In conductive status	14.9	6.4	6.4	0.4
	precision	executed	la sea and other states	92	40	0.4	0.4
			In non-conductive status	14.9	6.4	0.4	0.4
ANDE< '		Whe	en not executed	0.55	0.24		
	5		In conductive status	92	40		
	Double	When	in conductive status	14.9	6.4		
	precision	executed	la non conductive status	92	40		
			in non-conductive status	14.9	6.4	1 —	
		Whe	en not executed	0.55	0.24	0.24	0.24
	0. 1	When executed	In conductive status	93	40	6.4	6.4
ORE< ^{*1}	Single		In conductive status	14.9	6.4	6.4	6.4
	precision		In non conductive status	92	40	0.4	6.4
			in non-conductive status	14.9	6.4	0.4	0.4
		Whe	en not executed	0.55	0.24		
	5		In conductive status	93	40		
	Double	When	in conductive status	14.9	6.4		
	precision	executed	In non conductive status	92	40		
			In non-conductive status	14.9	6.4		
		ln o	anduativa atatua	93	40	6.4	6.4
	Single precision			14.9	6.4	0.4	0.4
		In non-conductive status		92	40	6.4	6.4
LDC *1				14.9	6.4	0.4	0.4
LDE>= '		In o	anduativo atatua	93	40		
	Double		Shuuclive status	14.9	6.4		
	precision	In non		92	40		
			-conductive status	14.9	6.4		
		Whe	en not executed	0.55	0.24	0.24	0.24
	Cinala		In conductivo status	92	40	6.4	6.4
	Single	When		14.9	6.4	0.4	0.4
	precision	executed	In non conductivo status	92	40	6.4	6.4
ANDE: *1				14.9	6.4	0.4	0.4
ANDE>=		Whe	en not executed	0.55	0.24		
	Dauble		In conductivo status	92	40		
	precision	When executed	In conductive status	14.9	6.4		
	precision		In non conductive statue	92	40		
				14.9	6.4		

 $\ \ \, ^{*1} \quad : The \ \ Qn/QnH \ \ changes \ \ in \ \ processing \ time \ \ depending \ \ on \ the \ serial \ \ No. \ \ of \ the \ \ CPU \ module.$

Top : The first 5 digits of the serial No. are "05031" or lower

Bottom : The first 5 digits of the serial No. are "05032" or higher

For the condition to be satisfied when the instruction is not executed, there is no differentiation between the top and bottom.

Appendix1 OPERATION PROCESSING TIME Appendix 1.3 Operation Processing Time of High Performance Model QCPU/Process CPU/Redundant CPU

Instruction	Condition (Dovice)		Processing Time (µs)				
		Condition		Qn	QnH	QnPH	QnPRH
		Wh	en not executed	0.55	0.24	0.24	0.24
			In conductive status	92	40	6.4	6.4
	Single	When	In conductive status	14.9	6.4	0.4	0.4
	precision	executed	In non-conductive status	92	40	64	64
ODE> - *1				14.9	6.4	0.4	0.4
URE>=		Wh	en not executed	0.55	0.24		—
			In conductive status	92	40		
	Double	When		14.9	6.4		
	precision	executed	In non-conductive status	92	40		
				14.9	6.4		
1.54		In conductive status		38	16	16	16
LD\$ =	In non-co		uctive status	34	15	15	15
	When not executed			0.56	0.23	0.23	0.23
AND\$ =	When e	When executed In conductive status		39	17	17	17
	In non-con		In non-conductive status	32	14	14	14
	When not executed		0.56	0.24	0.24	0.24	
OR\$ =			In conductive status	40	17	17	17
	whene	xeculeu	In non-conductive status	33	14	14	14
		In conduc	tive status	32	14	14	14
		In non-cond	uctive status	40	17	17	17
		When not	executed	0.56	0.23	0.23	0.23
AND\$ < >	When e	vooutod	In conductive status	33	14	14	14
	when e	xeculed	In non-conductive status	39	17	17	17
		When not	executed	0.56	0.24	0.24	0.24
OR\$ < >	When e	veguted	In conductive status	32	14	14	14
	vinen e	xeculeu	In non-conductive status	39	17	17	17
		In conduc	tive status	32	14	14	14
LD\$ >		In non-cond	uctive status	40	17	17	17

Top $\$: The first 5 digits of the serial No. are "05031" or lower

Bottom : The first 5 digits of the serial No. are "05032" or higher

Instruction	Condition (Dovico)		Processing Time (µs)			
	Conditi	on (Device)	Qn	QnH	QnPH	QnPRH
	When n	not executed	0.56	0.23	0.23	0.23
AND\$ >	When executed	In conductive status	33	14	14	14
	When executed	In non-conductive status	39	17	17	17
	When n	ot executed	0.56	0.24	0.24	0.24
OR\$ >	When executed	In conductive status	32	14	14	14
		In non-conductive status	39	17	17	17
LD\$ < =	In condu	uctive status	40	17	17	17
+	In non-cor	nductive status	32	14	14	14
	When n	ot executed	0.56	0.23	0.23	0.23
AND\$ < =	When executed	In conductive status	39	17	17	17
		In non-conductive status	32	14	14	14
	When n	ot executed	0.56	0.24	0.24	0.24
OR\$ < =	When executed	In conductive status	40	17	17	17
		In non-conductive status	33	14	14	14
LD\$ <	In condu	uctive status	32	14	14	14
	In non-cor	nductive status	40	17	17	17
	When n	not executed	0.56	0.23	0.23	0.23
AND\$ <	When executed	In conductive status	32	14	14	14
		In non-conductive status	39	16	16	16
	When n	not executed	0.56	0.24	0.24	0.24
OR\$ <	When executed	In conductive status	32	14	14	14
		In non-conductive status	39	16	16	16
LD\$ > =	In condi	uctive status	40	17	17	17
	In non-cor	nductive status	32	14	14	14
	when h		0.56	0.23	0.23	0.23
AND\$ > =	When executed	In conductive status	39	16	10	16
	When n		0.56	0.24	0.24	0.24
	villen		30	0.24	0.24	0.24
	When executed	In non-conductive status	32	14	14	17
			40	01	24	01
BKCMP = (\$1) (\$2) (D) n		n = 1	48	21	21	21
BKCMP = P 🔄 🗐 D n	n	n = 96	142	61	61	61
BKCMP <> §1 §2 D n		n = 1	48	21	21	21
BKCMP <>P (\$1) (\$2) (D) n	n	n = 96	150	65	65	65
BKCMP > (5) (2) (D) n	I	n = 1	48	21	21	21
BKCMP >P \$1 \$2 D n	n	n = 96	142	61	61	61
BKCMP >= \$1 \$2 D n	-	n = 1	48	21	21	21
BKCMP >=P (\$1) (\$2) (D) n	r	n = 96	150	65	65	65
BKCMP < §1 §2 D n		n = 1	48	21	21	21
BKCMP <p d="" n<="" th="" §1="" §2=""><th>n</th><th>n = 96</th><th>158</th><th>68</th><th>68</th><th>68</th></p>	n	n = 96	158	68	68	68
BKCMP <= \$1 \$2 D n		n = 1	48	21	21	21
BKCMP <=P § § D n	n	n = 96	150	65	65	65
BKCMP < (\$) (\$2 (D) n BKCMP <p (\$)="" (\$2="" (d)="" n<br="">BKCMP <= (\$) (\$2 (D) n BKCMP <=P (\$) (\$2 (D) n</p>	n 1	n = 1 n = 96 n = 1 n = 96	48 158 48 150	21 68 21 65	21 68 21 65	21 68 21 65

Instruction	Condition (Dovico)	Processing Time (µs)			
Instruction	Condition (Device)	Qn	QnH	QnPH	QnPRH
+ (S) (D)		0.00	0.47	0.47	0.17
+P (S) (D)	when executed	0.39	0.17	0.17	0.17
+ \$1 \$2 D	When executed	0.47	0.20	0.20	0.20
+P \$1 \$2 D	When exceduted	0.47	0.20	0.20	0.20
- S D	When executed	0.39	0.17	0.17	0.17
- P (S) (D)					
- \$1 \$2 D	When executed	0.47	0.20	0.20	0.20
- P \$1 \$2 D					
D+ (S) (D)	When executed	0.71	0.31	0.31	0.31
D+P (S) (D)					
D+ (S1) (S2) (D)	When executed	0.79	0.34	0.34	0.34
D+P \$1 \$2 D					
	When executed	0.71	0.30	0.30	0.30
	When executed	0.79	0.34	0.34	0.34
* \$1 \$2 D			0.20	0.20	
* P (S1) (S2) (D)	When executed	0.47			0.20
/ §1 §2 D					
/P \$1 \$2 D	_	2.7	1.2	1.2	1.2
D * §1 §2 D		7.0	2.4	2.4	2.4
D*P \$1 \$2 D		7.9	3.4	3.4	3.4
D/ \$1 \$2 D		14	61	61	61
D/P \$1 \$2 D		17	0.1	0.1	0.1
B+ S D	_	2.2	1.0	1.0	1.0
B+P S D					
B+ \$1 \$2 D	_	5.0	2.2	2.2	2.2
B+P \$1 \$2 D					
B - (S) (D)	_	2.0	0.9	0.9	0.9
B-P S D					
B - S1 S2 D	—	4.9	2.1	2.1	2.1
B-P (5) (2) (0)					
	_	12	5.0	5.0	5.0
	—	12	5.3	5.3	5.3
DB - S D					<u> </u>
DB - P (S) (D)	-	11	4.8	4.8	4.8
DB - \$1 \$2 D		10			5.2
DB - P (\$1) (\$2) (D)	—	12	5.2	5.2	
B * \$1 \$2 D		27	16	1.6	16
B * P \$1 \$2 D		3.1	1.0	1.0	1.0

Instruction	Condition (Device)		Processing Time (µs)			
Instruction			Qn	QnH	QnPH	QnPRH
B/ S) S2 D B/P S1 S2 D		_	3.8	1.6	1.6	1.6
DB * S1 S2 D DB * P S1 S2 D		_	24	10	10	10
DB/ §1 §2 D DB/P §1 §2 D	_		27	12	12	12
	Single	(s) = 0, (D) = 0	1.8	0.78	0.78	0.78
E+ (S) (D)	precision	(s) = 2^{127} , (b) = 2^{127}	1.8	0.78	0.78	0.78
E+P S D	Double	(s) = 0, (D) = 0	203	87	—	_
	precision	(s) = 2^{127} , (d) = 2^{127}	203	87		
	Single	§1) = 0, §2) = 0	2.4	1.1	1.1	1.1
E+ §1 §2 D	precision	$(51) = 2^{127}, (52) = 2^{127}$	2.4	1.1	1.1	1.1
E+P \$1 \$2 D	+P \$1 \$2 D Double	§1) = 0, §2) = 0	209	90	_	_
precision	precision	$(51) = 2^{127}, (52) = 2^{127}$	209	90	_	_
	Single	(S) = 0, (D) = 0	1.8	0.78	0.78	0.78
E - (S) (D)	precision	(s) = 2^{127} , (d) = 2^{127}	1.8	0.78	0.78	0.78
Е-Р (S) (D)	Double	(S) = 0, (D) = 0	202	87		_
	precision	(s) = 2^{127} , (d) = 2^{127}	202	87	—	
	Single	§1) = 0, §2) = 0	2.4	1.1	1.1	1.1
E-\$1\$2D	precision	$\$1 = 2^{127}, \$2 = 2^{127}$	2.4	1.1	1.1	1.1
E-P \$1 \$2 D	Double	§1) = 0, §2) = 0	210	90	_	
	precision	(1) = 2 ¹²⁷ , (2) = 2 ¹²⁷	210	90	_	
	Single	§1) = 0, §2) = 0	2.4	1.1	1.1	1.1
E* \$1 \$2 D	precision	$\$1 = 2^{126}, \$2 = 2^{127}$	2.4	1.1	1.1	1.1
E*P §1 §2 D	Double	§1) = 0, §2) = 0	222	96	_	
	precision	$(51) = 2^{126}, (52) = 2^{127}$	222	96		—
	Single	§1) = 0, §2) = 1	12	5.2	5.2	5.2
E/ \$1 \$2 D	precision	$(51) = 2^{127}, \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	12	5.2	5.2	5.2
E/P (\$) (\$2 (D)	Double	§1) = 0, §2) = 1	369	159		
	precision	$(51) = 2^{127}, (52) = -2^{126}$	369	159		

Instruction			Processing Time (µs)			
Instruction			Qn	QnH	QnPH	QnPRH
\$+ \$ D \$+P \$ D		_	68	29	29	29
\$+ \$1 \$2 D \$+P \$1 \$2 D			81	35	35	35
INC INCP			0.32	0.14	0.14	0.14
DINC DINCP		_	0.47	0.20	0.20	0.20
DEC DECP		_	0.32	0.14	0.14	0.14
DDEC DDECP		_	0.47	0.20	0.20	0.20
BCD BCDP		_	1.1	0.48	0.48	0.48
DBCD DBCDP		_	3.2	1.4	1.4	1.4
BIN BINP			1.0	0.44	0.44	0.44
DBIN DBINP	-		1.9	0.82	0.82	0.82
	Single precision	(s) = 0	3.2	1.4	1.4	1.4
INT		(S) = 32766.5	3.2	1.4	1.4	1.4
INTP	Double precision	(S) = 0	22	9.3	_	_
		(S) = 32766.5	22	9.3	_	_
	Single	(S) = 0	2.5	1.1	1.1	1.1
DINT	precision	(S) = 1234567890.3	2.5	1.1	1.1	1.1
DINTP	Double	(S) = 0	24	10		_
	precision	(s) = 1234567890.3	24	10	_	—
	Single	(S) = 0	2.1	0.92	0.92	0.92
FLT	precision	(S) = 7FFFH	2.1	0.92	0.92	0.92
FLTP	Double	(S) = 0	22	9.6		_
	precision	(S) = 7FFF ^H	22	9.6	-	—
	Single	(S) = 0	2.1	0.88	0.88	0.88
DFLT	precision	(S) = 7FFFFFF	2.1	0.88	0.88	0.88
DFLTP	Double	(S) = 0	26	11		
	precision	(§) = 7FFFFFF ^H	26	11		

Instruction	Condition (Dovico)	Processing Time (µs)				
Instruction		Qn	QnH	QnPH	QnPRH	
DBL DBLP	—	4.5	1.9	1.9	1.9	
WORD WORDP	—	4.7	2.0	2.0	2.0	
GRY GRYP	_	4.7	2.0	2.0	2.0	
DGRY DGRYP	_	5.3	2.3	2.3	2.3	
GBIN GBINP	_	18	7.7	7.7	7.7	
DGBIN DGBINP	—	32	14	14	14	
NEG NEGP	_	3.6	1.6	1.6	1.6	
DNEG DNEGP	_	4.3	1.8	1.8	1.8	
ENEG ENEGP	_	3.9	1.7	1.7	1.7	
BKBCD (S) (D) n	n = 1	38	17	17	17	
BKBCDP (S) (D) n	n = 96	99	43	43	43	
BKBIN (S) (D) n	n = 1	38	17	17	17	
BKBINP ⑤ D n	n = 96	99	43	43	43	
	(s) = D0, (D) = D1	0.24	0.10	0.10	0.10	
MOV MOVP						
	$(s) = D0, (D) = J1 \setminus W1$	140 ^{*1}	60 ^{*1}	60 ^{*1}	60 ^{*1}	
	(s) = D0, (D) = D1	0.47	0.20	0.20	0.20	
		_	—	_		
	(⑤) = D0, (Ď) = J1 \ W1			 64 ^{*1}		
EMOV EMOVP	_	0.63	0.27	0.27	0.27	
\$MOV \$MOVP	—	40	17	17	17	
CML CMLP	_	0.40	0.17	0.17	0.17	
DCML DCMLP	_	0.55	0.24	0.24	0.24	

Α

*1 : The upper row indicates the processing time when A38B/A1S38B and the extension base are used. The center row indicates the processing time when A38HB/A1S38HB is used. The lower row indicates the processing time when Q312B is used.

Instruction	Condition (Povice)	Processing Time (µs)				
Instruction	Condition (Device)	Qn	QnH	QnPH	QnPRH	
BMOV (S) (D) n	n = 1	17	7.1	7.1	7.1	
BMOVP (S) (D) n	n = 96	32	14	14	14	
FMOV (S) (D) n	n = 1	6.7	2.9	2.9	2.9	
FMOVP (S) (D) n	n = 96	14	6.1	6.1	6.1	
XCH XCHP DXCH DXCHP	_	1.3	0.54	0.54	0.54	
BXCH 🛈 😳 n	n = 1	31	13	13	13	
BXCHP 🕑 😳 n	n = 96	84	36	36	36	
SWAP SWAPP	_	3.7	1.6	1.6	1.6	
CJ		3.2	1.4	1.4	1.4	
SCJ		3.2	1.4	1.4	1.4	
JMP		3.2	1.4	1.4	1.4	
GOEND		0.39	0.34	0.34	0.34	
DI		0.95	0.41	0.41	0.41	
EI		1.3	0.54	0.54	0.54	
IMASK		11	4.6	4.6	4.6	
IRET	_	1.6	0.68	0.68	0.68	
RFS	n = 1	6.7	4.7	4.7	4.7	
RFSP	n = 96	19	13	13	13	
UDCNT1	_	15	6.5	6.5	—	
UDCNT2	_	16	6.8	6.8	—	
TTMR	_	10	4.4	4.4	—	
STMR		20	7.1	7.1	—	
ROTC		26	11	11	—	
RAMP		18	7.7	7.7	—	
SPD		19	8.3	8.3	—	
PLSY		10	4.5	4.5	—	
PWM		9.1	3.9	3.9	—	
MTR	_	11	4.9	4.9	—	

(3) Application instructions

The processing time when the instruction is not executed is calculated as follows: Q02CPU0.079 × (No. of steps for each instruction + 1) μ s Q02HCPU, Q06HCPU, Q12HCPU, Q25HCPU, Q02PHCPU, Q06PHCPU, Q12PHCPU, Q25PHCPU, Q12PRHCPU, Q25PRHCPU $\cdot 0.034 \times$ (No. of steps for each instruction + 1) μ s

Instruction	Condition (Device)	Processing Time (μs)			
monuotion		Qn	QnH	QnPH	QnPRH
WAND § D	When executed	0 39	0 17	0 17	0 17
WANDP (S) (D)			••••	-	••••
wand \$1 \$2 D	When executed	0.47	0.20	0.20	0.20
WANDP \$1 \$2 D		0.11	0.20		0.20
DAND (S) (D)	When executed	0.71	0.31	0.31	0.31
DANDP (S) (D)		-			
DAND \$1 \$2 D	When executed	0.79	0.34	0.34	0.34
DANDP (S) (S) (D)					
BKAND 🕄 😒 D n	n = 1	36	16	16	16
BKANDP \$1 \$2 D n	n = 96	74	32	32	32
WOR S D	When executed	0.40	0 17	0.17	0.17
WORP (S) (D)		0.10	••••		
WOR (\$1) (\$2) (D)	When executed	0.47	0.20	0.20	0.20
WORP (\$1) (\$2) (D)			0.20	0.20	
dor S D	When executed	0.71	0.31	0.31	0.31
DORP S D					
DOR \$1 \$2 D	When executed	0.79	0.34	0.34	0.34
DORP \$1 \$2 D					
BKOR \$1 \$2 D n	n = 1	36	16	16	16
BKORP (\$) (2) (D) n	n = 96	74	32	32	32
WXOR S D	When executed	0.39	0.17	0.17	0.17
WXORP (S) (D)					
WXOR (\$1) (\$2) (D)	When executed	0.47	0.20	0.20	0.20
WXORP (\$1) (\$2) (D)					
DXOR S D	When executed	0.71	0.31	0.31	0.31
DXORP (S) (D)					
DXOR (\$1) (\$2) (D)	When executed	0.79	0.34	0.34	0.34
DXORP \$1 \$2 D					0.01
BKXOR (\$) (\$2 (D) n	n = 1	36	16	16	16
BKXORP §1 §2 D n	n = 96	74	32	32	32

Instruction	Condition (Device)	Processing Time (µs)			
matuction		Qn	QnH	QnPH	QnPRH
WXNR S D	When executed	0.40	0.17	0.17	0.17
WXNRP (S) (D)	When executed	0.40	0.17	0.17	0.17
WXNR §1 §2 D	When executed	0.47	0.20	0.20	0.20
WXNRP \$1 \$2 D		-			
	When executed	0.71	0.31	0.31	0.31
DNXR ST SZ D DNXRP ST SZ D	When executed	0.79	0.34	0.34	0.34
BKNXOR (S) (S2 (D) n	n = 1	36	16	16	16
BKNXORP (S) (D) n	n = 96	74	32	32	32
ROR D n	n = 1	2.0	0.85	0.85	0.85
RORP D n	n = 15	2.0	0.85	0.85	0.85
RCR D n	n = 1	1.6	0.68	0.68	0.68
RCRP D n	n = 15	1.6	0.68	0.68	0.68
ROL 🛈 n	n = 1	2.0	0.85	0.85	0.85
ROLP D n	n = 15	2.0	0.85	0.85	0.85
RCL D n	n = 1	1.6	0.68	0.68	0.68
RCLP D n	n = 15	1.6	0.68	0.68	0.68
DROR D n	n = 1	3.9	1.7	1.7	1.7
DRORP D n	n = 31	4.0	1.7	1.7	1.7
DRCR D n	n = 1	4.3	1.8	1.8	1.8
DRCRP D n	n = 31	4.3	1.9	1.9	1.9
DROL D n	n = 1	3.9	1.7	1.7	1.7
DROLP D n	n = 31	4.0	1.7	1.7	1.7
DRCL D n	n = 1	4.3	1.8	1.8	1.8
DRCLP D n	n = 31	4.3	1.9	1.9	1.9
SFR D n	n = 1	1.7	0.75	0.75	0.75
SFRP D n	n = 15	2.0	0.85	0.85	0.85
SFL D n	n = 1	1.7	0.75	0.75	0.75
SFLP D n	n = 15	2.0	0.85	0.85	0.85
BSFLR D n	n = 1	20	8.6	8.6	8.6
BSFLRP D n	n = 96	24	10	10	10
BSFL D n	n = 1	20	8.5	8.5	8.5
BSFLP D n	n = 96	23	10	10	10
DSFR D n	n = 1	1.3	0.58	0.58	0.58
DSFRP D n	n = 96	25	11	11	11
DSFL D n	n = 1	1.3	0.58	0.58	0.58
DSFLP D n	n = 96	26	11	11	11

Instruction	Condition (Device)		Processing Time (µs)			
Instruction	Con		Qn	QnH	QnPH	QnPRH
BSET D n		n = 1	7.6	3.3	3.3	3.3
BSETP D n		n = 15	7.6	3.3	3.3	3.3
BRST D n	n = 1		7.6	3.3	3.3	3.3
BRSTP D n		n = 15	7.6	3.3	3.3	3.3
TEST \$1 \$2 D			0.0	2.5	2.5	2.5
TESTP \$1 \$2 D			0.2	3.5	3.5	3.5
DTEST (\$) (\$2 (D)			9.2	3.0	3.0	3.0
DTESTP §1 §2 D			0.2		5.9	3.9
BKRST (S) n		n = 1	18	7.8	7.8	7.8
BKRSTP (S) n		n = 96	19	8.2	8.2	8.2
	n = 1	All match	22	9.6	9.6	9.6
SER (\$1) (\$2) (D) n		None match	21	8.9	8.9	8.9
SERP \$1 \$2 D n	n = 96	All match	115	49	49	49
	11 00	None match	133	57	57	57
	n = 1	All match	23	9.9	9.9	9.9
DSER (\$1) (\$2) (D) n		None match	23	9.7	9.7	9.7
DSERP (S1 (S2 (D) n	n = 96	All match	142	61	61	61
	11 - 50	None match	132	57	57	57
SUM SUMP	(s) = 0		3.9	1.7	1.7	1.7
DOLINA	<u> </u>		4 7	2.0	2.0	2.0
DSUMP		(§) = 0	12	5.0	5.0	5.0
	(S)	n = 2	20	8.6	8.6	8.6
		n = 8	20	12	12	12
DECOP I I I			21	12	12	12
	n = 2	M1 = ON	21	9.1	9.1	9.1
		M4 = ON	21	9.1	9.1	9.1
ENCOP (S) (D) n	n = 8		28	12	12	12
050		W250 = UN	20	11	11	11
SEGP		—	1.3	0.54	0.54	0.54
DIS (S) (D) n		n = 1	18	7.7	7.7	7.7
DISP (S) (D) n		n = 4	19	8.3	8.3	8.3
UNI (S) (D) n		n = 1	21	8.9	8.9	8.9
UNIP (S) (D) n		n = 4	23	9.7	9.7	9.7
NDIS \$1 D \$2		_	41	18	18	18
NDISP \$1 D \$2						
NUNI (S) (D) (S2)		_	42	18	18	18
NUNIP (51 (D) (52						
WTOB (S) (D) n		n = 1	47	20	20	20
WTOBP (S) (D) n		n = 96	99	43	43	43
BTOW (S) (D) n		n = 1	45	19	19	19
BTOWP S D n		n = 96	89	38	38	38

Instruction	Condition (Dovice)	Processing Time (µs)			
Instruction	Condition (Device)	Qn	QnH	QnPH	QnPRH
MAX (S) (D) n	n = 1	17	7.1	7.1	7.1
MAXP (S) (D) n	n = 96	136	59	59	59
MIN (S) (D) n	n = 1	17	7.1	7.1	7.1
MINP (S) (D) n	n = 96	159	69	69	69
DMAX (S) (D) n	n = 1	27	12	12	12
DMAXP (S) (D) n	n = 96	181	78	78	78
DMIN (S) (D) n	n = 1	27	12	12	12
DMINP (S) (D) n	n = 96	112	48	48	48
	n = 1	16	7.1	7.1	7.1
SORT SI'n SI'U U	n = 96	14	6.2	6.2	6.2
	n = 1	17	7.1	7.1	7.1
DSORT (5) n (52 (1) (12)	n = 96	16	6.8	6.8	6.8
WSUM (S) (D) n	n = 1	16.4	7.1	7.1	7.1
WSUMP (S) (D) n	n = 96	68.4	29.5	29.5	29.5
DWSUM (S) (D) n	n = 1	18.9	8.2	8.2	8.2
DWSUMP (S) (D) n	n = 96	130.4	56.1	56.1	56.1
FOR n	n = 0	2.3	1.0	1.0	1.0
NEXT	_	3.3	1.4	1.4	1.4
BREAK		11	4.6	4.6	4.6
BREAKP			4.0	4.0	4.0
CALL Pn	Internal file pointer	2.1	0.88	0.88	0.88
CALLP Pn	Common pointer	33	14	14	14
CALL Pn St to S5	_	135	58	58	58
CALLP Pn SJ to SS	Return to original program	2.9	13	13	1.3
RET	Return to other program	20	8.5	8.5	8.5
FCALL Pn	Internal file pointer	3.6	1.6	1.6	1.6
FCALLP Pn	Common pointer	20	8.7	8.7	87
FCALL Pn S1 to S5	—	134	57	57	57
ECALL * Pn					
ECALLP * Pn	_	77	33	33	33
*: Program name					
ECALL * Pn S1 to S5					
FCALLP * Pn S1 to S5	—	162	70	70	70
*: Program name					
EFCALL * Pn					
EFCALLP * Pn	_	78	34	34	34
*: Program name					34
EFCALL * Pn 🕄 to 😒					
EFCALLP * Pn (\$1) to (\$5)	—	200	86	86	86
*: Program name					

*1: Indicates extension of scan time to completion of instruction.

Instruction	Condition (Device)		Processing Time (µs)			
Instruction	Condition	T (Device)	Qn	QnH	QnPH	QnPRH
COM	-		55	16	16	16
IX	-		12	5.2	5.2	5.2
IXEND	-		4.7	2.0	2.0	2.0
IXDEV + IXSET	Number of contacts 1		48	21	21	21
	Number of	contacts 14	93	40	40	40
FIFW	Number of	data points 0	11	4.5	4.5	4.5
FIFWP	Number of d	lata points 96	11	4.5	4.5	4.5
FIFR	Number of	data points 1	13	5.6	5.6	5.6
FIFRP	Number of d	lata points 96	32	14	14	14
FPOP	Number of	data points 1	16	7.0	7.0	7.0
FPOPP	Number of d	lata points 96	16	7.0	7.0	7.0
FINS	Number of	data points 0	20	8.4	8.4	8.4
FINSP	Number of d	lata points 96	36	15	15	15
FDEL	Number of	data points 1	19	7.5	7.5	7.5
FDELP	Number of d	lata points 96	39	15	15	15
FROM n1 n2 D n3	n3 = 1					—
			47	22	22	22
FROMP n1 n2 (D) n3						
*1	n3 =	n3 = 1000				
			476	437	437	437
	n3 = 1					
DFRO n1 n2 🛈 n3			51	24	24	24
DEROP n1 n2 D n3				24		24
*1	n3 =	= 500				
			478	437	437	437
TO =1 =0 0 =0	n3	= 1				
			48	20	20	20
TOP n1 n2 🛈 n3						
*1	n3 =	1000				—
			479	412	412	412
DTO n1 n2 D n3	n3	= 1				
			50	23	23	23
	-0-	- 500				
_1	n3 =	= 500	457	416	416	
		Variable 1 character	+07 22	11	11	410
PR	SM701ON	Variable 32 character	23 28	11	18	
	SM70		21	7.8	7.8	
PRC	510170		181	16	16	
T NO	- M/bon d		101	10	-	
LED		noplayeu				
	Display C	Jompieleu				

*1 : The upper row indicates the processing time when A38B/A1S38B and the extension base are used. The center row indicates the processing time when A38HB/A1S38HB is used.

The bottom row indicates the processing times taken when the Q312B is used to execute the instruction for the QJ71C24 in slot 0.

The FROM/TO instruction differs in processing time according to the number of slots and the loaded modules.

(The QnCPU/QnHCPU also differs in processing time according to the extension base type.)

Instruction	Condition (Device)	Processing Time (µs)					
Instruction		Qn	QnH	QnPH	QnPRH		
I EDC	When displayed				—		
	Display completed	—			—		
LEDR	No display $ ightarrow$ no display	0.40	0.17	0.17	0.17		
	LED instruction execution $ ightarrow$ no display	103	44	44	44		
CHKST		5.8	2.5	2.5	2.5		
	1 contact no error	24	10	10	10		
СНК	150 contact no error	1676	721	721	721		
	1 contact error	88	38	38	38		
CHKCIR	10 steps	5.8	2.5	2.5	2.5		
	All internal devices				—		
SLT	File register 8k points	—			—		
	SLT execution completion	—			—		
SLTR		_			—		
STRA	Start				—		
	STRA execution completion						
STRAR							
	When operating						
PTRAEXEP							
RINDA	(s) = 1	15	6.7	6.7	6.7		
BINDAP	(s) = - 32768	24	10	10	10		
DBINDA	(s) = 1	43	18	18	18		
DBINDAP	<u>(s)</u> = - 2147483648	86	37	37	37		
BINHA	(§) = 1	18	7.7	7.7	7.7		
BINHAP	(s) = FFFFH	19	8.2	8.2	8.2		
DBINHA	(s) = 1	23	10	10	10		
DBINHAP	(s) = FFFFFFFF	24	10	10	10		
BCDDA	(§) = 1	23	9.8	9.8	9.8		
BCDDAP	<u>(s)</u> = 9999	21	8.9	8.9	8.9		
DBCDDA	(S) = 1	22	9.5	9.5	9.5		
DBCDDAP	(s) = 99999999	29	13	13	13		
DABIN	(§) = 1	57	25	25	25		
DABINP	(s) = - 32768	58	25	25	25		
DDABIN	(s) = 1	92	40	40	40		
DDABINP	(§) = - 2147483648	106	46	46	46		
HABIN	(s) = 1	13	5.8	5.8	5.8		
HABINP	(S) = FFFFH	15	6.4	6.4	6.4		
DHABIN	(s) = 1	22	9.5	9.5	9.5		
DHABINP	(s) = FFFFFFF ^H	25	11	11	11		

Instruction	Condition		Processing Time (µs)					
Instruction	Condition		Qn	QnH	QnPH	QnPRH		
DABCD	\$	= 1	16	6.9	6.9	6.9		
DABCDP	(S) =	9999	17	7.2	7.2	7.2		
DDABCD (S) = 1			25	11	11	11		
DDABCDP	(s) = 99	9999999	29	13	13	13		
COMRD COMRDP	-	_	40	17	17	17		
LEN	1 cha	racter	18	8.0	8.0	8.0		
LENP	96 cha	racters	86	37	37	37		
STR STRP	-	_	53	23	23	23		
DSTR DSTRP	-	_	123	53	53	53		
VAL VALP	-	_	95	41	41	41		
DVAL DVALP	-	_	166	72	72	72		
ESTR ESTRP	_	_	564	243	243	243		
EVAL	Decimal point format	all 2-digit specification	100	43	43	43		
EVALP	Exponent format all	6-digit specification	127	55	55	55		
ASC ⑤ D n	n =	= 1	64	28	28	28		
ASCP (S) (D) n	n =	96	289	125	125	125		
HEX (S) (D) n	n =	= 1	60	26	26	26		
HEXP S D n	n =	96	343	148	148	148		
RIGHT (S) (D) n	n =	= 1	49	21	21	21		
RIGHTP (S) (D) n	n =	96	131	56	56	56		
LEFT S D n	n =	= 1	50	21	21	21		
LEFTP (S) (D) n	n =	96	131	56	56	56		
MIDR MIDRP	-	_	53	23	23	23		
MIDW MIDWP	-	-	128	55	55	55		
INSTR	No m	natch	58	25	25	25		
INSTR	Match	Head	55	24	24	24		
	waten	End	58	25	25	25		

Instruction	Cond	Condition (Device)		Processing Time (µs)					
mstruction	Cond		Qn	QnH	QnPH	QnPRH			
EMOD EMODP			527	227	227	227			
EREXP EREXPP			1656	713	713	713			
SIN	Sing	le precision	115	50	50	50			
SINP	Dout	ble precision	1945	837	_				
COS	Single precision		122	53	53	53			
COSP	Dout	ble precision	2618	1127					
TAN	Sing	le precision	123	53	53	53			
TANP	Dout	ble precision	2618	1127					
ASIN	Sing	le precision	111	48	48	48			
ASINP	Dout	ble precision	2491	1072	_				
ACOS	Sing	le precision	115	49	49	49			
ACOSP	Double precision		2367	1019					
ATAN	Sing	le precision	157	68	68	68			
ATANP	Dout	ble precision	3140	1352	_				
RAD	Sing	Single precision		7.2	7.2	7.2			
RADP	Double precision		24	10	_				
DEG	Single precision		17	7.2	7.2	7.2			
DEGP	Dout	ble precision	23	9.9	_				
SQR	Sing	le precision	28	12	12	12			
SQRP	Dout	ble precision	1812	780					
	Single precision	(s) = - 10	129	56	56	56			
EXP		(s) = 1							
EXPP	Double precision	(s) = - 10	2386	1026	_	_			
		(s) = 1							
	Single precision	(s) = 1	. 113	49	49	49			
LOG		(s) = 10							
LUGP	Double precision	(s) = 1	2146	924	_	_			
DND		(s) = 10							
RNDP			3.9	1.7	1.7	1.7			
SRND SRNDP			3.5	1.5	1.5	1.5			

Instruction	Condition (Device)	Processing Time (µs)					
Instruction		Qn	QnH	QnPH	QnPRH		
BSQR	(s) = 0	6.2	2.7	2.7	2.7		
BSQRP	s) = 9999	38	16	16	16		
BDSQR	(s) = 0	6.2	2.7	2.7	2.7		
BDSQRP	s) = 99999999	38	16	16	16		
BSIN BSINP	—	12	5.1	5.1	5.1		
BCOS BCOSP	_	12	5.2	5.2	5.2		
BTAN BTANP	_	12	5.2	5.2	5.2		
BASIN BASINP	-	20	8.7	8.7	8.7		
BACOS BACOSP	_	21	9.0	9.0	9.0		
BATAN BATANP	_	22	9.6	9.6	9.6		
LIMIT LIMITP	_	10	4.3	4.3	4.3		
DLIMIT DLIMITP	_	11	4.7	4.7	4.7		
BAND BANDP	_	9.8	4.2	4.2	4.2		
DBAND DBANDP	_	11	4.9	4.9	4.9		
ZONE ZONEP	_	9.1	3.9	3.9	3.9		
DZONE DZONEP	_	11	4.6	4.6	4.6		
RSET RSETP	_	6.8	2.9	2.9	2.9		
QDRSET QDRSETP	—	205	88	88	88		
QCDSET QCDSETP	_	147	63	63	63		
DATERD DATERDP	_	13	5.5	5.5	5.5		
DATEWR DATEWRP	—	15	6.4	6.4	6.4		

Instruction	Condition (Dovico)	Processing Time (µs)					
Instruction		Qn	QnH	QnPH	QnPRH		
DATE+	No digit increase	13	5.4	5.4	5.4		
DATE+P	Digit increase	13	5.4	5.4	5.4		
DATE -	No digit increase	12	5.2	5.2	5.2		
DATE - P	Digit increase	12	5.2	5.2	5.2		
SECOND SECONDP	_	10	4.5	4.5	4.5		
HOUR HOURP	_	12	5.2	5.2	5.2		
MEC	1 character	3.0	1.3	1.3	1.3		
MSG	32 characters	3.0	1.3	1.3	1.3		
DVEV	Initial time	20	8.6	8.6	8.6		
PRET	No reception	19	8.2	8.2	8.2		
PSTOP PSTOPP	_	79	34	34	34		
POFF POFFP	_	79	34	34	34		
PSCAN PSCNAP	-	75	32	32	32		
PLOW PLOWP	1	80	34	34	—		
WDT WDTP	-	5.9	2.6	2.6	2.6		
DUTY	_	9.3	4.0	4.0	4.0		
ZRRDB ZRRDBP	_	7.9	3.4	3.4	3.4		
ZRWRB ZRWRBP	_	9.4	4.0	4.0	4.0		
ADRSET ADRSETP	_	4.9	2.1	2.1	2.1		
KEY		17	7.3	7.3	—		
ZPUSH ZPUSHP	_	11	4.7	4.7	4.7		
ZPOP ZPOPP	_	5.1	2.2	2.2	2.2		
EROMWR EROMWRP	_	_			_		

Instruction	Condition (Device)	Processing Time (µs)					
Instruction		Qn	QnH	QnPH	QnPRH		
ZCOM	—	691	289	289	289		
READ	—			—			
SREAD	—			—			
WRITE	_						
SWRITE	_						
SEND	_						
RECV	_						
REQ	_						
ZNFR	_						
ZNTO	_						
	MELSECNET/10						
ZNND	MELSECNET (II)						
ZNIWR	MELSECNET/10			—			
	MELSECNET (II)	—		—			
RFRP	_		—	—			
RTOP	_						

(4) Processing time for QCPU instructions (QCPU instructions only)

Instruction	Condition (Device)		Processing Time (µs)					
Instituction		-)	Qn	QnH	QnPH	QnPRH		
UNIRD	—		79	34	34	34		
TRACE	Start	176	76	76	76			
INACL	STRA execution completion		6.3	2.7	2.7	2.7		
TRACER	_		19	8.2	8.2	8.2		
SP.FWRITE	_	84	36	36	36			
SP.FREAD	—	82	35	35	35			
PLOADP	_	58	25	25	_			
PUNLOADP	_	272	117	117	_			
PSWAPP	—		308	133	133			
	When standard PAM is used	1 point	45.5	20	20	20		
PPMOV/		1000 points	215	91	91	91		
NDWO V	When SPAM card is used	1 point	49.5	22	22	22		
	When SRAM card is used 1000 points		540	305	305	305		

(a) Instructions available from function version A

(b`) Instructions	available	from	function	version	B
	~ /						_

Instruction	Condition/Nur	nher of Poi	nts Processed		Processing	g Time (µs)	
mstruction	Condition/Indi		113110063360	Qn	QnH	QnPH	QnPRH
	With auto refresh of	Refre assigne	sh range: 2k words (0.5k words d equally to all CPUs)	720	660	660	
COM ^{*1}	CPU shared memory	Refresh range: 4k words (1k words assigned equally to all CPUs)		860	730	730	
	Without auto refresh of CPU shared memory		_	43	20	20	20
	Reading from CPU		n3 = 1	59	29	29	
FROM *1	shared memory of another CPU	n3 = 1000		530	500	500	
	Reading buffer memory of intelligent function	n2 – 1	Main base unit	51	24	24	
		110 - 1	Extension base unit	54	27	27	
		n2 - 1000	Main base unit	540	480	480	
		115 - 1000	Extension base unit	1100	1050	1050	
S.TO	Writing to CPU shared	n3 = 1 ("TO" instruction) n4 = 1 ("S.TO instruction")		74	33	33	
			n2 = 256	126	54	54	
S (P).DATERD *3	Reading data of the expansion clock		_	25	11	11	11
S (P).DATE+ *3	Expansion clock data addition operation		_	38	17	17	17
S (P).DATE- *3	Expansion clock data subtraction operation		_	38	17	17	17

*1 : If the processing overlaps those of the other CPUs in a multiple CPU system, the processing time increases by a maximum of the following time.

For system having only the main base unit

(Instruction processing time increase) = 0.54 $\,\times\,$ (number of points processed) $\,\times\,$ (number of other CPUs) (µs)

For system including extension base units

(Instruction processing time increase) = $1.30 \times$ (number of points processed) \times (number of other CPUs) (µs)

*2 : In a multiple CPU system, the instruction processing time for the intelligent function module under control of the host CPU is equal to that for the intelligent function module under control of another CPU.

*3 : Products with the first 5 digits of the serial No. "07032" or higher are applicable.

(5) Redundant system instructions (for redundant CPU)

Instruction	Condition (Device)	Processing Time (µs)					
	Condition (Device)	Qn	QnH	QnPH	QnPRH		
SP.CONTSW					9.6		

(6) Table of the time to be added when file register, module access device or link direct device is used

Inotru	otion	data	Device Specification		Processing	g Time (µs)	
instru	CUON	uala	Location	Qn	QnH	QnPH	QnPRH
		Dit	Source	5.56	2.40	2.40	2.40
		ы	Destination	4.44	1.91	1.91	1.91
	When standard	Word	Source	2.60	1.12	1.12	1.12
	RAM is used	word	Destination	3.76	1.62	1.62	1.62
		Double word	Source	2.83	1.22	1.22	1.22
File register (7P)		Double word	Destination	4.00	1.72	1.72	1.72
File register (ZR)	When SRAM card is used (Q2MEM-1MBS,	Bit	Source	5.22	2.25	2.25	2.25
		Bit	Destination	4.09	1.76	1.76	1.76
		Word	Source	2.25	0.97	0.97	0.97
		word	Destination	3.42	1.47	1.47	1.47
	Q2MEM-2MBS)	Double word	Source	2.49	1.07	1.07	1.07
		Double word	Destination	3.65	1.57	1.57	1.57
		Dit	Source	35.56	15.31	15.31	15.31
		Dit	Destination	65.08	28.01	28.01	28.01
Module access dev	ice	Word	Source	32.76	14.10	14.10	14.10
(Un\G 🗌 , U3En\G	0 to G4095)	word	Destination	28.84	12.41	12.41	12.41
		Double word	Source	32.99	14.20	14.20	14.20
			Destination	29.07	12.51	12.51	12.51
		Dit	Source	75.67	32.57	32.57	32.57
		Dit	Destination	138.65	59.67	59.67	59.67
		Word	Source	72.73	31.30	31.30	31.30
LINK direct device (ר און (word	Destination	137.32	59.10	59.10	59.10
		Double word	Source	72.96	31.40	31.40	31.40
			Destination	137.55	59.20	59.20	59.20

Appendix 1.4 Operation Processing Time of Universal Model QCPU

The processing time for the individual instructions are shown in the table on the following pages.

Operation processing times can vary substantially depending on the nature of the sources and destinations of the instructions, and the values contained in the following tables should therefore be taken as a set of general guidelines to processing time rather than as being strictly accurate.

Appendix 1.4.1 Subset instruction processing time

The following describes the subset instruction processing time.

- 1. The subset instruction processing time table shown in (1) applies when the device used in an instruction satisfies either of the conditions (a) and (b).
- 2. Since the processing time of each instruction is not constant due to the cache function in the Universal model QCPU, the minimum value and the maximum value are described.
- (1) Subset instruction processing time table

	Processing Time (µs)										
Category	Instruction	Conditi	on (Device)	Q00U	JCPU	Q00L	JCPU	Q01L	JCPU	Q02	UCPU
				Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.
Sequence	LD LDI AND OR ORI LDP LDF ANDP ANDF ORP ORF	When	executed	0.4	120	20 0.080		0.060		0.040	
instruction	LDPI LDFI	When	0.360		0.240		0.180		0.	120	
	ANDPI ANDFI ORPI ORFI	When executed		0.480		0.3	0.320		0.240		160
	OUT	When r	not changed	0.1	20	0.0)80	0.0	60	0.	040
		When when a									
	SET	viien i		0.1	20	0.080		0.0	60	0.040	
F	RST	When executed	When shanged	0.1	0.120			0.060		0.040	
			when changed								

(a) When using Q00UJCPU, Q00UCPU, Q01UCPU and Q02UCPU.

Category	Instruction			Processing Time (µs)						
		Cond	lition (Device)	Q00UJCPU	Q00UCPU	Q01UCPU	Q02UCPU			
				Min. Max.	Min. Max.	Min. Max.	Min. Max.			
	ID=	In cor	nductive status	0.360	0 240	0 180	0 120			
	LD-	In non-c	conductive status	0.000	0.240	0.100	0.120			
		Wher	n not executed				0.120			
	AND=	When executed	In conductive status	0.360	0.240	0.180				
			In non-conductive status							
		Wher	n not executed		0.240	0.180				
	OR=	When executed	In conductive status	0.360			0.120			
			In non-conductive status							
	LD<>	In cor	nductive status	0.360	0 240	0.180	0.120			
		In non-c	conductive status		0.2.0	000	-			
		Wher	n not executed							
	AND<>	When executed	In conductive status	0.360	0.240	0.180	0.120			
			In non-conductive status							
		Wher	n not executed							
	OR<>	When executed	In conductive status	0.360	0.240	0.180	0.120			
			In non-conductive status							
	ID>	In cor	nductive status	0.360	0 240	0 180	0.120			
	LDr	In non-c	conductive status	0.000	0.2.0	01100				
	AND>	Wher	n not executed							
		When executed	In conductive status	0.360	0.240	0.180	0.120			
			In non-conductive status				L			
	OR>	Wher	n not executed							
		When executed	In conductive status	0.360	0.240	0.180	0.120			
Basic			In non-conductive status							
instruction		In cor	nductive status	0.360	0 240	0 180	0.120			
		In non-c	conductive status		0.210	0.100				
		Wher	n not executed		0.240	0.180				
	AND<=	When executed	In conductive status	0.360			0.120			
			In non-conductive status							
		Wher	n not executed	0.360						
	OR<=	When executed	In conductive status		0.240	0.180	0.120			
		When excouled	In non-conductive status							
	I D<	In conductive status		0.360	0 240	0 180	0 120			
	LD	In non-c	conductive status	0.000	0.210	0.100	0.120			
	AND<	Wher	n not executed							
		When executed	In conductive status	0.360	0.240	0.180	0.120			
			In non-conductive status							
		Wher	n not executed							
	OR<	When executed	In conductive status	0.360	0.240	0.180	0.120			
			In non-conductive status							
	1 D>=	In cor	nductive status	0.360	0 240	0 180	0.120			
		In non-o	conductive status		0.210	0.100				
	AND>=	When not executed								
		When executed	In conductive status	0.360	0.240	0.180	0.120			
			In non-conductive status							
		When	n not executed							
	OR>=	When executed	In conductive status	0.360	0.240	0.180	0.120			
		when executed	In non-conductive status							

Appendix1 OPERATION PROCESSING TIME Appendix 1.4 Operation Processing Time of Universal Model QCPU

Category	Instruction			Processing Time (µs)							
		Cond	lition (Device)	Q00UJCPU	Q00UCPU	Q01UCPU	Q02UCPU				
				Min. Max.	Min. Max.	Min. Max.	Min. Max.				
	I DD=	In cor	nductive status	0.360	0 240	0 180	0.120				
		In non-o	conductive status								
		Wher	n not executed				0.120				
	ANDD=	When executed	In conductive status	0.360	0.240	0.180					
			In non-conductive status								
		Wher	n not executed		0.240	0.180					
	ORD=	When executed	In conductive status	0.360			0.120				
			In non-conductive status								
	LDD<>	In cor	nductive status	0.360	0.240	0.180	0 120				
		In non-o	conductive status								
		When	n not executed								
	ANDD<>	When executed	In conductive status	0.360	0.240	0.180	0.120				
			In non-conductive status								
		Wher	n not executed								
	ORD<>	When executed	In conductive status	0.360	0.240	0.180	0.120				
			In non-conductive status								
	LDD>	In cor	nductive status	0 360	0 240	0 180	0.120				
	LUU	In non-o	conductive status		0.2.10						
		Wher	n not executed								
	ANDD>	When executed	In conductive status	0.360	0.240	0.180	0.120				
			In non-conductive status								
	ORD>	When	n not executed								
		When executed	In conductive status	0.360	0.240	0.180	0.120				
Basic			In non-conductive status				 				
instruction		In cor	nductive status	0.360	0.240	0.180	0.120				
		In non-o	conductive status				ļ				
	ANDD<=	Wher	n not executed				0.120				
		When executed	In conductive status	0.360	0.240	0.180					
			In non-conductive status								
	ORD<=	Wher	n not executed								
		When executed	In conductive status	0.360	0.240	0.180					
			In non-conductive status								
	LDD<	In cor	nductive status	0.360	0.240	0.180	0.120				
		In non-o	conductive status								
	ANDD<	Wher	n not executed			a (aa	0.400				
		When executed	In conductive status	0.360	0.240	0.180	0.120				
			In non-conductive status								
		vvner				0.400	0.400				
	ORD<	When executed	In conductive status	0.360	0.240	0.180	0.120				
			In non-conductive status								
	LDD>=	In cor		0.360	0.240	0.180					
		In non-o	conductive status								
	ANDD>=	Wher	n not executed		0.040	0.400	0.120				
		When executed	in conductive status	0.360	0.240	0.180					
			in non-conductive status								
	000	VVher		0.000	0.040	0.400	0.400				
	ORD>=	When executed	In conductive status	0.360	0.240	0.180	0.120				
			In non-conductive status								

		Condition (Device)		Processing Time (µs)							
Category	Instruction			Q00UJCPU		Q00UCPU		Q01UCPU		Q02UCPU	
				Min. Max.		Min. Max.		Min. Max.		Min. Max.	
	+ (S) (D)		0.360		0.240		0.180		0.120		
	+ \$1 \$2 D		0.480		0.320		0.240		0.160		
	- S D		When executed	0.360		0.240		0.180		0.120	
	- \$1 \$2 D		When executed	0.4	180	0.320		0.240		0.160	
	D + S D		0.3	360	0.240		0.180		0.1	20	
	D + \$1 \$2 D		0.480		0.320		0.240		0.160		
	D - S D		When executed	0.360		0.240		0.180		0.120	
	D - \$1 \$2 D		When executed	0.480		0.320		0.240		0.160	
	* \$1 \$2 D		When executed	0.420		0.300		0.240		0.180	
	/ \$1 \$2 D	When executed		0.520		0.400		0.340		0.280	
	D * \$1 \$2 D		When executed	0.500		0.380		0.320		0.260	
	D/ \$1 \$2 D	When executed		0.6	640	0.5	520	0.4	60	0.4	00
	B + S D	When executed		3.100	12.300	3.100	12.300	3.100	12.300	3.300	8.300
	B + \$1 \$2 D	When executed		5.900	13.500	5.900	13.500	5.900	13.500	4.600	6.200
	в- § D	When executed		3.150	12.300	3.150	12.300	3.150	12.300	3.300	9.000
	B - \$1 \$2 D	When executed		5.950	13.600	5.950	13.600	5.950	13.600	4.600	8.200
	B * \$1 \$2 D	When executed		3.700	12.100	3.700	12.100	3.700	12.100	4.000	8.200
Basic instruction	B/ \$1 \$2 D		When executed	4.000	14.000	4.000	14.000	4.000	14.000	4.200	12.400
	E + S D	Single precision	⊚ = 0,	0.420		0.3	800	0.240		0.1	80
			(s) = 2^{127} , (D) = 2^{127}	0.420		0.3	800	0.240		0.1	80
	E + \$1 \$2 D	Single precision	§1) = 0, §2) = 0	0.540		0.380		0.300		0.220	
			(1) = 2 ¹²⁷ , (2) = 2 ¹²⁷	0.540		0.380		0.300		0.220	
	E - ⑤ D	Single precision	(s) = 0, (D) = 0	0.420		0.300		0.240		0.180	
			(s) = 2 ¹²⁷ , (b) = 2 ¹²⁷	0.420		0.300		0.240		0.180	
	e - \$1 \$2 D	- S1 S2 D Single precision	§1) = 0, §2) = 0	0.540		0.380		0.300		0.220	
			§1) = 2^{127} , §2) = 2^{127}	0.540		0.380		0.300		0.220	
	E * \$1 \$2 D	S1 S2 D Single	§1) = 0, §2) = 0	0.420		0.300		0.240		0.180	
		Cinala	\mathfrak{S} = 2 ¹²⁷ , \mathfrak{S} = 2 ¹²⁷	0.4	120	0.3	800	0.2	240	0.1	80
	E/ \$1 \$2 D	precision	§1) = 2^{127} , §2) = 2^{127}	4.900	18.900	4.900	18.900	4.900	18.900	5.100	14.100
	INC	When executed		0.240		0.160		0.120		0.080	
	DINC	When executed		0.240		0.160		0.120		0.080	
	DEC	When executed		0.240		0.160		0.120		0.080	
	DDEC	When executed		0.240		0.160		0.120		0.080	
	BCD	When executed		0.320		0.240		0.200		0.160	
	DBCD	When executed		0.400		0.320		0.280		0.240	
	BIN	When executed		0.260		0.180		0.140		0.100	
	DBIN		0.260		0.180		0.140		0.100		

Appendix1 OPERATION PROCESSING TIME Appendix 1.4 Operation Processing Time of Universal Model QCPU

Category	Instruction	Condition (Device)		Processing Time (μs)								
				Q00UJCPU		Q00UCPU		Q01UCPU		Q02UCPU		
				Min. Max.		Min. Max.		Min. Max.		Min. Max.		
	FLT	Single	(s) = 0	0.300		0.220		0.180		0.140		
		precision	(s) = 7FFFн	0.300		0.220		0.180		0.140		
	DFLT	Single	(s) = 0	0.300		0.220		0.180		0.140		
		precision	(S) = 7FFFFFFFн	0.300		0.220		0.180		0.140		
	INT	Single	<u>(s)</u> = 0	0.300		0.220		0.180		0.140		
		precision	s = 32766.5	0.300		0.220		0.180		0.140		
	DINT	Single	s) = 0	0.300		0.220		0.180		0.140		
		precision	s = 1234567890.3	0.300		0.220		0.180		0.140		
	MOV			0.240		0.160		0.1	20	0.080		
	DMOV			0.240		0.160		0.120		0.080		
	EMOV	—		0.240		0.160		0.120		0.080		
	CML	-		0.240		0.160		0.120		0.080		
Basic	DCML			0.240		0.160		0.120		0.080		
instruction		SM237=	n=1	4.200	4.600	4.200	4.600	4.200	4.600	4.100	4.500	
	BMOV	ON	n=96	4.850	5.150	4.850	5.150	4.850	5.150	4.700	5.100	
	2	SM237=	n=1	6.800	11.300	6.800	11.300	6.800	11.300	6.300	8.900	
		OFF	n=96	7.450	11.900	7.450	11.900	7.450	11.900	5.900	9.500	
	FMOV	SM=237	n=1	4.100	4.600	4.100	4.600	4.100	4.600	4.100	4.600	
		=ON	n=96	4.800	5.200	4.800	5.200	4.800	5.200	4.800	5.200	
		SM237=	n=1	4.600	8.250	4.600	8.250	4.600	8.250	4.600	7.900	
		OFF	n=96	6.150	10.600	6.150	10.600	6.150	10.600	5.300	8.500	
	ХСН			2.250	8.100	2.250	8.100	2.250	8.100	2.500	6.000	
	DXCH			2.400	8.200	2.400	8.200	2.400	8.200	2.800	7.900	
	DFMOV	SM237=	n=1	2.700	2.800	2.700	2.800	2.700	2.800	2.350	2.450	
		ON	n=96	6.500	6.800	6.500	6.800	6.500	6.800	5.950	6.000	
		SM237=	n=1	4.000	8.150	4.000	8.150	4.000	8.150	3.000	6.950	
		OFF	n=96	8.000	12.200	8.000	12.200	8.000	12.200	6.600	10.600	
	CJ			3.500	10.100	3.500	10.100	3.500	10.100	1.900	10.100	
	SCJ			3.500	10.100	3.500	10.100	3.500	10.100	1.900	10.100	
	JMP			3.500	10.100	3.500	10.100	3.500	10.100	1.900	10.100	
	WAND (S) (D)	W	hen executed	0.360		0.2	240	0.180		0.120		
	WAND (\$1) (\$2) (D)	V	hen executed	0.480		0.320		0.240		0.100		
	DAND (S) (D)	W	hen executed	executed 0.360		0.240		0.180		0.120		
	DAND \$1 \$2 D	When executed		0.480		0.320		0.240		0.160		
	WOR S D	When executed		0.360		0.240		0.180		0.120		
	WOR \$1 \$2 D	Ŵ	hen executed	0.480		0.320		0.240		0.160		
	DOR S D	Ŵ	hen executed	0.3	360) 0.240		0.180		0.120		
Application	DOR \$1 \$2 D	Ŵ	hen executed	0.480		0.320		0.240		0.160		
instruction	WXOR S D	v	hen executed	0.360		0.240		0.180		0.120		
	WXOR \$1 \$2 D	v	When executed		0.480		0.320		0.240		0.160	
	DXOR S D	When executed		0.360		0.240		0.180		0.120		
	DXOR (\$) (\$) (D)	When executed		0.480		0.320		0.240		0.160		
	WXNR S D	When executed		0.360		0.240		0.180		0.120		
	WXNR (\$1) (\$2) (D)	When executed		0.480		0.320		0.240		0.160		
	DXNR S D	W	hen executed	0.360		0.240		0.180		0.120		
	DXNR \$1 \$2 D	W	When executed		0.480		0.320		0.240		0.160	
	Processing Time (µs))				
-------------------------	----------------------	-----------------------	--------	--------	--------	--------	--------	--------	--------	--------		
Category	Instruction	Condition (Device)	Q00U	JCPU	Q00L	JCPU	Q01L	JCPU	Q021	JCPU		
			Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.		
		n = 1	2.250	10.800	2.250	10.800	2.250	10.800	2.300	7.800		
	ROR U n	n = 15	2.250	10.800	2.350	10.800	2.350	10.800	2.400	7.800		
	0	n = 1	2.250	10.800	2.250	10.800	2.250	10.800	2.300	3.900		
	RCR U n	n = 15	2.250	10.800	2.250	10.800	2.250	10.800	2.400	4.100		
		n = 1	2.250	10.800	2.350	10.800	2.350	10.800	2.500	4.600		
	ROL U n	n = 15	2.250	10.800	2.350	10.800	2.350	10.800	2.400	4.600		
		n = 1	2.250	11.500	2.300	11.500	2.300	11.500	2.400	7.500		
	RCL U n	n = 15	2.250	11.500	2.300	11.500	2.300	11.500	2.500	7.500		
		n = 1	2.350	11.500	2.350	11.500	2.350	11.500	2.400	10.300		
		n = 31	2.350	11.500	2.350	11.500	2.350	11.500	2.500	10.300		
		n = 1	2.350	13.300	2.350	13.300	2.350	13.300	2.500	12.700		
	DRCR Un	n = 31	2.350	14.900	2.350	14.900	2.350	14.900	2.500	12.700		
	DROL D n	n = 1	2.350	10.800	2.350	10.800	2.350	10.800	2.500	11.800		
		n = 31	2.350	10.800	2.350	10.800	2.350	10.800	2.500	11.800		
		n = 1	2.350	13.300	2.350	13.300	2.350	13.300	2.500	5.100		
Application		n = 31	2.350	13.300	2.350	13.300	2.350	13.300	2.500	5.100		
Application instruction	050	n = 1	2.350	9.900	2.350	9.900	2.350	9.900	2.400	6.100		
	SFR 🛈 n	n = 15	2.350	9.900	2.350	9.900	2.350	9.900	2.300	5.700		
		n = 1	2.350	9.850	2.350	9.850	2.350	9.850	2.400	4.300		
	SFL 🙂 n	n = 15	2.350	9.850	2.350	9.850	2.350	9.850	2.400	4.300		
		n = 1	3.250	15.500	3.250	15.500	3.250	15.500	3.300	12.000		
	DSFR Un	n = 96	32.600	45.000	32.600	45.000	32.600	45.000	32.600	42.200		
		n = 1	3.200	15.500	3.200	15.500	3.200	15.500	3.300	8.200		
	DSFL U n	n = 96	32.600	45.100	32.600	45.100	32.600	45.100	32.600	37.700		
	SUM	(S) = 0	3.100	8.950	3.100	8.950	3.100	8.950	3.400	6.700		
		(s) = FFFFн	3.000	8.850	3.000	8.850	3.000	8.850	3.500	6.700		
	SEG	When executed	2.100	7.700	2.100	7.700	2.100	7.700	2.100	5.900		
	FOR		1.500	7.500	1.500	7.500	1.500	7.500	1.200	6.300		
	CALL Pp	Internal file pointer	4.800	5.400	4.800	5.400	4.800	5.400	2.700	4.800		
	CALL Pn	Common pointer	7.100	30.500	7.100	30.500	7.100	30.500	4.400	5.700		
	CALL Pn St to S5		50.200	62.000	50.200	62.000	50.200	62.000	28.700	42.600		

For the instructions for which a leading edge instruction $(\Box P)$ is not described, the processing time is the same as an ON execution instruction.

.

Example MOVP instruction, WANDP instruction etc.

Α

(b) When using Q03UD(E)HCPU, Q04UD(E)HCPU, Q06UD(E)HCPU, Q10UD(E)HCPU,Q13UD(E)HCPU, Q20UD(E)HCPU, Q26UD(E)HCPU

			Processing Time (μs)							
Category	Instruction	Condition (Device)	Q03UD	(E)CPU	Q04/Q06U	D(E)HCPU	Q10/Q1 Q26UD(3/Q20/ E)HCPU		
			Min.	Max.	Min.	Max.	Min.	Max.		
Sequence	LD LDI AND OR ORI LDP LDF ANDP ANDF ORP ORF	When executed	0.0)20	0.0	095	0.00	095		
	LDPI LDFI	When executed	0.0	0.060 0		285	0.02	285		
	ANDPI ANDFI ORPI ORFI	When executed	0.0	080	0.0	038	0.0	38		
	OUT	When not changed When changed	0.0)20	0.0	095	0.00	095		
	SET RST	When not executed	0.020		0.0095		0.0095			

Category					Processing Tim	ie (µs)	
Category	Instruction	Cond	lition (Device)	Q03UD(E)CPU	Q04/ Q06UD(E)HCPU	Q10/Q13/Q20/ Q26UD(E)HCPU	
				Min. Max.	Min. Max.	Min. Max.	
	LD=	In cor	nductive status	0.060	0.0285	0.0285	
		In non-c	conductive status				
		Wher	n not executed	0.000	0.0005	0.0005	
	AND=	When executed	In conductive status	0.060	0.0285	0.0285	
		\\//bo	In non-conductive status				
	OD-	wher		0.060	0.0295	0.0295	
	UK=	When executed		0.060	0.0265	0.0265	
		In cor					
	LD<>			0.060	0.0285	0.0285	
		When					
	AND<>		In conductive status	0.060	0.0285	0.0285	
	7	When executed	In non-conductive status		0.0200	0.0200	
		Wher	not executed				
	OR<>		In conductive status	0.060	0.0285	0.0285	
	-	When executed	In non-conductive status				
		In cor	nductive status				
	LD>	In non-conductive status		0.060	0.0285	0.0285	
		Wher	not executed				
	AND>		In conductive status	0.060	0.0285	0.0285	
		When executed	In non-conductive status				
		Wher	n not executed				
	OR>	When everyted	In conductive status	0.060	0.0285	0.0285	
Basic		when executed	In non-conductive status				
Basic instruction	ID<=	In cor	In conductive status		0.0285	0.0285	
	LD	In non-o	conductive status	0.000	0.0200	0.0200	
		Wher	n not executed				
	AND<=	When executed	In conductive status	0.060	0.0285	0.0285	
			In non-conductive status				
		Wher	n not executed				
	OR<=	When executed	In conductive status	0.060	0.0285	0.0285	
			In non-conductive status				
	LD<	In cor	nductive status	0.060	0.0285	0.0285	
		In non-c					
		When		0.060	0.0285	0.0285	
	AND<	When executed		0.000	0.0203	0.0203	
		When					
	OR<	Which	In conductive status	0.060	0.0285	0 0285	
	ont	When executed	In non-conductive status	0.000	0.0200	0.0200	
		In cor	ductive status				
	LD>=	In non-o	conductive status	0.060	0.0285	0.0285	
		Wher	n not executed				
	AND>=		In conductive status	0.060	0.0285	0.0285	
		When executed	In non-conductive status			0.0200	
		Wher	n not executed				
	OR>=	\\/h an (In conductive status	0.060	0.0285	0.0285	
		vvnen executed	In non-conductive status				

Category Instruction Condition (Device) Condition (Device) <thcondition (device)<="" th=""></thcondition>	Category In				Processing Time (μs)				
$ \begin{tabular}{ c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		Instruction	Cond	lition (Device)	Q03UD(E)CPU	Q04/ Q06UD(E)HCPU	Q10/Q13/Q20/ Q26UD(E)HCPU		
LDD= In conductive status 0.060 0.0285 0.0285 ANDE When not executed In conductive status 0.060 0.0285 0.0285 ANDE When not executed In conductive status 0.060 0.0285 0.0285 ORD= When not executed In conductive status 0.060 0.0285 0.0285 LDD= In conductive status 0.060 0.0285 0.0285 LDD= In conductive status 0.060 0.0285 0.0285 ANDO= In conductive status 0.060 0.0285 0.0285 ANDO= In conductive status 0.060 0.0285 0.0285 ANDO= In conductive status 0.060 0.0285 0.0285 LDD= In conductive status 0.060 0.0285 0.0285 LDD= In conductive status 0.060 0.0285 0.0285 ANDD> In conductive status 0.060 0.0285 0.0285 ANDD= In conductive status 0.060 0.0285 0.028					Min. Max.	Min. Max.	Min. Max.		
$ \begin{tabular}{ c $		LDD=	In coi	nductive status	0.060	0.0285	0.0285		
ANDe When not executed in nan-conductive status 0.060 0.0285 0.0285 ORDe When not executed in non-conductive status 0.060 0.0285 0.0285 LDD= In conductive status 0.060 0.0285 0.0285 LDD= In conductive status 0.060 0.0285 0.0285 ANDD= In conductive status 0.060 0.0285 0.0285 ANDD= In conductive status 0.060 0.0285 0.0285 ANDD= When not executed 0.060 0.0285 0.0285 ORD= When not executed 0.060 0.0285 0.0285 IDD In conductive status 0.060 0.0285 0.0285 IDD= In conducti			In non-o	conductive status					
ANDLe When executed In concludicties status in non-conductive status 0.060 0.0285 0.0285 CRD When not executed In concluctive status 0.060 0.0285 0.0285 LDD In concluctive status 0.060 0.0285 0.0285 LDD In concluctive status 0.060 0.0285 0.0285 ANDD When executed In concluctive status 0.060 0.0285 0.0285 ANDD When not executed In concluctive status 0.060 0.0285 0.0285 ORD When not executed In concluctive status 0.060 0.0285 0.0285 ANDD When not executed In concluctive status 0.060 0.0285 0.0285 ORD When not executed In non-conductive status 0.060 0.0285 0.0285 ORD When executed In concluctive status 0.060 0.0285 0.0285 ORD When not executed In concluctive status 0.060 0.0285 0.0285 IDD In concluctive			Whei	n not executed	0.000	0.0005	0.0005		
Basic Iman-conductive status 0.060 0.0285 0.0285 UD0-> In conductive status 0.060 0.0285 0.0285 LD0-> In conductive status 0.060 0.0285 0.0285 ANDO-> In conductive status 0.060 0.0285 0.0285 ANDO-> When not executed In non-conductive status 0.060 0.0285 0.0285 ORD-> When not executed In non-conductive status 0.060 0.0285 0.0285 ORD-> When not executed In non-conductive status 0.060 0.0285 0.0285 ORD-> When not executed In non-conductive status 0.060 0.0285 0.0285 IDD- In con-conductive status 0.060 0.0285 0.0285 IDD- In con-conductive status 0.060 0.0285 0.0285 IDD- In con-conductive status 0.060 0.0285 0.0285 IDD- In conductive status 0.060 0.0285 0.0285 IDD- In conductive status<		ANDD=	When executed	In conductive status	0.060	0.0285	0.0285		
NRB# When executed When executed In non-conductive status 0.060 0.0285 0.0285 LDD-> In conductive status 0.060 0.0285 0.0285 LDD-> In conductive status 0.060 0.0285 0.0285 ANDD-> When not executed 0.060 0.0285 0.0285 ANDD-> When not executed 0.060 0.0285 0.0285 ORD-> When not executed 0.060 0.0285 0.0285 ORD-> When not executed 0.060 0.0285 0.0285 LDD- In conductive status 0.060 0.0285 0.0285 LDD- In conductive status 0.060 0.0285 0.0285 ANDD- When not executed In conductive status 0.060 0.0285 0.0285 ORD- When not executed In conductive status 0.060 0.0285 0.0285 DD- In conductive status 0.060 0.0285 0.0285 LDD- In conductive status 0.060 0.0285 0.0285 <				In non-conductive status					
URL When executed In non-conductive status 0.060 0.0285 0.0285 LDD-> In conconductive status 0.060 0.0285 0.0285 AND>- In conconductive status 0.060 0.0285 0.0285 AND>- When executed In conductive status 0.060 0.0285 0.0285 ORD-> When executed In conductive status 0.060 0.0285 0.0285 LDD- In conductive status 0.060 0.0285 0.0285 LDD- In conductive status 0.060 0.0285 0.0285 LDD- In conductive status 0.060 0.0285 0.0285 ANDD-> When executed In conductive status 0.060 0.0285 0.0285 LDD- In conductive status 0.060 0.0285 0.0285 0.0285 LDD- In conductive status 0.060 0.0285 0.0285 0.0285 LDD- In conductive status 0.060 0.0285 0.0285 0.0285 LDD- In cond		000-	Wilei		0.060	0.0295	0.0285		
$ \begin{tabular}{ c c c c c c } \hline c c c c c c c c c c c c c c c c c c $		ORD=	When executed		0.060	0.0285	0.0285		
$ \begin{tabular}{ c c c c c } \hline LDD^{\rightarrow} & In conductive status & 0.060 & 0.0285 & 0.0285 \\ \hline & In conductive status & In conductive sta$			In co						
$ \begin{tabular}{ c $		LDD<>			0.060	0.0285	0.0285		
NDD When executed in non-conductive status in non-conductive status 0.060 0.0285 0.0285 ORD When executed in non-conductive status 0.060 0.0285 0.0285 VDD In conductive status 0.060 0.0285 0.0285 VDD When not executed In conductive status 0.060 0.0285 0.0285 VDD<			When						
Indext When executed In non-conductive status in non-conductive status 0.060 0.0265 0.0285 ORD~> When not executed in non-conductive status 0.060 0.0285 0.0285 LDD> In conductive status in non-conductive status 0.060 0.0285 0.0285 NDD> When not executed in non-conductive status 0.060 0.0285 0.0285 NDD> When not executed in non-conductive status 0.060 0.0285 0.0285 ORD When not executed in non-conductive status 0.060 0.0285 0.0285 ORD> When not executed in non-conductive status 0.060 0.0285 0.0285 LDC= In conductive status 0.060 0.0285 0.0285 NDD> When not executed in non-conductive status 0.060 0.0285 0.0285 NDD<		ANDD<>	When	In conductive status	0.060	0.0285	0.0285		
Interference Interference Interference ORD When not executed 0.060 0.0285 0.0285 LD> In conductive status 0.060 0.0285 0.0285 LD> In non-conductive status 0.060 0.0285 0.0285 ANDD> In non-conductive status 0.060 0.0285 0.0285 ANDD> When not executed In conductive status 0.060 0.0285 0.0285 ORD> When not executed In conductive status 0.060 0.0285 0.0285 Instruction In conductive status 0.060 0.0285 0.0285 0.0285 Instruction In conductive status 0.060 0.0285 0.0285 0.0285 Instruction In non-conductive status 0.060 0.0285 0.0285 0.0285 Inton-conductive status In conductive status 0.060 0.0285 0.0285 Inton-conductive status 0.060 0.0285 0.0285 0.0285 LDD In conductive status 0.060			When executed	In non-conductive status		0.0200	0.0200		
$ \begin{array}{ c c c c } \hline NRD & \hline Mink instants & In conductive status			Whe	not executed					
Basic instruction When executed in non-conductive status 0.060 0.0285 0.0285 ANDD> When not executed in non-conductive status 0.060 0.0285 0.0285 ANDD> When executed in non-conductive status 0.060 0.0285 0.0285 ORD> When executed in non-conductive status 0.060 0.0285 0.0285 ORD> When executed in non-conductive status 0.060 0.0285 0.0285 IDD<=		ORD<>		In conductive status	0.060	0 0285	0 0285		
$ \begin{array}{ c c c c } \hline \begin{tabular}{ c c } \hline \hline \begin{tabular}{ c c } \hline \$		-	When executed	In non-conductive status					
LDD> In non-conductive status 0.060 0.0285 0.0285 ANDD> When not executed In conductive status 0.060 0.0285 0.0285 ORD> When executed In conductive status 0.060 0.0285 0.0285 ORD> When executed In conductive status 0.060 0.0285 0.0285 ORD> When not executed In conductive status 0.060 0.0285 0.0285 IDD<=			In co	nductive status					
$ \begin{array}{ c c c c } \hline \mbox{When not executed} & \mbox{When executed} & $		LDD>	In non-conductive status		0.060	0.0285	0.0285		
$ \begin{array}{ c c c c } \hline \mbox{When executed} & \mbox{In non-conductive status} \\ \hline \mbox{In non-conductive status} \\ \hline \mbox{ORD} & \ \mbox{When not executed} \\ \hline \mbox{ORD} & \ \mbox{When executed} & \ \mbox{In non-conductive status} \\ \hline In non-$			When	n not executed					
$ \begin{array}{ c c c c } \hline \begin{tabular}{ c c } \hline \end{tabular} \\ \hline $		ANDD>		In conductive status	0.060	0.0285	0.0285		
Basic instruction When executed When executed In conductive status In non-conductive status 0.060 0.0285 0.0285 LDD<=			when executed	In non-conductive status					
Basic instruction When executed In conductive status in non-conductive status 0.060 0.0285 0.0285 LD<=			Whe	n not executed					
$ \begin{array}{ c c c c } \hline \text{Besic} & \text{When Recuted} & \text{In non-conductive status} \\ \hline \text{In box-conductive status} \\ \hline \text{In conductive status} \\ \hline \text{In conductive status} \\ \hline \text{In non-conductive status} \\ \hline \text{In non-conductive status} \\ \hline \text{In non-conductive status} \\ \hline \text{In conductive status} \\ \hline \text{In non-conductive status} \\ \hline \text{In conductive status} \\ \hline \text{In non-conductive status} \\ \hline \text{In conductive status} \\ \hline \text{In non-conductive status} \\ \hline In non-conduc$		ORD>	When executed	In conductive status	0.060	0.0285	0.0285		
$ \begin{array}{ c c c c c } \mbox{instruction} & \begin{tabular}{ c c c c } \label{eq:linear} \end{tabular} \\ \mbox{instruction} \\ \end{tabular} \\ $	Basic		when executed	In non-conductive status					
LDD* In non-conductive status 0.000 0.0205 0.0205 ANDD<=	instruction	LDD<=	In conductive status		0.060	0.0285	0.0285		
$ \begin{tabular}{ c c c c } \hline When not executed & When executed & In conductive status & 0.060 & 0.0285 & 0.0$		LDD	In non-o	conductive status	0.080	0.0285	0.0200		
$ \begin{array}{c c c c c c c } \hline ANDD^{*=} & \hline When executed & \hline In conductive status & 0.060 & 0.0285 & 0.0285 \\ \hline \ & \hline In conductive status & 0.060 & 0.0285 & 0.0285 \\ \hline \ & \hline Non-conductive status & 0.060 & 0.0285 & 0.0285 \\ \hline \ & \hline Non-conductive status & 0.060 & 0.0285 & 0.0285 \\ \hline \ & \hline In conductive status & 0.060 & 0.0285 & 0.0285 \\ \hline \ & \hline In conductive status & 0.060 & 0.0285 & 0.0285 \\ \hline \ & \hline In conductive status & 0.060 & 0.0285 & 0.0285 \\ \hline \ & \hline In conductive status & 0.060 & 0.0285 & 0.0285 \\ \hline \ & \hline Non-conductive status & 0.060 & 0.0285 & 0.0285 \\ \hline \ & \hline Non-conductive status & 0.060 & 0.0285 & 0.0285 \\ \hline \ & \hline Non-conductive status & 0.060 & 0.0285 & 0.0285 \\ \hline \ & \hline Non-conductive status & 0.060 & 0.0285 & 0.0285 \\ \hline \ & \hline Non-conductive status & 0.060 & 0.0285 & 0.0285 \\ \hline \ & \hline Non-conductive status & 0.060 & 0.0285 & 0.0285 \\ \hline \ & \hline \ & \hline Non-conductive status & 0.060 & 0.0285 & 0.0285 \\ \hline \ & \ &$			Whei	n not executed					
$ \frac{ n n }{ n } = n $		ANDD<=	When executed	In conductive status	0.060	0.0285	0.0285		
$ \begin{array}{ c c c c } \hline \mbox{When not executed} & \ \mbox{When executed} & \ \mbox{When executed} & \ \mbox{In conductive status} & 0.060 & 0.0285 & 0.0285 \\ \hline \mbox{UDD}^{<} & \ \mbox{In conductive status} & \ In conduct$				In non-conductive status					
$\begin{array}{ c c c c c } \hline ORD^{<=} & \underbrace{When executed} & \underbrace{In conductive status} & 0.060 & 0.0285 & 0.0285 \\ \hline In non-conductive status & 0.060 & 0.0285 & 0.0285 \\ \hline LDD^{<} & \underbrace{In conductive status} & 0.060 & 0.0285 & 0.0285 \\ \hline In non-conductive status & 0.060 & 0.0285 & 0.0285 \\ \hline ANDD^{<} & \underbrace{When not executed} & & & & & & & & \\ \hline In conductive status & 0.060 & 0.0285 & 0.0285 \\ \hline Men executed & & & & & & & & & \\ \hline In conductive status & & & & & & & & & & \\ \hline In conductive status & & & & & & & & & & \\ \hline ORD^{<} & & \underbrace{When not executed} & & & & & & & & & & & & & \\ \hline In conductive status & & & & & & & & & & & & \\ \hline ORD^{<} & & \underbrace{When not executed} & & & & & & & & & & & & & & \\ \hline In conductive status & & & & & & & & & & & & & \\ \hline In conductive status & & & & & & & & & & & & & \\ \hline In conductive status & & & & & & & & & & & & & & \\ \hline In conductive status & & & & & & & & & & & & & & \\ \hline In conductive status & & & & & & & & & & & & & & & \\ \hline In conductive status & & & & & & & & & & & & & & & \\ \hline In conductive status & & & & & & & & & & & & & & & \\ \hline In conductive status & & & & & & & & & & & & & & & & & \\ \hline In conductive status & & & & & & & & & & & & & & & & & & \\ \hline In conductive status & & & & & & & & & & & & & & & & & & &$			When	n not executed					
n		ORD<=	When executed	In conductive status	0.060	0.0285	0.0285		
$ \begin{array}{ c c c c c } & & & & & & & & & & & & & & & & & & &$				In non-conductive status					
$\frac{ A }{ A } = \frac{ A }{ A } + \frac{ A }{ A } + \frac{ A }{ A } + \frac{ A }{ A } + A A$		LDD<	In coi	nductive status	0.060	0.0285	0.0285		
$\frac{\text{ANDD}}{\text{When executed}} = \frac{\frac{ \mathbf{n} + \mathbf{n} \mathbf{n} + \mathbf{n} + \mathbf{n} \mathbf{n} + \mathbf{n} + \mathbf{n} + $			In non-o						
NNDP When executed In conductive status 0.000 0.0203 0.0203 ORD When not executed In conductive status 0.060 0.0285 0.0285 UDD>= In conductive status 0.060 0.0285 0.0285 In port conductive status 0.060 0.0285 0.0285 UDD>= In conductive status 0.060 0.0285 0.0285 In port conductive status 0.060 0.0285 0.0285			Wile	In conductive status	0.060	0.0285	0.0285		
		ANDDY	When executed	In non-conductive status	0.000	0.0203	0.0203		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			Whe	not executed					
$\frac{When executed}{When executed} = \frac{When executed}{When executed} = When order o$		ORD<		In conductive status	0.060	0.0285	0.0285		
		0112	When executed	In non-conductive status		0.0200	0.0200		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			In co	nductive status					
$ANDD \ge \frac{When not executed}{When executed} = 0.060 0.0285 0.0285$ $ORD \ge \frac{When not executed}{When executed} = 0.060 0.0285 0.0285$		LDD>=	In non-o	conductive status	0.060	0.0285	0.0285		
ANDD>= In conductive status 0.060 0.0285 0.0285 When executed In non-conductive status 0.060 0.0285 0.0285 ORD>= When executed In conductive status 0.060 0.0285 0.0285 When executed In conductive status 0.060 0.0285 0.0285			Whe	n not executed					
When executed In non-conductive status ORD>= When not executed When executed In conductive status When executed 0.060 In non-conductive status 0.060		ANDD>=		In conductive status	0.060	0.0285	0.0285		
ORD>= When not executed 0.060 0.0285 0.0285 When executed In non-conductive status 0.060 0.0285 0.0285			vvnen executed	In non-conductive status	1		0.0200		
ORD>= In conductive status 0.060 0.0285 0.0285 In non-conductive status In non-conductive status 0.060 0.0285 0.0285			When	n not executed					
In non-conductive status		ORD>=	When executed	In conductive status	0.060	0.0285	0.0285		
				In non-conductive status	1				

						Process	ing Time (µs	5)	
Category	Instruction	С	ondition (Device)	Q03UD	(E)CPU	Q04/Q06U	D(E)HCPU	Q10/Q1 Q26UD(I	3/Q20/ E)HCPU
				Min.	Max.	Min.	Max.	Min.	Max.
	+ (S) (D)		When executed	0.0	060	0.0	285	0.02	285
	+ \$1 \$2 D		When executed	0.0	080	0.0	38	0.0	38
	- (S) (D)		When executed	0.0	060	0.0	285	0.02	285
	- \$1 \$2 D		When executed	0.0	080	0.0	38	0.0	38
	D + S D		When executed	0.0	060	0.0285		0.0285	
	D + S1 S2 D		When executed	0.080		0.0	38	0.038	
	D - S D		When executed	0.060		0.0	285	0.02	285
	D - \$1 \$2 D		When executed	0.0	080	0.0	38	0.0	38
	* \$1 \$2 D		When executed	0.1	120	0.0	57	0.0	57
	/ \$1 \$2 D		When executed	0.2	220	0.1	10	0.1	10
	D * \$1 \$2 D		When executed	0.2	200	0.0	95	0.0	95
	D/ \$1 \$2 D		When executed	0.3	340	0.1	70	0.1	70
	B + S D		When executed	3.300	5.500	3.000	4.100	3.000	4.100
	B + \$1 \$2 D	When executed		4.600	6.200	4.200	5.900	4.200	5.900
	в - (S) (D)	When executed		3.300	4.400	2.900	3.800	2.900	3.800
	B - \$1 \$2 D		When executed	4.600	6.300	4.200	4.600	4.200	4.600
	B * \$1 \$2 D		When executed	4.000	4.800	3.400	4.800	3.400	4.800
Basic instruction	B/ \$1 \$2 D	When executed		4.200	5.700	3.700	5.200	3.700	5.200
		Single	⊚ = 0,	0.1	120	0.0	57	0.0	57
		precision	$\textcircled{S} = 2^{127}, \textcircled{D} = 2^{127}$	0.120		0.057		0.057	
	E + 61 62 D	Single	§1) = 0, §2) = 0	0.1	140	0.0665		0.0665	
		precision	§1) = 2^{127} , §2) = 2^{127}	0.1	140	0.0	665	0.06	65
	E S D	Single	(s) = 0, (D) = 0	0.120		0.057		0.057	
		precision	(s) = 2 ¹²⁷ , (D) = 2 ¹²⁷	0.120		0.057		0.0	57
	F - (S1) (S2) (D)	Single	§1) = 0, §2) = 0	0.1	140	0.0	665	0.06	665
		precision	$\mathfrak{S}_{1} = 2^{127}, \mathfrak{S}_{2} = 2^{127}$	0.1	140	0.0	665	0.06	665
	E * \$1 \$2 D	Single	§1) = 0, §2) = 0	0.1	120	0.0	57	0.0	57
		precision	§1) = 2^{127} , §2) = 2^{127}	0.1	120	0.0	57	0.0	57
	E/ §1 §2 D	Single precision	§1) = 2^{127} , §2) = 2^{127}	4.500	5.600	3.900	4.900	0.2	85
	INC		When executed	0.0	040	0.0	19	0.0	19
	DINC		When executed	0.0	040	0.0	19	0.0	19
	DEC		When executed	0.0	040	0.0	19	0.0	19
	DDEC		When executed	0.0	040	0.0	19	0.0	19
	BCD		When executed	0.1	120	0.0	57	0.057	
	DBCD		When executed	0.2	200	0.0	95	0.095	
	BIN		When executed	0.0	060	0.02	285	0.0285	
1	DBIN		When executed	0.0	060	0.02	285	0.0285	

						Process	sing Time (µs		
Category	Instruction	Cor	ndition (Device)	Q03UD	(E)CPU	Q04/Q06U	D(E)HCPU	Q10/Q [*] Q26UD(13/Q20/ E)HCPU
				Min.	Max.	Min.	Max.	Min.	Max.
	FLT	Single	(s) = 0	0.1	100	0.0	475	0.0	475
		precision	(s) = 7 FFFн	0.1	100	0.0	475	0.0	475
	DELT	Single	(s) = 0	0.1	100	0.0	475	0.0	475
	DIEI	precision	(s) = 7FFFFFFFн	0.1	100	0.0	475	0.0475	
	INT	Single	(S) = 0	0.1	100	0.0475		0.0	475
		precision	(s) = 32766.5	0.100		0.0	475	0.0	475
	DINT	Single	(s) = 0	0.1	100	0.0	475	0.0	475
	Dirti	precision	(s) = 1234567890.3	0.1	100	0.0	475	0.0	475
	MOV			0.0	040	0.0	019	0.0)19
	DMOV	—		0.0	0.040 0.0)19	0.0)19
	EMOV	—		0.040 0.0)19	0.019		
	CML			0.0	040	0.0)19	0.0)19
	DCML		_	0.0	040	0.0)19	0.0)19
				6.300	8.200	5.400	7.000	5.400	7.000
Pasia	BMOV	n = 1	SM237=OFF ^{*1}	8.200	10.600	3.900	5.100	3.900	5.100
instruction			SM237=ON ^{*1}	6.000	7.800	2.900	3.700	2.900	3.700
Instruction		n = 96		7.100	8.800	5.900	7.600	5.900	7.600
			SM237=OFF ^{*1}	9.300	11.900	4.400	5.700	4.400	5.700
			SM237=ON ^{*1}	7.100	9.100	3.400	4.300	3.400	4.300
				5.300	5.900	4.200	4.800	4.200	4.800
		n = 1	SM237=OFF ^{*1}	7.000	8.000	3.400	3.800	3.400	3.800
	EMOV		SM237=ON ^{*1}	5.900	6.800	2.800	3.200	2.800	3.200
				5.300	7.600	4.400	6.800	4.400	6.800
			SM237=OFF ^{*1}	7.400	12.200	3.600	5.800	3.600	5.800
		11 = 90	SM237=ON ^{*1}	6.300	11.000	3.000	5.200	3.000	5.200
	XCH			2.500	2.900	1.800	2.300	1.800	2.300
	DXCH		-	2.800	3.700	2.100	2.900	2.100	2.900
		n=1	SM237=OFF	2.600	3.750	2.250	3.150	2.250	3.150
			SM237=ON	2.050	2.250	1.750	1.750	1.750	1.750
	DEIVIOV	n=96	SM237=OFF	5.850	7.350	4.200	5.500	4.200	5.500
		11-50	SM237=ON	5.300	6.000	3.650	4.150	3.650	4.150
	CJ			1.800	2.800	1.400	2.400	1.400	2.400
	SCJ		_	1.800	2.800	1.400	2.400	1.400	2.400
	JMP			1.800	2.800	1.100	2.400	1.100	2.400

*1 : Can be used onliv for the Q03UDCPU, Q04UDHCPU and Q06UDHCPU whose first 5 digits of serial number is "10012" or later.

*2 : Can be used onliy for the Q03UD(E)CPU, Q04UD(E)HCPU, Q06UD(E)HCPU, Q13UD(E)HCPU and Q26UD(E)HCPU whose first 5 digits of serial number is "10012" or later.

				Processing Time (µs)	
Category	Instruction	Condition (Device)	Q03UD(E)CPU	Q04/Q06UD(E)HCPU	Q10/Q13/Q20/ Q26UD(E)HCPU
			Min. Max.	Min. Max.	Min. Max.
	WAND (S) (D)	When executed	0.060	0.0285	0.0285
	wand (\$1) (\$2) (D)	When executed	0.080	0.038	0.038
	DAND S D	When executed	0.060	0.0285	0.0285
	DAND \$1 \$2 D	When executed	0.080	0.038	0.038
	WOR S D	When executed	0.060	0.0285	0.0285
	WOR \$1 \$2 D	When executed	0.080	0.038	0.038
	DOR S D	When executed	0.060	0.0285	0.0285
Application	DOR (\$1) (\$2) (D)	When executed	0.080	0.038	0.038
instruction	WXOR S D	When executed	0.060	0.0285	0.0285
	WXOR (\$1 \$2 (D)	When executed	0.080	0.038	0.038
	DXOR S D	When executed	0.060	0.0285	0.0285
	DXOR (\$1 (\$2) (D)	When executed	0.080	0.038	0.038
	WXNR (S) (D)	When executed	0.060	0.0285	0.0285
	WXNR (\$1 (\$2 (D)	When executed	0.080	0.038	0.038
[DXNR S D	When executed	0.060	0.0285	0.0285
	DXNR \$1 \$2 D	When executed	0.080	0.038	0.038

					Proc	cessing Time	(µs)	
Category	Instruction	Condition (Device)	Q03UD	(E)CPU	Q04/Q06U	D(E)HCPU	Q10/Q1 Q26UD(13/Q20/ E)HCPU
			Min.	Max.	Min.	Max.	Min.	Max.
		n = 1	2.300	3.100	1.700	2.500	1.700	2.500
	ROR I n	n = 15	2.400	3.100	1.800	2.500	1.800	2.500
		n = 1	2.300	3.900	1.700	3.200	1.700	3.200
	RCR	n = 15	2.400	4.100	1.700	3.200	1.700	3.200
		n = 1	2.400	3.300	1.800	3.200	1.800	3.200
	ROL	n = 15	2.400	3.300	1.800	3.200	1.800	3.200
		n = 1	2.400	2.700	1.800	2.100	1.800	2.100
	RUL	n = 15	2.400	2.800	1.800	2.200	1.800	2.200
		n = 1	2.400	3.400	1.900	2.700	1.900	2.700
		n = 31	2.500	3.400	1.900	2.700	1.900	2.700
		n = 1	2.500	4.800	1.900	4.200	1.900	4.200
		n = 31	2.500	4.900	1.900	4.200	1.900	4.200
		n = 1	2.500	3.900	1.800	3.200	1.800	3.200
		n = 31	2.500	3.900	1.800	3.300	1.800	3.300
		n = 1	2.500	4.800	1.900	3.800	1.900	3.800
Application	DRCL D n	n = 31	2.500	4.600	1.900	3.800	1.900	3.800
instruction		n = 1	2.400	3.900	1.700	2.600	1.700	2.600
	SFR Un	n = 15	2.300	3.900	1.800	2.600	1.800	2.600
		n = 1	2.400	4.300	1.800	2.700	1.800	2.700
	SFL I II	n = 15	2.400	4.300	1.800	2.700	1.800	2.700
		n = 1	2.700	4.800	2.200	4.300	2.200	4.300
	DSFR I n	n = 96	32.600	35.900	23.900	26.100	23.900	26.100
		n = 1	2.700	4.600	2.100	4.000	2.100	4.000
	DSFL 🕑 n	n = 96	32.600	35.300	23.700	25.800	23.700	25.800
	SUM	(s) = 0	3.400	4.300	2.900	3.600	2.900	3.600
		(s) = FFFFн	3.500	4.200	2.900	3.600	2.900	3.600
	SEG	When executed	2.100	2.800	1.500	2.100	1.500	2.100
	FOR		1.200	2.400	0.870	2.100	0.870	2.100
	CALL Pn	Internal file pointer	2.600	4.000	2.300	3.600	2.300	3.600
C		Common pointer	4.000	5.300	3.200	4.900	3.200	4.900
	CALL Pn SI to SS		28.700	33.400	26.100	29.300	26.100	29.300

Remark •••••

For the instructions for which a leading edge instruction $(\Box P)$ is not described, the processing time is the same as an ON execution instruction.

Example MOVP instruction, WANDP instruction etc.

(2) Table of the time to be added when file register, module access device is used

(a) When using Q00UJCPU, Q00UCPU, Q01UCPU and Q02UCPU

			Device Specification	Processing Time (µs)					
Devic	e name	data	Location	Q00UJCPU	Q00UCPU	Q01UCPU	Q02UCPU		
		D *	Source	0.100	0.100	0.100	0.100		
		Bit	Destination	0.220	0.220	0.220	0.220		
	When standard		Source	0.100	0.100	0.100	0.100		
	RAM is used	Word	Destination	0.100	0.100	0.100	0.100		
		.	Source	0.200	0.200	0.200	0.200		
		Double word	Destination	0.200	0.200	0.200	0.200		
		5.1	Source		_		0.220		
	When SRAM	Bit	Destination		_		0.420		
File register	card is used		Source		_		0.220		
(R)	(Q2MEM-1MBS,	Word	Destination		_		0.180		
	Q2MEM-2MBS)		Source		_		0.440		
		Double word	Destination		_		0.380		
		5.4	Source		_		0.160		
	When SRAM	Bit	Destination		_		0.320		
	card is used		Source		_		0.160		
	(Q3MEM-4MBS,	Word	Destination				0.140		
	Q3MEM-8MBS)		Source		_		0.320		
		Double word	Destination	ource			0.300		
		5.4	Source	0.220	0.180	0.160	0.140		
	When standard RAM is used	Bit	Destination	0.280	0.320	0.300	0.280		
		Word	Source	0.220	0.180	0.160	0.140		
			Destination	0.220	0.180	0.160	0.140		
		Dauble ward	Source	0.320	0.280	0.260	0.240		
		Double word	Destination	0.320	0.280	0.260	0.240		
File register		5.1	Source				0.260		
(ZR)/	When SRAM	Bit	Destination				0.480		
Extended	card is used	\0 /l	Source				0.260		
data register	(Q2MEM-1MBS,	vvora	Destination				0.220		
(D)/Extended	Q2MEM-2MBS)		Source		_		0.480		
		Double word	Destination				0.420		
(VV))		D.4	Source				0.200		
	When SRAM	BIt	Destination				0.380		
	card is used	\0 /l	Source				0.200		
	(Q3MEM-4MBS,	vvora	Destination	_	_		0.180		
	Q3MEM-8MBS)	Dauthlaurand	Source	_	_		0.360		
		Double word	Destination				0.340		
		Dit	Source		_				
Module access device (Multiple CPU high speed trans-		ы	Destination	—	—	—			
		Word	Source						
mission area)		Word	Destination						
(U3En\G10000)		Double word	Source						
			Destination		—				

(b) When using Q03UD(E)CPU, Q04UD(E)HCPU, Q06UD(E)HCPU, Q10UD(E)HCPU, Q13UDE(H)CPU,Q20UD(E)HCPU and Q26UD(E)HCPU

Device name			Dovice Specification		Processing Time (µs)	
Devic	e name	data	Location	Q03UD(E)CPU	Q04/Q06UD(E)HCPU	Q10/Q13/Q20/ Q26UD(E)HCPU
		Dit	Source	0.100	0.048	0.048
		ы	Destination	0.100	0.038	0.038
	When standard	Word	Source	0.100	0.048	0.048
	RAM is used	word	Destination	0.100	0.038	0.038
		Double word	Source	0.200	0.095	0.095
		Double word	Destination	0.200	0.086	0.086
		Dit	Source	0.220	0.200	0.200
	When SRAM	DIL	Destination	0.180	0.162	0.162
File register	card is used	Word	Source	0.220	0.200	0.200
(R)	(Q2MEM-1MBS,	word	Destination	0.180	0.162	0.162
	Q2MEM-2MBS)	Double word	Source	0.440	0.399	0.399
		Double word	Destination	0.380	0.361	0.361
		Dit	Source	0.160	0.152	0.152
	When SRAM	DIL	Destination	0.140	0.133	0.133
	card is used	Word	Source	0.160	0.152	0.152
	(Q3MEM-4MBS,	word	Destination	0.140	0.133	0.133
	Q3MEM-8MBS)	Double word	Source	0.320	0.304	0.304
		Double word	Destination	0.300	0.295	0.295
		Dit	Source	0.120	0.057	0.057
	When standard RAM is used	DIL	Destination	0.120	0.048	0.048
		Word	Source	0.120	0.057	0.057
			Destination	0.120	0.048	0.048
		Double word	Source	0.220	0.105	0.105
File register		Double word	Destination	0.220	0.095	0.095
		Dit	Source	0.240	0.209	0.209
(ZR)/	When SRAM	DIL	Destination	0.200	0.171	0.171
data register	card is used	Word	Source	0.240	0.209	0.209
	(Q2MEM-1MBS,	word	Destination	0.200	0.171	0.171
	Q2MEM-2MBS)	Doublo word	Source	0.460	0.409	0.409
(W))		Double word	Destination	0.400	0.371	0.371
())		Bit	Source	0.180	0.162	0.162
	When SRAM	Dit	Destination	0.160	0.143	0.143
	card is used	Word	Source	0.180	0.162	0.162
	(Q3MEM-4MBS,	word	Destination	0.160	0.143	0.143
	Q3MEM-8MBS)	Double word	Source	0.340	0.314	0.314
		Double word	Destination	0.320	0.304	0.304
		Bit	Source	0.220	0.181	0.181
Module access device		Dit	Destination	0.140	0.105	0.105
(Multiple CPU h	igh speed trans-	Word	Source	0.220	0.181	0.181
mission area)		word	Destination	0.140	0.105	0.105
(U3En\G10000)		Double word	Source	0.500	0.437	0.437
			Destination	0.340	0.285	0.285

(3) Table of the time to be added when F/T(ST)/C device is used in OUT/SET/RST instruction

(a)	When using	Q00UJCPU,	Q00UCPU,	Q01UCPU	amd Q02UC	PU.
-----	------------	-----------	----------	---------	-----------	-----

Instruction	Device name	-Con	dition	Processing Time (µs)					
name	Bevice name			Q00UJCPU	Q00UCPU	Q01UCPU	Q02UCPU		
		When not executed		2.900	2.900	2.900	2.100		
	F	When executed	When displayed	116.000	116.000	116.000	68.800		
OUT			Display completed	116.000	116.000	116.000	61.600		
OUT	T(ST), C	When not	texecuted	0.360	0.240	0.180	0.120		
		When executed	After time up	0.360	0.240	0.180	0.120		
			When added	0.360	0.240	0.180	0.120		
	F	When not executed		0.120	0.080	0.006	0.004		
SET		When executed	When displayed	116.000	116.000	116.000	68.600		
			Display completed	116.000	116.000	116.000	65.700		
		When not	t executed	0.120	0.080	0.006	0.004		
	F	When executed	When displayed	55.800	55.800	55.800	26.500		
RST			Display completed	29.200	29.200	29.200	21.600		
OUT	T(ST) C	When not	t executed	0.360	0.240	0.180	0.120		
	1(01), 0	When e	executed	0.360	0.240	0.180	0.120		

(b) When using Q03UD(E)CPU, Q04UD(E)HCPU, Q06UD(E)HCPU, Q10UD(EHCPU, Q13UD(E)HCPU, Q20UD(E)HCPU and Q26UD(E)HCPU

Instruction				Processing Time (µs)							
name	Device name	Con	dition	Q03UD(E)CPU	Q04/Q06UD(E)HCPU	Q10/Q13/Q20/ Q26UD(E)HCPU					
		When no	t executed	1.940	1.570	1.570					
	F	When executed	When displayed	39.930	38.090	38.090					
OUT		When executed	Display completed	39.750	37.980	37.980					
T(S	T(ST) C	When no	t executed	0.060	0.030	0.030					
SET F	1(01), 0	When executed	After time up	0.060	0.030	0.030					
		When no	t executed	0.000	0.000	0.000					
SET F	F	When executed	When displayed	42.900	40.600	40.600					
		When executed	Display completed	39.270	37.900	37.900					
		When no	t executed	0.000	0.000	0.000					
	F	When executed	When displayed	45.260	36.600	36.600					
RST		When executed	Display completed	19.020	16.190	16.190					
-	T(ST) C	When not executed		0.060	0.030	0.030					
T	T(ST), C	When e	executed	0.060	0.030	0.030					

Appendix 1.4.2 Processing time of instructions other than subset instruction

The following table shows the processing time of instructions other than subset instructions.

- (1) Table of the processing time of instructions other than subset instructions
 - (a) When using Q00UJCPU, Q00UCPU, Q01UCPU and Q02UCPU

						Processing	g Time (µs))		
Category	Instruction	Condition (Device)	Q00U	JCPU	Q001	JCPU	Q01L	JCPU	Q02L	ICPU
			Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.
	ANB ORB MPS MRD MPP	_	0.1	20	0.0	080	0.0	060	0.0	40
		When not executed	0.4	20	0.0	200	0.0	200	0.040	
	INV	When executed	0.1	20	0.0	080	0.0	000	0.0	40
	MEP	When not executed	0.120		0.080		0.060		0.040	
	MEF	When executed	0.120		0.080		0.000		0.040	
	EGP	When not executed		0.120		080	0.0	060	0.0	40
	EGF	When executed	0.1	20	0.0		0.0		0.0	
Sequence	PLS	_	1.800	1.900	1.800	1.900	1.800	1.900	1.300	1.600
Instruction	PLF		1.800	1.900	1.800	1.900	1.800	1.900	1.600	1.700
	FF	When not executed	0.240		0.160		0.120		0.080	
		When executed	1.700	1.800	1.700	1.800	1.700	1.800	1.200	1.500
		When not executed	0.2	240	0.1	160	0.1	20	0.0	80
	DELIA	When executed	4.000	14.700	4.000	14.700	4.000	14.700	2.800	3.600
	SET	When not executed	0.2	240	0.1	160	0.1	20	0.8	00
	011	When executed	1.800	12.600	1.800	12.600	1.800	12.600	1.600	6.600
	MC		0.2	240	0.1	160	0.1	20	0.0	80
	MCR	_	0.1	20	0.0	080	0.0)60	0.040	
	FEND	Error check performed	250.000	250.000	250.000	250.000	250.000	250.000	175.000	252.000
	END	No error check performed	250.000	250.000	250.000	250.000	250.000	250.000	175.000	221.000

							P	rocessing	g Time (µ	ıs)		
Category	Instruction		Conditi	on (Device)	Q00U	JCPU	Q001	JCPU	Q01l	JCPU	Q02L	JCPU
					Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.
Sequence	NOP											
instruction	NOPLF PAGE				0.1	120	0.0)80	0.0	060	0.0	940
	LDF=	Single	In	conductive status	4.400	20.900	4.400	20.900	4.400	20.900	4.700	10.100
		precision	In no	on-conductive status	4.400	20.900	4.400	20.900	4.400	20.900	4.700	10.100
		Single	W	hen not executed	0.3	360	0.2	240	0.1	180	0.1	20
	ANDE=	precision	When	In conductive status	4.200	19.600	4.200	19.600	4.200	19.600	4.200	12.500
			executed	In non-conductive status	4.200	19.600	4.200	19.600	4.200 19.600		4.400	11.900
		Single	W	hen not executed	0.3	360	0.2	240	0.1	180	0.1	20
	ORE=	precision	When	In conductive status	4.200	17.400	4.200	17.400	4.200	17.400	4.600	10.800
			executed	In non-conductive status	4.200	17.400	4.200	17.400	4.200	17.400	4.500	9.800
	LDE< >	Single	In conductive status		4.400	20.900	4.400	20.900	4.400	20.900	4.700	7.700
		precision	In no	on-conductive status	4.400	20.900	4.400	20.900	4.400	20.900	4.600	8.200
		Single	W	hen not executed	0.3	360	0.2	240	0.1	180	0.1	20
	ANDE< >	precision	When	In conductive status	4.200	19.600	4.200	19.600	4.200	19.600	4.300	14.200
		p	executed	In non-conductive status	4.200	19.600	4.200	19.600	4.200	19.600	4.400	14.200
		Singlo	When not executed		0.3	360	0.2	240	0.1	180	0.1	20
	ORE< >	precision	When	In conductive status	4.200	17.400	4.200	17.400	4.200	17.400	4.600	6.700
	LDE> Single precision	productor	executed	In non-conductive status	4.200	17.400	4.200	17.400	4.200	17.400	4.400	6.600
		In	conductive status	4.400	20.900	4.400	20.900	4.400	20.900	4.700	13.700	
		In no	on-conductive status	4.400	20.900	4.400	20.900	4.400	20.900	4.600	13.700	
			W	hen not executed	0.3	360	0.2	240	0.1	180	0.1	20
Basic	ANDE>	precision	When	In conductive status	4.200	19.600	4.200	19.600	4.200	19.600	4.300	8.100
instruction		precision	executed	In non-conductive status	4.200	19.600	4.200	19.600	4.200	19.600	4.200	8.100
		Single	W	hen not executed	0.3	360	0.2	240	0.1	180	0.1	20
	ORE>	precision	When	In conductive status	4.200	17.400	4.200	17.400	4.200	17.400	4.600	8.500
		P	executed	In non-conductive status	4.200	17.400	4.200	17.400	4.200	17.400	4.400	8.100
	IDF<=	Single	In	conductive status	4.400	20.900	4.400	20.900	4.400	20.900	4.700	11.100
	LDL	precision	In no	on-conductive status	4.400	20.900	4.400	20.900	4.400	20.900	4.700	9.600
		Single	W	hen not executed	0.3	360	0.2	240	0.1	180	0.1	20
	ANDE<=	precision	When	In conductive status	4.200	19.600	4.200	19.600	4.200	19.600	4.100	7.800
		•	executed	In non-conductive status	4.200	19.600	4.200	19.600	4.200	19.600	4.400	8.200
		Single	W	hen not executed	0.3	360	0.2	240	0.1	180	0.1	20
	ORE<=	precision	When	In conductive status	4.200	17.400	4.200	17.400	4.200	17.400	4.500	10.300
		•	executed	In non-conductive status	4.200	17.400	4.200	17.400	4.200	17.400	4.400	9.800
	I DF<	Single	In	conductive status	4.400	20.900	4.400	20.900	4.400	20.900	4.700	11.500
		precision	In no	on-conductive status	4.400	20.900	4.400	20.900	4.400	20.900	4.700	10.900
		Single	W	hen not executed	0.3	360	0.2	240	0.1	180	0.1	20
	ANDE<	precision	e When In conductive status executed In non-conductive status		4.200	19.600	4.200	19.600	4.200	19.600	4.300	9.200
		,			4.200	19.600	4.200	19.600	4.200	19.600	4.400	9.400
	Singlo When not executed		0.3	360	0.240		0.180		0.120			
	ORE<	Single	When In conductive status		4.200	17.400	4.200	17.400	4.200	17.400	4.600	10.400
		precision	executed	In non-conductive status	4.200	17.400	4.200	17.400	4.200	17.400	4.400	9.800

							Pi	rocessing	g Time (µ	us)		
Category	Instruction		Condit	ion (Device)	Q00L	JCPU	Q001	JCPU	Q011	JCPU	Q021	JCPU
					Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.
	IDE>=	Single	In	conductive status	4.400	20.900	4.400	20.900	4.400	20.900	4.700	12.200
		precision	In no	on-conductive status	4.400	20.900	4.400	20.900	4.400	20.900	4.700	11.800
		Single	W	hen not executed	0.3	360	0.2	240	0.1	180	0.1	120
	ANDE>=	precision	When	In conductive status	4.200	19.600	4.200	19.600	4.200	19.600	4.100	6.700
		precision	executed	In non-conductive status	4.200	19.600	4.200	19.600	4.200	19.600	4.400	7.000
		Cingle	W	hen not executed	0.3	360	0.2	240	0.1	180	0.1	120
	ORE>=	precision	When	In conductive status	4.200	17.400	4.200	17.400	4.200	17.400	4.600	14.000
		precision	executed	In non-conductive status	4.200	17.400	4.200	17.400	4.200	17.400	4.500	14.300
		Double	In	conductive status	4.700	37.400	4.700	37.400	4.700	37.400	4.200	21.000
	LULU-	precision	In no	on-conductive status	4.700	37.400	4.700	37.400	4.700	37.400	5.100	21.900
		Daubla	W	hen not executed	0.3	360	0.2	240	0.1	180	0.1	120
	ANDED=	Double	When	In conductive status	4.500	34.700	4.500	34.700	4.500	34.700	3.800	17.800
		precision	executed	In non-conductive status	4.500	34.700	4.500	34.700	4.500	34.700	4.100	18.100
		Daubla	W	hen not executed	0.3	360	0.2	240	0.1	180	0.1	120
	ORED=	Double	When	In conductive status	4.700	33.200	4.700	33.200	4.700	33.200	4.100	23.800
		precision	executed	In non-conductive status	4.700	33.200	4.700	33.200	4.700	33.200	4.900	25.500
		Double	In	conductive status	4.700	37.400	4.700	37.400	4.700	37.400	5.100	23.500
Basic instruction	LDED	precision	In no	on-conductive status	4.700	37.400	4.700	37.400	4.700	37.400	4.200	22.600
	ANDED<>	Daubla	W	hen not executed	0.3	360	0.2	240	0.1	180	0.1	120
		Double	When	In conductive status	4.500	34.700	4.500	34.700	4.500	34.700	4.000	18.800
		precision	executed	In non-conductive status	4.500	34.700	4.500	34.700	4.500	34.700	4.000	18.700
		Daubla	When not executed		0.360		0.2	240	0.1	180	0.1	120
	ORED<>	Double	When	In conductive status	4.700	33.200	4.700	33.200	4.700	33.200	5.000	25.200
		precision	executed	In non-conductive status	4.700	33.200	4.700	33.200	4.700	33.200	4.100	23.400
		Double	In	conductive status	4.700	37.400	4.700	37.400	4.700	37.400	5.100	25.100
		precision	In no	on-conductive status	4.700	37.400	4.700	37.400	4.700	37.400	4.200	23.400
		Doublo	W	hen not executed	0.3	360	0.2	240	0.1	180	0.1	120
	ANDED>	precision	When	In conductive status	4.500	34.700	4.500	34.700	4.500	34.700	4.000	19.500
		producion	executed	In non-conductive status	4.500	34.700	4.500	34.700	4.500	34.700	4.100	19.700
		Doublo	W	hen not executed	0.3	360	0.2	240	0.1	180	0.1	120
	ORED>	precision	When	In conductive status	4.700	33.200	4.700	33.200	4.700	33.200	5.000	24.200
		problom	executed	In non-conductive status	4.700	33.200	4.700	33.200	4.700	33.200	4.900	25.800
		Double	In	conductive status	4.700	37.400	4.700	37.400	4.700	37.400	4.200	22.500
	LDED<-	precision	In no	on-conductive status	4.700	37.400	4.700	37.400	4.700	37.400	4.200	13.500
		Double	W	hen not executed	0.3	360	0.2	240	0.1	180	0.1	120
	ANDED<=	Double	When	In conductive status	4.500	34.700	4.500	34.700	4.500	34.700	4.000	19.600
		precision	executed	In non-conductive status	4.500	34.700	4.500	34.700	4.500	34.700	4.100	19.700
		Dauble	W	hen not executed	0.3	360	0.2	240	0.1	180	0.1	120
	ORED<=	precision	When	In conductive status	4.700	33.200	4.700	33.200	4.700	33.200	5.000	26.300
	URED<=		executed	In non-conductive status	4.700	33.200	4.700	33.200	4.700	33.200	5.000	25.200

							Process		ssing Time (µs)			
Category	Instruction		Conditio	on (Device)	Q00U	JCPU	Q00L	JCPU	Q011	JCPU	Q021	JCPU
					Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.
	I DED<	Double	In	conductive status	4.700	37.400	4.700	37.400	4.700	37.400	5.100	25.000
Category I	LDLD	precision	In no	n-conductive status	4.700	37.400	4.700	37.400	4.700	37.400	4.200	24.100
		Doublo	W	nen not executed	0.3	360	0.2	240	0.1	180	0.1	20
	ANDED<	precision	When	In conductive status	4.500	34.700	4.500	34.700	4.500	34.700	4.000	19.400
		producion	executed	In non-conductive status	4.500	34.700	4.500	34.700	4.500	34.700	4.100	19.700
		Double	W	nen not executed	0.3	360	0.2	240	0.1	180	0.1	20
	ORED<	precision	When	In conductive status	4.700	33.200	4.700	33.200	4.700	33.200	5.000	25.100
		producion	executed	In non-conductive status	4.700	33.200	4.700	33.200	4.700	33.200	5.000	25.100
	I DED>=	Double	In	conductive status	4.700	37.400	4.700	37.400	4.700	37.400	4.200	13.100
		precision	In no	n-conductive status	4.700 37.400		4.700 37.400		4.700 37.400		4.300	13.100
		Double	W	nen not executed	0.360		0.240		0.1	180	0.120	
	ANDED>=	precision	When	In conductive status	4.500	34.700	4.500	34.700	4.500	34.700	3.900	19.500
Basic instruction		producion	executed	In non-conductive status	4.500	34.700	4.500	34.700	4.500	34.700	4.100	19.800
		Doublo	W	nen not executed	0.3	360	0.2	240	0.1	180	0.1	20
Basic instruction	ORED>=	precision	When	In conductive status	4.700	33.200	4.700	33.200	4.700	33.200	5.000	25.100
		producion	executed	In non-conductive status	4.700	33.200	4.700	33.200	4.700	33.200	4.200	18.500
	10\$=		In condu	ictive status	8.300	38.500	8.300	38.500	8.300	38.500	5.500	14.900
	LDŲ-		In non-con	ductive status	8.300	38.500	8.300 38.500		8.300 38.500		5.500	15.600
Basic instruction			When n	ot executed	0.3	360	0.2	240	0.1	180	0.1	120
	AND\$=	When e	everyted	In conductive status	7.200	37.300	7.200	37.300	7.200	37.300	5.200	13.800
		When e		In non-conductive status	7.200	37.300	7.200	37.300	7.200	37.300	5.300	14.500
Basic			When n	ot executed	0.3	360	0.2	240	0.1	180	0.1	120
instruction	OR\$=	When e	executed	In conductive status	7.500	36.600	7.500	36.600	7.500	36.600	5.500	14.900
Basic instruction				In non-conductive status	7.500	36.600	7.500	36.600	7.500	36.600	5.300	14.600
	1 D\$< >		In condu	ictive status	8.300	39.300	8.300	39.300	8.300	39.300	5.600	15.200
	LDQ ···		In non-con	ductive status	8.300 39.300		8.300 39.300		8.300 39.300		5.600	15.400
			When n	ot executed	0.3	360	0.240		0.1	180	0.1	20
	AND\$< >	When e	executed	In conductive status	8.000	38.200	8.000	38.200	8.000	38.200	4.300	21.500
				In non-conductive status	8.000	38.200	8.000	38.200	8.000	38.200	4.500	23.400
			When n	ot executed	0.3	360	0.2	240	0.1	180	0.1	120
	OR\$< >	When e	executed	In conductive status	8.300	37.300	8.300	37.300	8.300	37.300	5.400	17.700
				In non-conductive status	8.300	37.300	8.300	37.300	8.300	37.300	5.300	19.400
	LD\$>		In condu	ictive status	8.300	41.600	8.300	41.600	8.300	41.600	6.400	19.200
			In non-con	ductive status	8.300	41.600	8.300	41.600	8.300	41.600	5.600	20.100
			When n	ot executed	0.3	360	0.2	240	0.1	180	0.1	20
	AND\$>	When e	executed	In conductive status	8.000	38.100	8.000	38.100	8.000	38.100	4.500	15.400
				In non-conductive status	8.000	38.100	8.000	38.100	8.000	38.100	4.600	15.300
			When n	ot executed	0.3	360	0.2	240	0.1	180	0.1	20
	OR\$>	When e	executed	In conductive status	8.200	35.700	8.200	35.700	8.200	35.700	5.400	20.000
				In non-conductive status	8.200	35.700	8.200	35.700	8.200	35.700	5.400	22.100
	LD\$<=		In condu	ictive status	8.300	39.200	8.300	39.200	8.300	39.200	5.800	12.800
			In non-con	ductive status	8.300	39.200	8.300 39.200		8.300 39.200		6.300	13.900
			When n	ot executed	0.3	360	0.240		0.180		0.120	
	AND\$<=	When e	executed	In conductive status	7.100	36.500	7.100	36.500	7.100	36.500	6.000	16.000
				In non-conductive status	7.100	36.500	7.100	36.500	7.100	36.500	6.100	16.200

Category Instruction Condition (Device) Q00UJCPU Q00UCPU Q01UCPU Q02UCPU Min. Max. Min. <th>٧</th>	٧
Min. Max. Min. Max. <th< td=""><td></td></th<>	
OR\$<= When not executed 0.360 0.240 0.180 0.120 When executed In conductive status 7.400 35.600 7.400 35.600 7.400 35.600 7.400 35.600 7.400 35.600 7.400 35.600 7.400 35.600 4.700 14. LD\$ In conductive status 7.400 40.000 7.400	/lax.
OR\$<= When executed In conductive status 7.400 35.600 7.400 35.600 7.400 35.600 7.400 35.600 7.400 35.600 7.400 35.600 7.400 35.600 7.400 35.600 7.400 35.600 7.400 35.600 7.400 35.600 7.400 35.600 7.400 35.600 7.400 35.600 7.400 35.600 7.400 35.600 7.400 40.000 7.40	
executed In non-conductive status 7.400 35.600 7.400 35.600 7.400 35.600 7.400 35.600 7.400 35.600 7.400 35.600 7.400 35.600 7.400 35.600 7.400 35.600 7.400 35.600 7.400 35.600 7.400 40.00	1.600
LD\$ In conductive status 7.400 40.000	.400
In non-conductive status 7.400 40.000 7.400 40.000 7.400 40.000 5.500 18. AND\$ When not executed 0.360 0.240 0.180 0.120 When executed In conductive status 8.000 37.300 8.000 37.300 8.000 37.300 6.200 14. OR\$ When not executed 0.360 0.240 0.180 0.120 When not executed 0.360 37.300 8.000 37.300 8.000 37.300 6.200 14. OR\$ When not executed 0.360 0.240 0.180 0.120 When not executed 0.360 0.240 0.180 0.120 OR\$ When not executed 0.360 0.240 0.180 0.120	′.000
AND\$ When not executed 0.360 0.240 0.180 0.120 When executed In conductive status 8.000 37.300 8.000 37.300 8.000 37.300 8.000 37.300 8.000 37.300 8.000 37.300 8.000 37.300 6.200 14. OR\$ When not executed 0.360 0.240 0.180 0.120 0.120 When not executed 0.360 0.240 0.180 0.120 0.120 OR\$ When not executed 0.360 35.600 8.300 35.600 8.300 35.600 6.200 18.	3.000
AND\$ When executed In conductive status 8.000 37.300 8.000 37.300 8.000 37.300 5.900 13. In non-conductive status 8.000 37.300 8.000 37.300 8.000 37.300 8.000 37.300 6.200 14. OR\$ When not executed 0.360 0.240 0.180 0.120 When Not executed 8.300 35.600 8.300 35.600 8.300 35.600 6.200 18.	
executed In non-conductive status 8.000 37.300 8.000 37.300 8.000 37.300 6.200 14. OR\$ When not executed 0.360 0.240 0.180 0.120 When In conductive status 8.300 35.600 8.300 35.600 6.200 18. executed In conductive status 8.300 35.600 8.300 35.600 6.200 18.	3.400
When not executed 0.360 0.240 0.180 0.120 OR\$ When In conductive status 8.300 35.600 8.300 35.600 8.300 35.600 6.200 18.	.500
OR\$ When executed In conductive status 8.300 35.600 8.300 35.600 8.300 35.600 6.200 18.	
	3.700
5.400 19.).700
LD\$>= In conductive status 7.400 38.300 7.400 38.300 7.400 38.300 4.800 10.1).000
In non-conductive status 7.400 38.300 7.400 38.300 7.400 38.300 5.500 11.2	.200
When not executed 0.360 0.240 0.180 0.120	
AND\$>= When In conductive status 7.200 37.300 7.200 37.300 7.200 37.300 4.400 21.	.600
executed In non-conductive status 7.200 37.300 7.200 37.300 7.200 37.300 4.500 21.	.800
When not executed 0.360 0.240 0.180 0.120	
OR\$>= When In conductive status 8.200 36.400 8.200 36.400 8.200 36.400 5.400 15.400	5.400
executed In non-conductive status 8.200 36.400 8.200 36.400 8.200 36.400 5.300 15.	5.300
n = 1 15.300 36.100 15.300 36.100 15.300 36.100 8.200 22.	2.600
n = 96 64.500 85.500 64.500 85.500 64.500 85.500 57.400 72.	2.500
Basic n = 1 15.300 36.100 15.300 36.100 15.300 36.100 8.200 22.	2.500
n = 96 66.600 87.500 66.600 87.500 66.600 87.500 59.500 74.	.500
n = 1 15.300 36.100 15.300 36.100 15.300 36.100 8.200 23.	3.100
n = 96 66.600 87.500 66.600 87.500 66.600 87.500 59.500 74.	.400
n = 1 15.300 36.100 15.300 36.100 15.300 36.100 8.200 22.	2.500
n = 96 64.500 85.500 64.500 85.500 64.500 85.500 72.400 72.4	2.400
n = 1 15.300 36.100 15.300 36.100 15.300 36.100 8.300 23.	\$.000
n = 96 66.600 87.500 66.600 87.500 66.600 87.500 59.500 74.	.500
n = 1 15.300 36.100 15.300 36.100 15.300 36.100 8.200 22.4	2.500
n = 96 64.500 85.500 64.500 85.500 64.500 85.500 72.400 72.	2.400
n = 1 15.800 36.300 15.800 36.300 9.350 29.	9.000
DBRCMP = 51 52 U n n = 96 64.900 85.700 64.900 85.700 64.900 85.700 60.700 78.	3.400
n = 1 15.700 36.300 15.700 36.300 15.700 36.300 9.350 28.	3.900
DBKCMP<> \$1 \$2 U n n = 96 67.000 87.700 67.000 87.700 67.000 87.700 62.500 80.1).300
n = 1 15.800 36.300 15.800 36.300 15.800 36.300 9.350 29.	9.000
DBKCMP> \$1 \$2 U n n = 96 67.000 87.700 67.000 87.700 67.000 87.700 62.600 80.	0.300
n = 1 15.700 36.300 15.700 36.300 9.350 29.	9.000
DBKCMP<= (\$1) (\$2) (D) n n = 96 64.800 85.700 64.800 85.700 64.800 85.700 60.800 78.	3.400
n = 1 15.800 36.300 15.800 36.300 9.350 29.	9.000
DBKCMP< (\$1) (\$2) (D) n n = 96 67.000 87.700 67.000 87.700 67.000 87.700 62.700 80.	0.400
n = 1 15.700 36.300 15.700 36.300 9.300 29.	9.000
DBKCMP>= (\$1) (\$2) (D) n n = 96 64.800 85.700 64.800 85.700 64.800 85.700 60.700 78.	3.400

						P	rocessing	η Time (μ	s)		
Category	Instruction		Condition (Device)	Q00U	JCPU	Q00L	JCPU	Q01L	JCPU	Q02L	ICPU
				Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.
	DB + S D		When executed	5.750	13.300	5.750	13.300	5.750	13.300	4.900	7.500
	DB + \$1 \$2 D		When executed	5.650	13.200	5.650	13.200	5.650	13.200	5.200	11.000
	db - S D		When executed	5.750	12.700	5.750	12.700	5.750	12.700	4.900	10.200
	DB - \$1 \$2 D		When executed	5.650	12.600	5.650	12.600	5.650	12.600	5.200	8.600
	DB * \$1 \$2 D		When executed	8.750	40.200	8.750	40.200	8.750	40.200	8.300	22.200
	DB/ \$1 \$2 D		When executed	5.750	21.500	5.750	21.500	5.750	21.500	6.100	19.200
		Double	(s) = 0, (D) = 0	4.500	26.700	4.500	26.700	4.500	26.700	4.800	16.800
		sion	(s) = 2^{1023} , (d) = 2^{1023}	5.800	32.900	5.800	32.900	5.800	32.900	4.800	16.800
		Double	§1) = 0, §2) = 0	5.450	35.400	5.450	35.400	5.450	35.400	7.100	20.100
		sion	§1) = 2 ¹⁰²³ , §2) = 2 ¹⁰²³	6.750	41.400	6.750	41.400	6.750	41.400	7.100	20.100
		Double	(s) = 0, (D) = 0	5.200	25.900	5.200	25.900	5.200	25.900	5.000	17.300
		sion	$(s) = 2^{1023}, (D) = 2^{1023}$	6.000	27.700	6.000	27.700	6.000	27.700	5.000	17.300
		Double	§1) = 0, §2) = 0	5.550	32.900	5.550	32.900	5.550	32.900	6.000	16.300
		sion	§1) = 2 ¹⁰²³ , §2) = 2 ¹⁰²³	5.750	33.900	5.750	33.900	5.750	33.900	6.000	16.300
		Double	§1) = 0, §2) = 0	5.550	34.400	5.550	34.400	5.550	34.400	10.500	22.300
Basic instruction		sion	§1) = 2 ¹⁰²³ , §2) = 2 ¹⁰²³	5.950	39.100	5.950	39.100	5.950	39.100	10.500	22.300
	ED / §1 §2 D	Double precision $(S_1) = 2^{1023}, (S_2) = 2^{1023}$		8.050	44.200	8.050	44.200	8.050	44.200	7.500	27.200
			n = 1 / / n = 96 / 6 n = 1 / /		28.500	13.500	28.500	13.500	28.500	12.100	19.700
	BK + 6) 62 (D h				78.200	63.100	78.200	63.100	78.200	61.700	69.300
					28.500	13.500	28.500	13.500	28.500	12.100	20.600
			n = 96	63.100	78.200	63.100	78.200	63.100	78.200	61.700	70.200
	DBK + S1 S2 (D n		n = 1	10.100	24.200	10.100	24.200	10.100	24.200	7.050	19.200
			n = 96	59.800	73.900	59.800	73.900	59.800	73.900	59.400	68.900
	DBK - ⑤		n = 1	10.100	24.200	10.100	24.200	10.100	24.200	7.050	19.900
			n = 96	59.800	73.900	59.800	73.900	59.800	73.900	59.400	69.600
	\$ + (S) (D)			15.400	64.300	15.400	64.300	15.400	64.300	14.400	34.000
	\$ + \$1 \$2 D		_	19.700	71.000	19.700	/1.000	19.700	/1.000	9.200	22.900
	FLTD	preci-	(s) = 0	3.100	19.600	3.100	19.600	3.100	19.600	4.000	8.900
		Daubla		3.350	19.900	3.350	19.900	3.350	19.900	3.400	10 900
	DFLTD	preci-		3.200	20.400	3.200	20.400	3.200	20.400	4.100	10.000
		Double	(s) = /FFFFFFH	3 200	20.000	3 200	20.000	3 200	20.000	3 500	Q 300
	INTD	preci-	(s) = 0	4 100	34 300	4 100	34 300	<u> </u>	34 300	5 100	19.500
		Double	(s) = 32700.5	3 200	23.000	3 200	23.000	3 200	23 000	2 600	6 800
	DINTD	preci-	(s) = 0	4.050	23.000	4.050	23.000	3.200 4 0E0	23.000	2.000	11 700
		510(1	(S) = 1234567890.3	4.050	55.500	4.050	55.500	4.030	55.500	5.400	11.700

						Process	ing Time (µ	s)		
Category	Instruction	Condition (Device)	Q00U	JCPU	Q001	JCPU	Q01L	JCPU	Q021	JCPU
			Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.
	DBL	When executed	3.300	5.900	3.300	5.900	3.300	5.900	2.700	3.800
	WORD	When executed	3.000	7.250	3.000	7.250	3.000	7.250	2.900	7.000
	GRY	When executed	3.350	7.500	3.350	7.500	3.350	7.500	2.700	6.100
	DGRY	When executed	3.000	7.200	3.000	7.200	3.000	7.200	2.900	4.600
	GBIN	When executed	4.600	9.700	4.600	9.700	4.600	9.700	4.000	8.200
	DGBIN	When executed	5.550	10.700	5.550	10.700	5.550	10.700	5.500	8.000
	NEG	When executed	3.300	6.850	3.300	6.850	3.300	6.850	2.400	4.100
	DNEG	When executed	3.050	5.700	3.050	5.700	3.050	5.700	2.500	4.300
	ENEC	Floating point = 0	3.100	7.350	3.100	7.350	3.100	7.350	2.500	3.400
	ENEG	Floating point = -1.0	3.350	11.700	3.350	11.700	3.350	11.700	2.700	4.500
	EDNEC	Floating point = 0	3.000	21.200	3.000	21.200	3.000	21.200	2.200	3.500
	EDINEG	Floating point = -1.0	3.100	22.900	3.100	22.900	3.100	22.900	2.400	3.500
		n = 1	8.700	27.600	8.700	27.600	8.700	27.600	9.700	22.000
	BKBCD S U n	n = 96	84.200	104.000	84.200	104.000	84.200	104.000	74.200	86.500
		n = 1	8.450	28.100	8.450	28.100	8.450	28.100	8.900	16.300
	BKBIN S U n	n = 96	56.100	75.800	56.100	75.800	56.100	75.800	58.500	65.100
	ECON	_	3.100	21.300	3.100	21.300	3.100	21.300	4.300	6.800
	EDCON	_	5.050	24.000	5.050	24.000	5.050	24.000	2.800	5.400
	EDMOV	_	2.900	22.900	2.900	22.900	2.900	22.900	3.200	7.800
		Character string to be transferred = 0	6.250	30.100	6.250	30.100	6.250	30.100	4.500	13.900
Basic	\$1010 0	Character string to be transferred = 32	15.500	39.300	15.500	39.300	15.500	39.300	15.400	17.500
Instruction		n = 1	8.400	20.900	8.400	20.900	8.400	20.900	8.700	15.200
	BXCH 🖤 🖾 n	n = 96	67.100	79.900	67.100	79.900	67.100	79.900	67.200	74.000
	SWAP	_	3.300	3.550	3.300	3.550	3.300	3.550	2.400	2.700
	GOEND	_	0.5	50	0.8	550	0.5	50	0.5	500
	DI	_	2.800	8.400	2.800	8.400	2.800	8.400	1.800	2.200
	EI		4.300	12.300	4.300	12.300	4.300	12.300	3.100	3.800
	IMASK		12.900	40.600	12.900	40.600	12.900	40.600	9.800	25.000
	IRET		1.0	000	1.0	000	1.0	000	1.0	000
	RSF X n	n = 1	7.500	26.500	7.500	26.500	7.500	26.500	4.300	16.100
		n = 96	11.400	30.400	11.400	30.400	11.400	30.400	11.400	23.700
	RSF Y n	n = 1	7.300	26.300	7.300	26.300	7.300	26.300	3.800	10.000
		n = 96	10.900	29.900	10.900	29.900	10.900	29.900	8.500	15.200
	UDCNT1	_	1.500	7.100	1.500	7.100	1.500	7.100	1.000	2.000
	UDCNT2	_	1.500	6.300	1.500	6.300	1.500	6.300	1.000	4.000
	TTMR	_	5.300	20.900	5.300	20.900	5.300	20.900	3.900	6.100
	STMR	_	8.900	49.800	8.900	49.800	8.900	49.800	7.200	30.000
	ROTC		52.300	52.600	52.300	52.600	52.300	52.600	15.200	16.100
	RAMP		7.400	30.900	7.400	30.900	7.400	30.900	5.900	18.300
	SPD		1.500	6.300	1.500	6.300	1.500	6.300	1.000	2.800
	PLSY		6.400	7.100	6.400	7.100	6.400	7.100	3.500	4.700
	PWM		3.900	4.600	3.900	4.600	3.900	4.600	3.400	3.400
	MTR		10.100	61.400	10.100	61.400	10.100	61.400	20.500	28.400

							Processing	g Time (µs))		
Category	Instruction	Condi	tion (Device)	Q00U	JCPU	Q00L	JCPU	Q01L	JCPU	Q021	JCPU
				Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.
			n = 1	13.600	28.500	13.600	28.500	13.600	28.500	12.100	20.100
	BKAND 🔊 🥹 🙂 n		n = 96	63.200	78.200	63.200	78.200	63.200	78.200	57.400	63.200
			n = 1	13.500	28.500	13.500	28.500	13.500	28.500	7.700	13.200
	BKOR 🗐 🤓 🕛 n		n = 96	63.100	78.200	63.100	78.200	63.100	78.200	57.400	62.800
			n = 1	13.600	28.300	13.600	28.300	13.600	28.300	7.800	13.200
	BKXOR SI SU U n		n = 96	63.100	78.000	63.100	78.000	63.100	78.000	57.300	62.800
			n = 1	13.500	28.300	13.500	28.300	13.500	28.300	7.800	14.100
	BKXNR 🔊 🥹 🕛 n		n = 96	63.100	78.000	63.100	78.000	63.100	78.000	57.400	62.900
			n = 1	5.050	21.100	5.050	21.100	5.050	21.100	3.700	6.300
	BSFR I n		n = 96	9.000	34.800	9.000	34.800	9.000	34.800	10.200	12.800
			n = 1	4.800	19.100	4.800	19.100	4.800	19.100	4.500	8.900
	BSFL 🕑 n		n = 96	8.550	34.300	8.550	34.300	8.550	34.300	10.100	14.300
		n1 =	16 / n2 = 1	10.300	46.500	10.300	46.500	10.300	46.500	8.800	43.400
	SFIBR I n1 n2	n1 =	16 / n2 = 15	10.300	46.400	10.300	46.400	10.300	46.400	8.750	43.400
		n1 =	16 / n2 = 1	10.500	49.800	10.500	49.800	10.500	49.800	8.050	45.100
		n1 =	16 / n2 = 15	10.500	49.800	10.500	49.800	10.500	49.800	8.050	45.100
		n1 =	16 / n2 = 1	7.950	24.000	7.950	24.000	7.950	24.000	6.500	22.800
	SFTWR @ ITTIZ	n1 =	16 / n2 = 15	7.950	24.100	7.950	24.100	7.950	24.100	6.500	22.800
		n1 =	16 / n2 = 1	8.700	23.600	8.700	23.600	8.700	23.600	7.350	23.600
	SFTWL C nt nz	n1 =	16 / n2 = 15	8.650	23.700	8.650	23.700	8.650	23.700	7.300	23.700
			n = 1	4.550	4.750	4.550	4.750	4.550	4.750	3.000	3.400
Application	BSET		n = 15	4.550	4.750	4.550	4.750	4.550	4.750	3.000	3.500
instruction			n = 1	4.600	4.750	4.600	4.750	4.600	4.750	3.000	3.400
	BRST @ II		n = 15	4.600	4.750	4.600	4.750	4.600	4.750	3.000	3.400
	TEST	Whe	en executed	7.250	13.200	7.250	13.200	7.250	13.200	4.400	6.900
	DTEST	Whe	en executed	6.950	12.900	6.950	12.900	6.950	12.900	4.500	7.000
			n = 1	7.350	11.600	7.350	11.600	7.350	11.600	4.300	5.200
			n = 96	10.100	22.600	10.100	22.600	10.100	22.600	6.500	13.200
		n = 1	All match	6.650	6.800	6.650	6.800	6.650	6.800	5.000	5.300
	SER (S1) (S2) (D) n		None match	6.650	6.800	6.650	6.800	6.650	6.800	5.000	5.300
		n =	All match	34.000	42.300	34.000	42.300	34.000	42.300	32.300	35.900
		96	None match	34.000	42.300	34.000	42.300	34.000	42.300	32.400	35.900
		n = 1	All match	8.000	16.300	8.000	16.300	8.000	16.300	6.800	10.200
	DSFR (\$1) (\$2) (D) n		None match	8.000	16.300	8.000	16.300	8.000	16.300	6.800	10.200
		n =	All match	54.100	62.600	54.100	62.600	54.100	62.600	52.800	56.300
		96	None match	54.100	62.600	54.100	62.600	54.100	62.600	52.800	56.300
			(s) = 0	4.100	4.200	4.100	4.200	4.100	4.200	3.700	4.100
	DSUM (S) (D)	() =	FEFEFE	4.100	4.200	4.100	4.200	4.100	4.200	3.800	4.100
		9 -	n = 2	8 850	23.000	8 850	23.000	8 850	23.000	6.000	16 400
ſ	DECO (S) (D) n		n = 8	13 600	20.000	13 600	20.000	13 600	20.000	8 100	15 200
			M1 = ON	7 650	11 000	7 650	11 000	7 650	11 000	5 300	6 300
		n = 2	M4 = ON	7 500	11 700	7 500	11 700	7 500	11 700	5 200	6 200
	ENCO S D n		M1 = ON	14 600	27 800	14 600	27 800	14 600	27 800	10/00	17 000
	ENCO (S) (D) n r	n = 8	M256 - ON	10,600	21.000	10,600	21.000	10,600	21.000	5 700	13 200
			1VI250 - UN	10.000	23.700	10.000	23.700	10.000	23.700	5.700	13.300

					Processing Time (μs)					
Category	Instruction	Condition (Device)	Q00U	JCPU	Q00L	JCPU	Q01L	JCPU	Q02L	JCPU
			Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.
		n = 1	6.500	14.800	6.500	14.800	6.500	14.800	5.000	10.900
		n = 4	6.900	15.200	6.900	15.200	6.900	15.200	5.400	11.300
		n = 1	6.800	15.100	6.800	15.100	6.800	15.100	5.500	8.900
		n = 4	7.500	15.900	7.500	15.900	7.500	15.900	6.200	9.600
	NDIS	When executed	4.750	18.700	4.750	18.700	4.750	18.700	11.000	16.300
	NUNI	When executed	4.750	18.700	4.750	18.700	4.750	18.700	10.600	16.000
		n = 1	6.600	14.900	6.600	14.900	6.600	14.900	5.000	6.500
	WIOB (S) (U) n	n = 96	37.700	46.100	37.700	46.100	37.700	46.100	36.000	38.400
		n = 1	7.350	15.600	7.350	15.600	7.350	15.600	5.100	6.100
	BTOW S Un	n = 96	32.100	40.500	32.100	40.500	32.100	40.500	29.900	32.000
		n = 1	8.250	24.900	8.250	24.900	8.250	24.900	4.300	6.900
	MAX (S) (U) n	n = 96	34.200	51.600	34.200	51.600	34.200	51.600	32.000	34.300
		n = 1	8.250	24.800	8.250	24.800	8.250	24.800	4.400	6.800
	MIN (S) (U) n	n = 96	34.200	51.600	34.200	51.600	34.200	51.600	30.300	34.800
		n = 1	6.800	34.900	6.800	34.900	6.800	34.900	4.800	14.200
	DMAX S U n	n = 96	60.300	89.200	60.300	89.200	60.300	89.200	56.400	68.000
		n = 1	7.600	35.700	7.600	35.700	7.600	35.700	4.800	9.300
	DMIN (S) (D) n	n = 96	59.400	90.000	59.400	90.000	59.400	90.000	55.400	62.800
		n = 1	10.100	28.900	10.100	28.900	10.100	28.900	6.200	12.200
	SORT (\$1) n (\$2) (D1) (D2)	n = 96	52.100	92.400	52.100	92.400	52.100	92.400	6.200	13.100
		n = 1	9.300	29.000	9.300	29.000	9.300	29.000	6.200	10.500
	DSORT (\$1) n (\$2) (01) (02)	n = 96	43.600	89.600	43.600	89.600	43.600	89.600	6.100	10.500
Application		n = 1	6.700	15.000	6.700	15.000	6.700	15.000	4.800	6.200
instruction	WSUM (S) (D) n	n = 96	28.900	37.100	28.900	37.100	28.900	37.100	26.900	28.700
		n = 1	8.600	26.800	8.600	26.800	8.600	26.800	5.500	7.000
	DWSUM (S) (D) n	n = 96	56.200	74.700	56.200	74.700	56.200	74.700	53.000	56.300
		n = 1	5.850	19.800	5.850	19.800	5.850	19.800	4.300	17.300
	MEAN (S) (D) n	n = 96	17.300	38.200	17.300	38.200	17.300	38.200	16.000	35.500
		n = 1	6.900	23.300	6.900	23.300	6.900	23.300	5.750	21.900
	DMEAN (S) (D) n	n = 96	29.400	49.900	29.400	49.900	29.400	49.900	29.200	48.600
	NEXT		1.000	1.100	1.000	1.100	1.000	1.100	0.980	1.400
	BREAK		4.700	25.000	4.700	25.000	4.700	25.000	21.300	17.900
	DET	Return to original program	4.100	19.500	4.100	19.500	4.100	19.500	2.000	3.000
	REI	Return to other program	4.700	16.700	4.700	16.700	4.700	16.700	2.300	4.900
		Internal file pointer	5.400	5.400	5.400	5.400	5.400	5.400	3.300	5.300
	FCALL PN	Common pointer	7.600	30.500	7.600	30.500	7.600	30.500	4.900	6.600
	FCALL Pn St to S5		50.400	62.700	50.400	62.700	50.400	62.700	19.800	23.700
	ECALL * Pn		405 000	044.000	405 000	044.000	405 000	044.000	75 700	101.000
	*: Program name		105.000	214.000	105.000	214.000	105.000	214.000	75.700	134.000
	ECALL * Pn 🗊 to 😒		101.000	074 000	404.000	074 000	404.000	074 000	400.000	170.000
	*: Program name		164.000	271.000	164.000	271.000	164.000	271.000	109.000	173.000
	EFCALL * Pn		105 005	044.005	405 000	044.005	105 000	044.005	70.000	404.000
	*: Program name		105.000	214.000	105.000	214.000	105.000	214.000	76.200	134.000
	EFCALL * Pn Si to Si	_	164.000	271.000	164.000	271.000	164.000	271.000	90.500	170.000
	": Program name		5 100	6 700	5 100	6 700	5 100	6 700	2 000	6 400
	AGALL		5.100	0.700	5.100	0.700	5.100	0.700	3.800	0.400

					Р	rocessing	g Time (μ	s)		
Category	Instruction	Condition (Device)	Q00U	JCPU	Q00L	JCPU	Q01L	JCPU	Q02L	JCPU
			Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.
		When selecting I/O refresh only	18.100	89.100	18.100	89.100	18.100	89.100	12.800	79.000
		When selecting CC-Link refresh	33.300	132.000	33.300	132.000	33.300	132.000	24.900	119.000
		When colocting CC Link refresh								
		only (Local station side)	33.300	132.000	33.300	132.000	33.300	132.000	24.900	119.000
		When selecting MELSECNET/H refresh only (Control station side)	78.600	231.000	78.600	231.000	78.600	231.000	54.000	212.000
		When selecting MELSECNET/H	78.600	231.000	78.600	231.000	78.600	231.000	54.000	212.000
		When selecting intelli auto	18 100	89 000	18 100	89 000	18 100	89 000	12 800	79 000
	COM CCOM	refresh only When selecting I/O outside the	10.100	00.000	10.100	00.000	10.100		12.000	
		group only (Input only)	15.700	71.600	15.700	71.600	15.700	71.600	8.600	76.500
		When selecting I/O outside the group only (Output only)	40.200	152.000	40.200	152.000	40.200	152.000	26.300	135.000
		When selecting I/O outside the group only (Both I/O)	45.800	153.000	45.800	153.000	45.800	153.000	26.100	135.000
		When selecting refresh of multi- ple CPU high speed transmission								
		When selecting communication	18.200	89.000	18.200	89.000	18.200	89.000	7.250	54.300
		Number of data points = 0	6 100	14 200	6 100	14 200	6 100	14 200	2 700	10 100
	FIFW	Number of data points = 0	6.100	14.200	6.100	14.200	6 100	14.200	3.700	5 200
		Number of data points = 90	7.500	14.200	7.500	14.200	7.500	14.200	3.800	5.200
Application	FIFR	Number of data points = 0	27.000	15.000	7.500	15.000	7.500	15.000	4.400	35 200
Instruction		Number of data points = 0	7 600	45.000	7 600	45.000	7 600	45.000	4 400	10 900
	FPOP	Number of data points = 96	7.600	15.000	7.600	15.000	7.600	15.000	4.400	10.000
		Number of data points = 0	6.900	15.000	6.900	15.000	6.900	15.000	5.000	10.000
	FINS	Number of data points = 96	36,600	13.000	36 600	13.000	36 600	13.000	3.000	10.700
		Number of data points = 30	8 000	16 100	8 000	16 100	9 000	16 100	4.400	11 200
	FDEL	Number of data points = 0	37 300	10.100	37 300	10.100	37 200	10.100	4.900	25.000
		n3 = 1	17 400	45.500	17 400	45.500	17 400	45.500	12 100	71 300
	FROM n1 n2 D n3	n3 = 1000	406.000	198 500	406.000	198 500	406.000	198 500	12.100	105 100
		n3 = 1	10.000	490.000 85.600	10.000	490.000 85.600	10.000	490.000 85.600	14 600	90.100 81.800
	DFRO n1 n2 D n3	n3 = 500	19.000	408 500	19.000	408 500	19.000	408 500	14.000	405 100
		n3 = 1	16 400	490.000 60.600	16 400	490.000 60.600	16 400	490.000 60.600	11 700	63 400
	TO n1 n2 홄 n3	n3 = 1000	381 300	471 200	381 300	471 200	381 300	471 200	375 000	464 300
		n3 = 1	18 600	47 1.200 85 100	18 600	47 1.200 85 100	18 600	47 1.200 85 100	14 200	78 500
	DTO n1 n2 n3	n3 = 500	381 300	471 200	381 300	471 200	381 300	471 200	375 900	464 300
			1 500	7 100	1 500	7 100	1 500	7 100	5 100	5 100
			1.500	7.100	1.500	7.100	1.500	7.100	5.100	0.100
	LEDR	display	38.900	109.000	38.900	109.000	38.900	109.000	35.700	89.200
		(s) = 1	5.600	13.900	5.600	13.900	5.600	13.900	4.900	6.500
		(s) = -32768	7.800	16.200	7.800	16.200	7.800	16.200	7.200	8.700
	DBINDA S D	(§) = 1	6.200	14.500	6.200	14.500	6.200	14.500	5.700	7.100
		(s) = -2147483648	11.000	19.200	11.000	19.200	11.000	19.200	10.400	12.200

						Processing	g Time (µs))		
Category	Instruction	Condition (Device)	Q00U	JCPU	Q00L	JCPU	Q01L	JCPU	Q021	JCPU
			Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.
		(s) = 1	5.050	13.400	5.050	13.400	5.050	13.400	4.400	5.900
		(S) = FFFFн	5.050	13.400	5.050	13.400	5.050	13.400	4.400	5.800
		(s) = 1	5.600	13.900	5.600	13.900	5.600	13.900	5.200	6.700
	DBINHA S U	(s) = FFFFFFFF	5.600	13.900	5.600	13.900	5.600	13.900	5.100	6.500
		(s) = 1	4.850	13.200	4.850	13.200	4.850	13.200	4.300	5.800
	BCDDA 🕤 🕒	(S) = 9999	5.300	13.600	5.300	13.600	5.300	13.600	4.700	6.100
		(s) = 1	5.300	13.600	5.300	13.600	5.300	13.600	4.800	6.300
		s) = 99999999	6.200	14.500	6.200	14.500	6.200	14.500	5.600	7.100
		(S) = 1	7.000	18.500	7.000	18.500	7.000	18.500	6.500	9.000
		(S) = -32768	6.950	18.500	6.950	18.500	6.950	18.500	6.300	8.900
		(s) = 1	9.450	21.000	9.450	21.000	9.450	21.000	9.400	12.000
	DDABIN (S) (D)	s = -2147483648	9.450	21.000	9.450	21.000	9.450	21.000	9.100	11.600
Application		(s) = 1	5.650	17.100	5.650	17.100	5.650	17.100	4.900	7.500
instruction		(s) = FFFFн	5.750	17.300	5.750	17.300	5.750	17.300	5.100	8.100
		(S) = 1	6.800	18.200	6.800	18.200	6.800	18.200	6.000	8.500
		(S) = FFFFFFFFн	7.100	18.600	7.100	18.600	7.100	18.600	6.300	8.900
		(s) = 1	5.650	17.200	5.650	17.200	5.650	17.200	5.000	7.500
		(S) = 9999	5.700	17.200	5.700	17.200	5.700	17.200	5.000	7.500
		(s) = 1	6.850	18.300	6.850	18.300	6.850	18.300	6.200	8.800
	DDABCD (S) (D)	s = 99999999	6.850	18.300	6.850	18.300	6.850	18.300	6.200	8.800
	COMRD		185.000	188.000	185.000	188.000	185.000	188.000	97.300	97.400
	I EN	1 character	4.700	16.200	4.700	16.200	4.700	16.200	4.100	6.600
		96 characters	20.600	32.900	20.600	32.900	20.600	32.900	19.800	22.400
	STR		9.800	36.500	9.800	36.500	9.800	36.500	6.900	14.400
	DSTR		12.100	40.400	12.100	40.400	12.100	40.400	10.200	20.800
	VAL		12.200	40.900	12.200	40.900	12.200	40.900	9.800	23.900
	DVAL	—	19.400	45.600	19.400	45.600	19.400	45.600	14.000	33.100
	ESTR	—	29.700	87.800	29.700	87.800	29.700	87.800	22.100	52.400

							Processing Time (µs)				
Category	Instruction	Conditio	n (Device)	Q00U	JCPU	Q00L	JCPU	Q01L	JCPU	Q02L	JCPU
				Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.
	EVAL	Decimal p all 2-digit s	point format	23.900	70.400	23.900	70.400	23.900	70.400	23.300	36.500
		Expone all 6-digit s	nt format specification	23.700	70.300	23.700	70.300	23.700	70.300	23.300	36.400
	ASC (S) (D) n	n	= 1	10.200	41.800	10.200	41.800	10.200	41.800	5.600	19.700
		n :	= 96	31.900	66.600	31.900	66.600	31.900	66.600	30.200	44.700
	HEX (S) (D) n	n	= 1	8.600	43.400	8.600	43.400	8.600	43.400	7.500	23.100
		n :	= 96	77.100	115.000	77.100	115.000	77.100	115.000	37.500	53.300
	RIGHT (S) (D) n	n	= 1	10.900	29.600	10.900	29.600	10.900	29.600	7.600	11.400
		n	= 96	41.400	60.300	41.400	60.300	41.400	60.300	36.300	46.000
	LEFT (S) (D) n	n	= 1	10.600	29.300	10.600	29.300	10.600	29.300	6.500	16.100
	MIDD	n ·	= 90	41.300	20,600	41.300	20,600	41.300	20,600	30.200	40.200
				12 400	30.600	12 400	30.600	12 400	30.600	9.500	19.100
		No	 natch	22 000	24.000	22 000	24.000	22 000	24.000	10.300	29.000
	INSTR	NOT	Head	13 300	29.600	13 300	29.600	13 300	29 600	10.300	20.000
	North	Match	End	21 900	38 100	21 900	38 100	21 900	38 100	51 100	60 800
	FMOD			11 600	24 000	11 600	24 000	11 600	24 000	10,300	15 300
	EREXP			19.700	28.000	19.700	28.000	19.700	28.000	19.300	22.300
		(s) = 128 n	/ (D) = 40 / = 1	47.000	102.000	47.000	102.000	47.000	102.000	44.300	96.700
	STRINS ⑤ D n	(s) = 128 n :	/ (D) = 40 / = 48	70.100	134.000	70.100	134.000	70.100	134.000	58.800	112.000
Application instruction	STRDEL S D n -	(s) = 128 / (D) = 40 / n = 1		46.400	93.600	46.400	93.600	46.400	93.600	39.000	78.100
		(s) = 128 n :	/ (D) = 40 / = 48	44.500	70.600	44.500	70.600	44.500	70.600	36.000	69.200
	SIN	Single	precision	6.400	13.900	6.400	13.900	6.400	13.900	4.500	9.900
	COS	Single	precision	6.100	13.500	6.100	13.500	6.100	13.500	4.300	8.200
	TAN	Single	precision	8.300	15.000	8.300	15.000	8.300	15.000	5.100	7.200
	ASIN	Single	precision	7.300	15.600	7.300	15.600	7.300	15.600	6.100	13.700
	ACOS	Single	precision	8.100	16.500	8.100	16.500	8.100	16.500	6.800	11.100
	ATAN	Single	precision	5.350	12.000	5.350	12.000	5.350	12.000	4.000	6.900
	SIND	Double	precision	13.400	51.300	13.400	51.300	13.400	51.300	9.600	26.000
	COSD	Double	precision	14.700	51.700	14.700	51.700	14.700	51.700	10.000	26.900
	TAND	Double	precision	17.400	54.400	17.400	54.400	17.400	54.400	11.400	25.300
	ASIND	Double	precision	22.600	60.300	22.600	60.300	22.600	60.300	12.100	30.800
	ACOSD	Double	precision	19.700	60.000	19.700	60.000	19.700	60.000	11.700	28.000
		Single		15.000	01.000	15.000	01.000	15.000	51.600 10.200	9.700	22.000
		Doublo	precision	5.200	10.300	5.200	10.300	5.200	10.300	2.500	4.600
	DEG	Single	precision	3 200	11 500	3 200	11 500	3 200	11 500	2 500	4 700
	DEGD	Double	nrecision	5 150	43 800	5 150	43 800	5 150	43 800	5.000	18 100
	DEGD	Sinale	orecision	3,900	12.300	3.900	12.300	3,900	12.300	3,500	9,300
	SQRD	Double	precision	7.000	45.700	7.000	45.700	7.000	45.700	5.700	25.400
	EXP (S) (D)	Single	s = -10	6.350	13.800	6.350	13.800	6.350	13.800	4.000	13.000
		precision	(s) = 1	6.350	13.800	6.350	13.800	6.350	13.800	4.000	13.000

						F	Processin	g Time (µs	3)		
Category	Instruction	Condi	tion (Device)	Q00U	JCPU	Q00L	JCPU	Q011	JCPU	Q021	JCPU
				Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.
		Double	(s) = -10	15.800	52.700	15.800	52.700	15.800	52.700	8.800	27.600
		precision	(s) = 1	15.400	52.500	15.400	52.500	15.400	52.500	8.500	27.300
		Single	(s) = 1	5.800	14.900	5.800	14.900	5.800	14.900	4.100	8.100
		precision	(s) = 10	7.450	16.500	7.450	16.500	7.450	16.500	6.200	10.300
		Double	(s) = 1	11.000	48.900	11.000	48.900	11.000	48.900	9.500	28.300
		precision	s) = 10	12.600	51.300	12.600	51.300	12.600	51.300	11.100	29.900
	RND			1.950	5.450	1.950	5.450	1.950	5.450	1.200	2.300
	SRND			2.750	4.550	2.750	4.550	2.750	4.550	1.400	2.400
			s) = 0	2.500	6.800	2.500	6.800	2.500	6.800	1.800	3.300
	BOUR	S) = 9999	6.400	15.500	6.400	15.500	6.400	15.500	5.100	8.800
			s) = 0	2.600	6.050	2.600	6.050	2.600	6.050	1.900	3.700
	BDSQR © ©	(S) =	99999999	8.450	17.600	8.450	17.600	8.450	17.600	7.500	10.900
	BSIN			11.500	32.800	11.500	32.800	11.500	32.800	8.700	20.200
Application	BCOS			10.400	32.500	10.400	32.500	10.400	32.500	7.800	14.400
Instruction	BTAN			12.100	33.700	12.100	33.700	12.100	33.700	9.000	17.000
	BASIN			13.300	32.800	13.300	32.800	13.300	32.800	12.200	15.100
	BACOS			13.400	33.700	13.400	33.700	13.400	33.700	13.100	14.900
	BATAN			12.600	31.400	12.600	31.400	12.600	31.400	11.400	15.700
	POW (S) (S) (D)	Single precision	 S1 = 12.3 E + 5 S2 = 3.45 E + 0 	12.200	22.100	12.200	22.100	12.200	22.100	8.950	19.500
	POWD \$1 \$2 D	Double precision	 S1 = 12.3 E + 5 S2 = 3.45 E + 0 	27.300	61.000	27.300	61.000	27.300	61.000	19.400	55.200
	LOG10	Sing	le precision	8.200	16.500	8.200	16.500	8.200	16.500	5.950	14.800
	LOG10D	Doub	le precision	15.100	48.000	15.100	48.000	15.100	48.000	12.400	46.500
	LIMIT			5.350	5.500	5.350	5.500	5.350	5.500	5.200	5.400
	DLIMIT			6.000	6.150	6.000	6.150	6.000	6.150	5.700	5.900
	BAND			5.450	12.400	5.450	12.400	5.450	12.400	5.400	6.300
	DBAND			6.050	11.900	6.050	11.900	6.050	11.900	5.800	6.900
	ZONE			6.250	10.700	6.250	10.700	6.250	10.700	5.200	11.100
	DZONE			6.000	11.900	6.000	11.900	6.000	11.900	5.700	10.800

							Processing	g Time (µs)			
Category	Instruction	Conditi	on (Device)	Q00U	JCPU	Q00L	JCPU	Q01L	ICPU	Q02L	ICPU
				Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.
		SM750	Point No.1 < Sî) < Point No.2	14.900	50.100	14.900	50.100	14.900	50.100	14.700	48.000
	SCI (61) 62 (D)	= ON	Point No.9 < ©1) < Point No.10	15.800	50.900	15.800	50.900	15.800	50.900	19.600	50.400
		SM750	Point No.1 < §1 < Point No.2	13.900	53.100	13.900	53.100	13.900	53.100	13.700	51.000
		= OFF	Point No.9 < §1 < Point No.10	16.600	56.600	16.600	56.600	16.600	56.600	20.400	56.200
		SM750	Point No.1 < ©1 < Point No.2	13.400	52.400	13.400	52.400	13.400	52.400	12.800	50.300
	DSCL (5) (52 (D)	= ON	Point No.9 < ©1 < Point No.10	14.200	54.100	14.200	54.100	14.200	54.100	17.300	53.500
		SM750	Point No.1 < ©1) < Point No.2	12.300	53.200	12.300	53.200	12.300	53.200	11.500	51.100
Application		= OFF	Point No.9 < §1 < Point No.10	15.000	57.600	15.000	57.600	15.000	57.600	18.100	57.100
instruction		SM750	Point No.1 < §1 < Point No.2	14.200	53.300	14.200	53.300	14.200	53.300	13.200	51.200
	SCI 2 (ST) (S2 (D)	= ON	Point No.9 < §1 < Point No.10	14.900	55.000	14.900	55.000	14.900	55.000	18.000	54.500
		SM750	Point No.1 < §1 < Point No.2	15.000	53.500	15.000	53.500	15.000	53.500	14.000	51.300
		= OFF	Point No.9 < §1 < Point No.10	16.300	56.400	16.300	56.400	16.300	56.400	19.300	55.800
		SM750	Point No.1 < §1 < Point No.2	13.400	52.700	13.400	52.700	13.400	52.700	13.100	50.500
	DSCI 2 61 62 D	= ON	Point No.9 < <u>§1</u> < Point No.10	14.200	54.300	14.200	54.300	14.200	54.300	18.100	53.700
		SM750	Point No.1 < ⑤1 < Point No.2	12.300	53.200	12.300	53.200	12.300	53.200	12.100	51.000
		= OFF	Point No.9 < <u>§1</u> < Point No.10	15.000	57.600	15.000	57.600	15.000	57.600	18.900	57.100

						I	Processing	g Time (µs	;)		
Category	Instruction	Condit	ion (Device)	Q00U	JCPU	Q00L	JCPU	Q01L	JCPU	Q02L	JCPU
				Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.
	DOET	Stan	dard RAM	6.800	26.900	6.800	26.900	6.800	26.900	3.000	16.400
	ROEI	SR	AM card	_		Q00UCPU Min. Material 6.800 26.9 5.600 27.3 7.800 42.1 14.200 41.2 15.100 41.2 15.100 41.3 5.800 20.3 6.200 23.1 6.500 23.1 6.500 23.1 6.500 23.1 6.500 23.1 6.500 23.1 6.500 23.1 6.500 23.1 6.500 23.1 6.500 23.1 6.500 23.1 6.500 23.1 6.500 23.1 6.500 23.1 6.500 23.1 6.500 23.1 6.500				3.000	16.400
	ODDOCT	SRAM card	to standard RAM							QQQUU Max. Min. 26.900 3.000 — 3.000 — 230.000 — 230.000 — 997.000 — 997.000 — 490.000 — 490.000 27.800 5.100 41.200 6.500 41.200 5.700 41.200 5.700 20.500 2.600 22.500 3.000 25.500 7.400 25.500 7.200 23.100 5.900 23.100 5.900 23.100 5.900 23.100 5.900 23.100 5.900 23.100 5.900 23.100 5.900 23.100 5.900 23.100 5.900 23.100 5.900 23.100 5.900 23.100 5.900 23.100 5.900 23.100 5.9	327.000
	QURSET	Standard RA	M to SRAM card					_		997.000	1066.000
	OCDEET	SRAM card	to standard ROM							525.000	690.000
	QUDSET	Standard RC	OM to SRAM card	_				_		490.000	655.000
	DATERD			5.600	27.800	5.600	27.800	5.600	27.800	5.100	14.700
	DATEWR			7.800	42.100	7.800	42.100	7.800	42.100	7.100	23.000
	DATE +	No dig	git increase	14.200	41.200	14.200	41.200	14.200	41.200	6.500	13.100
	DAIL	Digit	increase	14.200	41.200	14.200	41.200	14.200	41.200	5.700	21.200
	DATE	No dig	git increase	15.100	41.200	15.100	41.200	15.100	41.200	6.500	11.500
	DAIL	Digit	increase	15.100	41.200	15.100	41.200	15.100	41.200	5.700	17.200
	SECOND			5.800	20.500	5.800	20.500	5.800	20.500	2.600	5.900
	HOUR			6.200	22.500	6.200	22.500	6.200	22.500	3.000	5.300
		Comparison	In conductive status	8.200	25.500	8.200	25.500	6.500	25.500	7.400	23.400
		date	In nonconductive status	8.200	25.500	8.200	25.500	6.500	25.500	8.200	25.500
		Comparison	In conductive status	6.500	23.100	6.500	23.100	6.500	23.100	5.900	22.200
		date	In nonconductive status	6.500	23.100	6.500	23.100	6.500	23.100	5.900	22.200
		When r	not executed	0.4	180	0.3	320	0.2	240	0.1	60
instruction		Comparison	In conductive status	8.200	25.500	8.200	25.500	6.500	25.500	7.200	23.400
	ANDDT=	date	In nonconductive status	8.200	25.500	8.200	25.500	6.500	25.500	7.200	23.400
		Comparison	In conductive status	6.500	23.100	6.500	23.100	6.500	23.100	5.900	22.200
		date	In nonconductive status	6.500	23.100	6.500	23.100	6.500	23.100	5.900	22.200
		When r	not executed	0.4	180	0.3	320	0.2	240	0.1	60
		Comparison	In conductive status	8.200	25.500	8.200	25.500	6.500	25.500	7.400	23.300
	ORDT=	date	In nonconductive status	8.200	25.500	8.200	25.500	6.500	25.500	7.400	23.300
		Comparison of current	In conductive status	6.500	23.100	6.500	23.100	6.500	23.100	5.900	22.000
		date	In nonconductive status	6.500	23.100	6.500	23.100	6.500	23.100	5.900	22.000
		Comparison	In conductive status	8.200	25.500	8.200	25.500	6.500	25.500	7.400	23.400
		date	In nonconductive status	8.200	25.500	8.200	25.500	6.500	25.500	7.400	23.400
		Comparison	In conductive status	6.500	23.100	6.500	23.100	6.500	23.100	5.900	22.200
		date	In nonconductive status	6.500	23.100	6.500	23.100	6.500	23.100	5.900	22.200

						Processing	πime (μs)			
Category	Instruction	Conditi	on (Device)	Q00U	JCPU	Q00L	JCPU	Q01L	JCPU	Q02L	ICPU
				Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.
		When r	not executed	0.4	-80	0.3	320	0.2	240	0.1	60
Category		Comparison	In conductive status	8.200	25.500	8.200	25.500	6.500	25.500	7.200	23.400
	ANDDT<>	date	In nonconductive status	8.200	25.500	8.200	25.500	6.500	25.500	7.200	23.400
		Comparison	In conductive status	6.500	23.100	6.500	23.100	6.500	23.100	5.900	22.200
		date	In nonconductive status	6.500	23.100	6.500	23.100	6.500	23.100	5.900	22.200
		When r	not executed	0.4	·80	0.3	320	0.2	240	0.1	60
		Comparison	In conductive status	8.200	25.500	8.200	25.500	6.500	25.500	7.400	23.300
	ORDT<>	date	In nonconductive status	8.200	25.500	8.200	25.500	6.500	25.500	7.400	23.300
		Comparison of current	In conductive status	6.500	23.100	6.500	23.100	6.500	23.100	5.900	22.000
		date	In nonconductive status	6.500	23.100	6.500	23.100	6.500	23.100	5.900	22.000
		Comparison of specified	In conductive status	8.200	25.500	8.200	25.500	6.500	25.500	7.400	23.400
ANDDT> Min Max Min Max Min Max Min ANDDT> Comparison of specified date In conductive status 8.200 25.500 8.200 25.500 6.500 6.500 Comparison of current date In conductive status 6.500 23.100 6.500 23.1		date	In nonconductive status	8.200	25.500	8.200	25.500	6.500	25.500	7.400	23.400
	23.100	5.900	22.200								
Application		date	In nonconductive status	6.500	23.100	6.500	23.100	6.500	23.100	5.900	22.200
instruction		When r	not executed	0.4	-80	0.3	320	0.2	240	0.1	60
		Comparison of specified	In conductive status	8.200	25.500	8.200	25.500	8.200	25.500	7.200	23.400
	ANDDT>	date	In nonconductive status	8.200	25.500	8.200	25.500	8.200	25.500	7.200	23.400
		Comparison of current	In conductive status	6.500	23.100	6.500	23.100	6.500	23.100	5.900	22.200
		date	In nonconductive status	6.500	23.100	6.500	23.100	6.500	23.100	5.900	22.200
		When r	not executed	0.4	·80	0.3	320	0.2	240	0.1	60
		Comparison of specified	In conductive status	8.200	25.500	8.200	25.500	8.200	25.500	7.400	23.300
	ORDT>	date	In nonconductive status	8.200	25.500	8.200	25.500	8.200	25.500	7.400	23.300
		Comparison of current	In conductive status	6.500	23.100	6.500	23.100	6.500	23.100	5.900	22.000
		date	In nonconductive status	6.500	23.100	6.500	23.100	6.500	23.100	5.900	22.000
		Comparison of specified	In conductive status	8.200	25.500	8.200	25.500	6.500	25.500	7.400	23.400
	LDDT<=	date	In nonconductive status	8.200	25.500	8.200	25.500	6.500	25.500	7.400	23.400
		Comparison	In conductive status	6.500	23.100	6.500	23.100	6.500	23.100	5.900	22.200
		date	In nonconductive status	6.500	23.100	6.500	23.100	6.500	23.100	5.900	22.200

			Processing Time (µS) Q00UJCPU Q00U_CPU O01UCPU Min. Max. Min. Max. Min. Max. In conductive status 8.200 25.500 8.200 25.500 6.500 25.500 In conductive status 8.200 25.500 8.200 25.500 6.500 23.100 6.500 23.100 6.500 23.100 6.500 23.100 6.500 23.100 6.500 23.100 6.500 23.100 6.500 23.100 6.500 23.100 6.500 23.100 6.500 23.100 6.500 23.100 6.500 23.100 6.500 23.100 6.500 23.100 6.500 25.500 8.200 25.500 8.200 25.500 8.200 25.500 8.200 25.500 8.200 23.100 6.500 23.100 6.500 23.100 6.500 23.100 6.500 23.100 6.500 23.100 6.500 23.100 10.100.00 25.500 8.200 25.500 8.200)							
Category	Instruction	Condit	ion (Device)	Q00U	JCPU	Q00L	JCPU	Q01L	JCPU	Q021	JCPU
				Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.
		When r	not executed	0.4	80	0.3	320	0.2	240	0.1	60
Category Application instruction		Comparison of specified	In conductive status	8.200	25.500	8.200	25.500	6.500	25.500	7.200	23.400
	ANDDT<=	date	In nonconductive status	8.200	Processing II C00UUCPU C00UCPU Min. Max. Min. Max. N 0.480 0.320 8 6 8.200 25.500 8.200 25.500 6 8.200 25.500 8.200 25.500 6 6.500 23.100 6.500 23.100 6 6.500 23.100 6.500 23.100 6 8.200 25.500 8.200 25.500 6 8.200 25.500 8.200 25.500 6 6.500 23.100 6.500 23.100 6 6.500 23.100 6.500 23.100 6 8.200 25.500 8.200 25.500 6 6.500 23.100 6.500 23.100 6 6.500 23.100 6.500 23.100 6 6.500 23.100 6.500 23.100 6 6.500 23.100 6.500 23.100<	6.500	25.500	7.200	23.400		
		Comparison of current	In conductive status	6.500	23.100	6.500	23.100	6.500	23.100	5.900	22.200
		date	In nonconductive status	6.500	23.100	6.500	23.100	6.500	23.100	5.900	22.200
	egory Instruction ANDDT<=	When r	not executed	0.4	80	0.3	320	0.2	240	0.1	60
		Comparison of specified	In conductive status	8.200	25.500	8.200	25.500	6.500	25.500	7.400	23.300
	ORDT<=	date	In nonconductive status	8.200	25.500	8.200	25.500	6.500	25.500	7.400	23.300
		Comparison of current	In conductive status	6.500	23.100	6.500	23.100	6.500	23.100	5.900	22.000
		date	In nonconductive status	6.500	23.100	6.500	23.100	6.500	23.100	5.900	22.000
		Comparison of specified	In conductive status	8.200	25.500	8.200	25.500	6.500	25.500	7.400	23.400
Category Application instruction	LDDT<	date	In nonconductive status	8.200	25.500	8.200	25.500	6.500	25.500	7.400	23.400
		Licki Conduction (between) Conduction (between) Conduction (between) Conduction (between) Max. Max. Max. Max. Max. Comparison of specified date In conductive status 8.200 25.500 8.200 25.500 6.500 23.100	In conductive status	6.500	23.100	6.500	23.100	6.500	23.100	5.900	22.200
Application			5.900	22.200							
Application instruction A A A A A A A A A A		When r	0.4	80	0.3	320	0.2	240	0.1	60	
		Comparison of specified	In conductive status	8.200	25.500	8.200	25.500	6.500	25.500	7.200	23.400
	ANDDT<	date	In nonconductive status	8.200	25.500	8.200	25.500	6.500	25.500	7.200	23.400
		Comparison of current	In conductive status	6.500	23.100	6.500	23.100	6.500	23.100	5.900	22.200
		date	In nonconductive status	6.500	23.100	6.500	23.100	6.500	23.100	5.900	22.200
		When r	not executed	0.4	80	0.3	320	0.2	240	0.1	60
		Comparison of specified	In conductive status	8.200	25.500	8.200	25.500	6.500	25.500	7.400	23.300
	ORDT<	date	In nonconductive status	8.200	25.500	8.200	25.500	6.500	25.500	7.400	23.300
		Comparison of current	In conductive status	6.500	23.100	6.500	23.100	6.500	23.100	5.900	22.000
		date	In nonconductive status	6.500	23.100	6.500	23.100	6.500	23.100	5.900	22.000
		Comparison of specified	in conductive status	8.200	25.500	8.200	25.500	6.500	25.500	7.400	23.400
	LDDT>=	date	status	8.200	25.500	8.200	25.500	6.500	25.500	7.400	23.400
		Comparison of current	in conductive status	6.500	23.100	6.500	23.100	6.500	23.100	5.900	22.200
Application instruction An OF An LD An LD		date	In nonconductive status	6.500	23.100	6.500	23.100	6.500	23.100	5.900	22.200

							Processing	η Time (μs)		
Category	Instruction	Conditi	on (Device)	Q00U	JCPU	Q00L	JCPU	Q01L	JCPU	Q02L	JCPU
				Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.
		When r	not executed	0.4	·80	0.3	320	0.2	240	0.1	60
		Comparison	In conductive status	8.200	25.500	8.200	25.500	6.500	25.500	7.200	23.400
	ANDDT>=	date	In nonconductive status	8.200	25.500	8.200	25.500	6.500	25.500	7.200	23.400
		Comparison	In conductive status	6.500	23.100	6.500	23.100	6.500	23.100	5.900	22.200
		date	In nonconductive status	6.500	23.100	6.500	23.100	6.500	23.100	5.900	22.200
	ication uction ANDTM=	When r	ot executed	0.4	·80	0.3	320	0.2	240	0.1	60
		Comparison	In conductive status	8.200	25.500	8.200	25.500	6.500	25.500	7.400	23.300
	ORDT>=	date	In nonconductive status	8.200	25.500	8.200	25.500	6.500	25.500	7.400	23.300
		Comparison	In conductive status	6.500	23.100	6.500	23.100	6.500	23.100	5.900	22.000
		date	In nonconductive status	6.500	23.100	6.500	23.100	6.500	23.100	5.900	22.000
		Comparison of specified	In conductive status	8.200	25.500	8.200	25.500	6.500	25.500	7.300	23.300
ANDDT>= When not executed 0.3000 (25.00) 0.3000 (25.00) ANDDT>= When not executed 0.480 0.320 25.500 8.200 25.500 ANDDT>= Comparison of current date In conductive istatus 8.200 25.500 8.200 25.500 8.200 25.500 ORDT>= Comparison of current date In conductive istatus 6.500 23.100	I DTM=	ciock	In nonconductive status	8.200	25.500	8.200	25.500	6.500	25.500	7.300	23.300
	6.500	23.100	5.900	22.100							
Application		ciock	In nonconductive status	6.500	23.100	6.500	23.100	6.500	23.100	5.900	22.100
instruction		When r	not executed	0.4	80	0.3	320	0.2	240	0.1	60
		Comparison of specified	In conductive status	8.200	25.500	8.200	25.500	6.500	25.500	7.000	23.000
	ANDTM=	ciock	In nonconductive status	8.200	25.500	8.200	25.500	6.500	25.500	7.000	23.000
		Comparison of current	In conductive status	6.500	23.100	6.500	23.100	6.500	23.100	5.600	21.900
		ciock	In nonconductive status	6.500	23.100	6.500	23.100	6.500	23.100	5.600	21.900
		When r	not executed	0.4	·80	0.3	320	0.2	240	0.1	60
		Comparison of specified	In conductive status	8.200	25.500	8.200	25.500	6.500	25.500	7.300	23.200
	ORTM=	ciock	In nonconductive status	8.200	25.500	8.200	25.500	6.500	25.500	7.300	23.200
		Comparison of current	In conductive status	6.500	23.100	6.500	23.100	6.500	23.100	5.900	22.000
		ciock	In nonconductive status	6.500	23.100	6.500	23.100	6.500	23.100	5.900	22.000
		Comparison of specified	In conductive status	8.200	25.500	8.200	25.500	6.500	25.500	7.300	23.300
	LDTM<>	ciock	In nonconductive status	8.200	25.500	8.200	25.500	6.500	25.500	7.300	23.300
		Comparison of current	In conductive status	6.500	23.100	6.500	23.100	6.500	23.100	5.900	22.100
Application nstruction Ann Ann Ann Ann Ann Ann Ann Ann		ciock	In nonconductive status	6.500	23.100	6.500	23.100	6.500	23.100	5.900	22.100

							Processing	η Time (μs	us> Q02UC Max. Min. 0.240 0.160 25.500 7.000 25.500 7.000 23.100 5.600 23.100 5.600 23.100 5.600 23.100 5.600 23.100 5.600 23.100 5.900 23.100 5.900 23.100 5.900 23.100 5.900 23.100 5.900 23.100 5.900 23.100 5.900 23.100 5.900 23.100 5.900 23.100 5.900 23.100 5.900 23.100 5.900 23.100 5.600 23.100 5.600 23.100 5.600 23.100 5.900 23.100 5.900 23.100 5.900 23.100 5.900 23.100 5.900 23.100 5.900 <		
Category	Instruction	Condit	ion (Device)	Q00U	JCPU	Q00L	JCPU	Q01L	JCPU	Q02L	JCPU
				Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.
		When r	not executed	0.4	80	0.3	320	0.2	40	0.1	60
Category Application instruction		Comparison	In conductive status	8.200	25.500	8.200	25.500	6.500	25.500	7.000	23.000
	ANDTM<>	ciock	In nonconductive status	8.200	25.500	8.200	25.500	6.500	25.500	7.000	23.000
		Comparison of current	In conductive status	6.500	23.100	6.500	23.100	6.500	23.100	5.600	21.900
		ciock	In nonconductive status	6.500	23.100	6.500	23.100	6.500	23.100	5.600	21.900
		When r	not executed	0.4	80	0.3	320	0.2	240	0.1	60
		Comparison of specified	In conductive status	8.200	25.500	8.200	25.500	6.500	25.500	7.300	23.200
	ORTM<>	ciock	In nonconductive status	8.200	25.500	8.200	25.500	6.500	25.500	7.300	23.200
		Comparison of current	In conductive status	6.500	23.100	6.500	23.100	6.500	23.100	5.900	22.000
		ciock	In nonconductive status	6.500	23.100	6.500	23.100	6.500	23.100	5.900	22.000
		Comparison of specified	In conductive status	8.200	25.500	8.200	25.500	6.500	25.500	7.300	23.300
Application instruction	LDTM>	ciock	In nonconductive status	8.200	25.500	8.200	25.500	6.500	25.500	7.300	23.300
		Comparison of current	In conductive status	6.500	23.100	6.500	23.100	6.500	23.100	5.900	22.100
Application		ciock	In nonconductive status	6.500	23.100	6.500	23.100	6.500	23.100	5.900	22.100
Category Ir All Application instruction Al All Application instruction Al Al All Al Al Al Al Al Al Al Al Al Al		When r	0.4	80	0.3	320	0.2	240	0.1	60	
		Comparison of specified	In conductive status	8.200	25.500	8.200	25.500	6.500	25.500	7.000	23.000
	ANDTM>	ciock	In nonconductive status	8.200	25.500	8.200	25.500	6.500	25.500	7.000	23.000
		Comparison of current	In conductive status	6.500	23.100	6.500	23.100	6.500	23.100	5.600	21.900
		ciock	In nonconductive status	6.500	23.100	6.500	23.100	6.500	23.100	5.600	21.900
		vvnen r		0.4	θU	0.3	o∠∪ I	0.2	:40	0.1	UO
		Comparison of specified	In conductive status	8.200	25.500	8.200	25.500	6.500	25.500	7.300	23.200
	ORTM>	ciock	In nonconductive status	8.200	25.500	8.200	25.500	6.500	25.500	7.300	23.200
		Comparison of current	In conductive status	6.500	23.100	6.500	23.100	6.500	23.100	5.900	22.000
		ciock	status	6.500	23.100	6.500	23.100	6.500	23.100	5.900	22.000
		Comparison of specified	status	8.200	25.500	8.200	25.500	6.500	25.500	7.300	23.300
	LDTM<=	ciock	in nonconductive status	8.200	25.500	8.200	25.500	6.500	25.500	7.300	23.300
		Comparison of current	In conductive status	6.500	23.100	6.500	23.100	6.500	23.100	5.900	22.100
		ciock	In nonconductive status	6.500	23.100	6.500	23.100	6.500	23.100	5.900	22.100

		Condition		Processing Time (µs)							
Category	Instruction	Conditi	on (Device)	Q00U	JCPU	Q00L	JCPU	Q01L	JCPU	Q02L	JCPU
				Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.
		When r	not executed	0.4	80	0.3	320	0.2	240	0.1	60
Category		Comparison	In conductive status	8.200	25.500	8.200	25.500	6.500	25.500	7.000	23.000
	ANDTM<=	ciock	In nonconductive status	8.200	25.500	8.200	25.500	6.500	25.500	7.000	23.000
		Comparison	In conductive status	6.500	23.100	6.500	23.100	6.500	23.100	5.600	21.900
		ciock	In nonconductive status	6.500	23.100	6.500	23.100	6.500	23.100	5.600	21.900
	Instruction ANDTM<=	When r	not executed	0.4	80	0.3	320	0.2	240	0.1	60
		Comparison	In conductive status	8.200	25.500	8.200	25.500	6.500	25.500	7.300	23.200
	ORTM<=	ciock	In nonconductive status	8.200	25.500	8.200	25.500	6.500	25.500	7.300	23.200
		Comparison of current	In conductive status	6.500	23.100	6.500	23.100	6.500	23.100	5.900	22.000
		ciock	In nonconductive status	6.500	23.100	6.500	23.100	6.500	23.100	5.900	22.000
		Comparison of specified	In conductive status	8.200	25.500	8.200	25.500	6.500	25.500	7.300	23.300
ANDTM<= When not contained in the specified cicck Muther not cicck Comparison of specified cicck When not contained in the specified cicck When not cicck Muther not cicck When not cicck Muther not cicck <t< td=""><td>I DTM<</td><td>ciock</td><td>In nonconductive status</td><td>8.200</td><td>25.500</td><td>8.200</td><td>25.500</td><td>6.500</td><td>25.500</td><td>7.300</td><td>23.300</td></t<>	I DTM<	ciock	In nonconductive status	8.200	25.500	8.200	25.500	6.500	25.500	7.300	23.300
	In conductive status	6.500	23.100	6.500	23.100	6.500	23.100	5.900	22.100		
Application		ciock	In nonconductive status	6.500	23.100	6.500	23.100	6.500	23.100	5.900	22.100
instruction		When r	0.4	·80	0.3	320	0.2	240	0.1	60	
		Comparison of specified	In conductive status	8.200	25.500	8.200	25.500	6.500	25.500	7.000	23.000
	ANDTM<	ciock	In nonconductive status	8.200	25.500	8.200	25.500	6.500	25.500	7.000	23.000
		Comparison of current	In conductive status	6.500	23.100	6.500	23.100	6.500	23.100	5.600	21.900
		ciock	In nonconductive status	6.500	23.100	6.500	23.100	6.500	23.100	5.600	21.900
		wnen r	lot executed	0.4	.80	0.3	320	0.2	240	0.1	60
		Comparison of specified	In conductive status	8.200	25.500	8.200	25.500	6.500	25.500	7.300	23.200
	ORTM<	ciock	In nonconductive status	8.200	25.500	8.200	25.500	6.500	25.500	7.300	23.200
		Comparison of current	In conductive status	6.500	23.100	6.500	23.100	6.500	23.100	5.900	22.000
		ciock	In nonconductive status	6.500	23.100	6.500	23.100	6.500	23.100	5.900	22.000
		Comparison of specified	In conductive status	8.200	25.500	8.200	25.500	6.500	25.500	7.300	23.300
	LDTM>=	ciock	In nonconductive status	8.200	25.500	8.200	25.500	6.500	25.500	7.300	23.300
		Comparison of current	In conductive status	6.500	23.100	6.500	23.100	6.500	23.100	5.900	22.100
		ciock	In nonconductive status	6.500	23.100	6.500	23.100	6.500	23.100	5.900	22.100

				Processing Time (µs)									
Category	Instruction	Conditi	on (Device)	Q00U	JCPU	Q00L	JCPU	Q011	JCPU	Q021	JCPU		
				Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.		
		When n	ot executed	0.4	180	0.3	20	0.2	240	0.1	60		
		Comparison	In conductive status	8.200	25.500	8.200	25.500	6.500	25.500	7.000	23.000		
	ANDTM>=	ciock	In nonconductive status	8.200	25.500	8.200	25.500	6.500	25.500	7.000	23.000		
		Comparison of current	In conductive status	6.500	23.100	6.500	23.100	6.500	23.100	5.600	21.900		
		ciock	In nonconductive status	6.500	23.100	6.500	23.100	6.500	23.100	5.600	21.900		
		When n	ot executed	0.4	180	0.3	20	0.2	240	0.1	60		
		Comparison of specified	In conductive status	8.200	25.500	8.200	25.500	6.500	25.500	7.000	23.000		
	ORTM>=	ciock	In nonconductive status	8.200	25.500	8.200	25.500	6.500	25.500	7.000	23.000		
		Comparison of current	In conductive status	6.500	23.100	6.500	23.100	6.500	23.100	5.900	22.100		
Application		ciock	In nonconductive status	6.500	23.100	6.500	23.100	6.500	23.100	5.900	22.100		
instruction	S.DATERD		_	9.250	51.000	9.250	51.000	9.250	51.000	7.500	23.400		
	S DATE +	No dig	it increase	16.800	75.400	16.800	75.400	16.800	75.400	9.100	23.400		
	S.DATE 1	Digit	increase	16.800	75.400	16.800	75.400	16.800	75.400	8.900	22.200		
		No dig	it increase	17.600	75.300	17.600	75.300	17.600	75.300	9.000	22.200		
	S.DATE -	Digit	increase	16.900	75.300	16.900	75.300	16.900	75.300	9.800	22.100		
	PSTOP		_	82.200	199.000	82.200	199.000	82.200	199.000	61.400	84.500		
	POFF		_	82.600	198.000	82.600	198.000	82.600	198.000	121.000	246.000		
	PSCAN		—	83.600	200.000	83.600	200.000	83.600	200.000	126.000	232.000		
	WDT		_	2.900	12.000	2.900	12.000	2.900	12.000	1.300	3.000		
	DUTY		_	7.700	27.500	7.700	27.500	7.700	27.500	4.900	24.300		
	ТІМСНК		—	5.350	24.500	5.350	24.500	5.350	24.500	7.400	23.300		
	ZRRDB	File register	of standard RAM	4.100	4.200	4.100	4.200	4.100	4.200	2.400	2.600		
	2	File registe	r of SRAM card		—	-				2.500	2.800		
	ZRWRB	File register	of standard RAM	5.400	5.500	5.400	5.500	5.400	5.500	3.100	3.300		
	Litting	File registe	r of SRAM card		_				_	3.300	3.600		
	ADRSET			2.400	6.650	2.400	6.650	2.400	6.650	4.200	4.900		
	ZPUSH		_	9.200	20.500	9.200	20.500	9.200	20.500	6.900	14.000		
	ZPOP		_	9.000	15.500	9.000	15.500	9.000	15.500	7.500	12.500		

						F	Processing	η Time (μs)		
Category	Instruction	Condition (De	vice)	Q00U	JCPU	Q00L	JCPU	Q01L	JCPU	Q021	JCPU
				Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.
		When mounting (module (Master station	CC-Link side)	29.400	91.700	29.400	91.700	29.400	91.700	20.600	55.000
		When mounting (module (Local station	CC-Link side)	29.500	91.600	29.500	91.600	29.500	91.600	20.600	66.100
	S.ZCOM	When mount MELSECNE CC-Link IEcon network module(station side	ting Γ/H, troller Control ≆)	79.900	214.000	79.900	214.000	79.900	214.000	102.000	180.000
Application S.I instruction S.I UI Th	S.RTREAD	When mount MELSECNE CC-Link IEcon network module(station side	ting Γ/H, troller Normal ≩)	79.900	214.000	79.900	214.000	79.900	214.000	29.800	102.000
Application	S.RTREAD	_		9.200	57.700	9.200	57.700	9.200	57.700	6.700	33.500
instruction	S.RTWRITE	_		10.900	67.100	10.900	67.100	10.900	67.100	8.300	26.000
		n2 = 1		6.000	33.100	6.000	33.100	6.000	33.100	4.000	29.100
	UNIRD n1 🕑 n2	n2 = 16		16.500	43.600	16.500	43.600	16.500	43.600	12.500	37.600
	TYPERD			48.50	141.30	43.50	139.90	43.40	139.80	32.40	134.20
	TRACE	Start		174.000	174.000	174.000	174.000	174.000	174.000	96.600	103.000
	TRACER			5.100	15.500	5.100	15.500	5.100	15.500	3.800	13.600
		When standard RAM is used	1 point 1000 points			12.200 121.500	34.900 145.100	12.200 121.500	34.900 145.100	9.400 118.500	31.300 141.300
	RBNOV S U n		1 point		_	_		_	_	9.400	31.400
		card is used	1000 points	_	_	_	_	_	_	178.500	201.300
	SP.FWRITE	_			_	_		_	—	9.200	12.100
	SP.FREAD	_								489.000	544.000
	SP.DEVST	:VST								87.000	144.000
	S.DEVLD									127.000	140.000

						Р	rocessing	g Time (µ	s)		
Category	Instruction	Condition (D	evice)	Q00U	JCPU	Q00L	JCPU	Q01L	JCPU	QQ2UC Min. 64.600 154.000 8.300 56.200 8.600 106.800 8.400 51.700 16.600 432.000 8.800 94.900 841.000	JCPU
				Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.
		Writing to host	n4 = 1	64.600	78.100	64.600	78.100	64.600	78.100	64.600	78.100
	S.TO n1 n2 n3 n4 D	CPU shared memory	n4 = 320	115.000	126.000	115.000	126.000	115.000	126.000	154.000	126.000
		Writing to host	n3 = 1	12.700	62.200	12.700	62.200	12.700	62.200	8.300	58.200
	TO n1 n2 🕲 n3	CPU shared memory Writing to host	n3 = 320	63.500	112.300	63.500	112.300	63.500	112.300	56.200	107.800
		Writing to host	n3 = 1	13.500	62.300	13.500	62.300	13.500	62.300	8.600	58.300
	DTO n1 n2 S n3	CPU shared memory	n3 = 320	112.900	160.800	112.900	160.800	112.900	160.800	106.800	157.300
Multiple		Reading from	n3 = 1	12.100	58.700	12.100	OUCPU Q01UCPU Q02UCF Max. Min. Max. Min. Max. Min. N 0 78.100 64.600 78.100 64.600 7 0 126.000 115.000 126.000 154.000 12 0 62.200 12.700 62.200 8.300 5 0 112.300 63.500 112.300 56.200 10 0 62.300 13.500 62.300 8.600 5 0 160.800 112.900 160.800 106.800 15 0 161.700 56.000 101.700 51.700 9 0 82.900 24.400 82.900 16.600 3 10 518.000 418.000 518.000 432.000 48 0 58.700 12.100 58.700 8.800 5 0 143.700 97.400 143.700 94.900 13 0 94.200 24.800	52.600			
dedicated		host CPU shared memory	n3 = 320	56.000	101.700	56.000	101.700	56.000	101.700	51.700	96.600
Instruction	FROM n1 n2 U n3	Reading from	n3 = 1	24.400	82.900	24.400	82.900	24.400	82.900	16.600	37.000
		other CPU	n3 = 320	152.000	243.000	152.000	243.000	152.000	243.000	153.000	185.000
		shared memory	n3 = 1000	418.000	518.000	418.000	518.000	418.000	518.000	432.000	485.000
		Reading from	n3 = 1	12.100	58.700	12.100	58.700	12.100	58.700	8.800	53.400
		host CPU shared memory	n3 = 320	97.400	143.700	97.400	143.700	97.400	143.700	Max Min. 3.100 64.600 7 6.000 154.000 1. 2.200 8.300 5 2.300 56.200 1 2.300 8.600 5 2.300 8.600 5 i0.800 106.800 1 3.700 8.400 5 i0.800 106.800 1 3.700 8.400 5 i0.800 153.000 1 8.700 8.800 5 i3.700 94.900 1 4.200 16.600 4 57.000 278.000 3 j2.000 841.000 8	139.600
	DFRO n1 n2 U n3	Reading from	n3 = 1	24.800	94.200	24.800	94.200	24.800	94.200	16.600	47.300
		other CPU	n3 = 320	3 = 320 276.000 367.000 276.000 367.000 276		276.000	367.000	278.000	339.000		
		shared memory	n3 = 1000	799.000	892.000	799.000	892.000	799.000	892.000	841.000	892.000

Remark •

For the instructions for which a rise execution instruction $(\Box P)$ is not specified, the processing time is the same as an ON execution instruction.

Example WORDP instruction and TOP instruction

(b) When using Q03UD(E)JCPU, Q04UD(E)HCPU, Q06UD(E)HCPU, Q10UD(E)HCPU, Q13UD(E)HCPU, Q20UD(E)HCPU and Q26UD(E)HCPU

			Processing Time (µs)						
Category	Instruction	Condition (Device)	Q03UD(E)CPU		Q04/Q06UD(E)HCPU		Q10/Q13/Q20/ Q26UD(E)HCPU		
			Min.	Max.	Min.	Max.	Min.	Max.	
Sequence	ANB ORB MPS MRD MPP	_	0.020		0.0095		0.0095		
	INV	When not executed	0.020		0.0095		0.0095		
		When executed							
	MEP	When not executed	0.020		0.0095		0.0095		
	MEF	When executed							
	EGP	When not executed	0.020		0.0095		0.0095		
	EGF	When executed							
	PLS	_	1.300	1.600	0.890	1.100	0.890	1.100	
	PLF		1.500	1.600	0.940	1.200	0.940	1.200	
	FF	When not executed	0.040		0.0185		0.0185		
		When executed	1.200	1.500	0.790	0.910	0.790	0.910	
		When not executed	0.040		0.0185		0.0185		
	DEEIN	When executed	2.800	3.600	2.400	3.200	2.400	3.200	
	SET	When not executed	0.0	0.040		0.0185		0.0185	
	0	When executed	1.600	3.300	1.100	2.700	1.100	2.700	
	MC	—	0.040		0.0185		0.0185		
	MCR	—	0.040		0.0185		0.0185		
	FEND	Error check performed	108.000	130.000	75.800	89.300	75.800	89.300	
	END	No error check performed	107.000	124.000	75.800	89.800	75.800	89.800	
	NOP NOPLF PAGE	_	0.020		0.0095		0.0095		

	Instruction	Condition (Device)			Processing Time (µs)						
Category					Q03UD(E)CPU		Q04/ Q06UD(E)HCPU		Q10/Q13/Q20/ Q26UD(E)HCPU		
					Min.	Max.	Min.	Max.	Min.	Max.	
		Single	In conductive status		3.700	4.700	3.300	4.300	3.300	4.300	
	LDE=	precision	In non-conductive status		3.800	5.000	2 400	4.500	0.400	4.500	
		<u>.</u>	When not executed				3.400		3.400		
	ANDE=	Single	When	In conductive status	0.060		0.0285		0.0285		
			executed	In non-conductive status	3.300	5.800	3.000	5.100	3.000	5.100	
	ORE=	Single precision	When not executed		3.500	5.600	3.000	5.200	3.000	5.200	
			When	In conductive status	0.0	60	0.0	285	0.0285		
			executed	In non-conductive status	3.600	4.500	3.200	4.200			
		Single	In	conductive status	3.500	4.800	3.200	4.300			
Basic instruction	LDE< >	precision	In no	on-conductive status	4.000	4.700	3.600	4.200	0.0295		
		Single precision	When not executed		3.900	4.500	3.500	4.000	0.0285		
	ANDE< >		When	In conductive status	0.0	60	0.0285				
			executed	In non-conductive status	3.300	5.100	3.000	4.800	0.0285		
	ORE< >	Single precision	W	hen not executed	3.500	5.000	3.100	4.600			
			When	In conductive status	0.0	60	0.0285				
			executed	In non-conductive status	3.600	6.000	3.300	5.500	0.0285		
	LDE>	Single	In conductive status		3.500	5.800	3.100	5.300			
		precision	In non-conductive status		3.800	5.000	3.300	4.600	0.0295		
	ANDE>	Single precision	When not executed		3.700	4.900	3.300	4.400	0.0265		
			When	In conductive status	0.0	60	0.0	285	0.0285		
			executed	In non-conductive status	3.500	4.700	3.100	4.200			
	ORE>	Single precision	When not executed		3.600	4.500	3.100	4.000			
			When executed	In conductive status	0.0	60	0.0285				
				In non-conductive status	3.600	5.100	3.300	4.600	0.0285		
	LDE<=	Single precision	In	conductive status	3.500	4.800	3.200	4.500			
			In no	on-conductive status	3.800	5.600	3.400	5.200			
	ANDE<=	Single precision	When not executed		3.800	5.600	3.400	5.100	0.0285		
			When	In conductive status	0.060		0.0	0.0285			
			executed	In non-conductive status	3.200	4.600	2.800	4.200	0.0285		
	ORE<=	Circala	When not executed		3.500	5.000	3.100	4.500			
		precision	When	In conductive status	0.060		0.0285				
			executed	In non-conductive status	3.700	5.800	3.400	5.400	0.0285		
	LDE<	Single	In conductive status		3.800	5.700	3.300	5.300			
		precision	In non-conductive status		4.000	5.400	3.500	4.900	0.0005		
	ANDE<	Single precision	When not executed		4.000	5.200	3.500	4.900	0.0285		
			When In conductive status		0.060		0.0285				
			executed	In non-conductive status	3.400	4.600	3.000	4.200	0.0285		
	ORE<	Single precision	W	hen not executed	3.500	4.900	3.100	4.400			
			When	In conductive status	0.0	60	0.0	285	0.0285		
			executed	In non-conductive status	3.600	5.200	3.300	4.900			
					Processing Time (µs)						
-------------	-------------	------------	----------	--------------------------	----------------------	--------	--------------	---------------	------------------	-------------------	
Category	Instruction		Conditi	on (Device)	Q03UD	(E)CPU	Q0 Q06UD()4/ E)HCPU	Q10/Q2 Q26UD(13/Q20/ E)HCPU	
					Min.	Max.	Min.	Max.	Min.	Max.	
		Single	In	conductive status	3.800	6.000	3.300	5.500	0.0	205	
		precision	In no	on-conductive status	3.800	5.900	3.400	5.400	0.0	200	
		Oire et e	W	hen not executed	0.0	060	0.0	285			
	ANDE>=	Single	When	In conductive status	3.200	4.800	2.900	4.600	0.0	285	
		precision	executed	In non-conductive status	3.500	5.400	3.100	5.100			
		Cinalo	W	hen not executed	0.0	60	0.0	285			
	ORE>=	precision	When	In conductive status	3.600	5.200	3.300	4.700	0.0	285	
		precision	executed	In non-conductive status	3.500	5.200	3.200	4.700			
		Double	In	conductive status	4.100	7.700	3.500	7.200	3.500	7.200	
		precision	In no	on-conductive status	4 300	8 100	3 800	7 400	3 800	7 400	
		Doublo	W	hen not executed	4.500	0.100	5.000	7.400	5.000	7.400	
	ANDED=	precision	When	In conductive status	0.0	60	0.0	285	0.0	285	
		precision	executed	In non-conductive status	3.600	7.600	3.200	7.000	3.200	7.000	
		Daubla	W	hen not executed	3.900	7.700	3.400	7.400	3.400	7.400	
	ORED=	nrecision	When	In conductive status	0.0	60	0.0	285	0.0	285	
		precision	executed	In non-conductive status	3.800	8.800	3.400	8.300	3.400	8.300	
		Double	In	conductive status	4.000	9.300	3.700	8.800	3.700	8.800	
		precision	In no	on-conductive status	4.400	8.200	3.900	7.700	3.900	7.700	
		Doublo	W	hen not executed	4 100	7 900	3 500	7 500	3 500	7 500	
Basic	ANDED<>	precision	When	In conductive status	4.100	7.500	5.500	7.500	5.500	7.500	
instruction			executed	In non-conductive status	0.0	60	0.0	285	0.0	285	
		Doublo	W	hen not executed	3.800	7.600	3.300	7.200	3.300	7.200	
	ORED<>	precision	When	In conductive status	3.800	7.700	3.400	7.300	3.400	7.300	
		p. 00.0101	executed	In non-conductive status	0.0	60	0.0	285	0.0	285	
	I DED>	Double	In	conductive status	4.100	9.300	3.700	8.900	3.700	8.900	
		precision	In no	on-conductive status	3.800	8.900	3.400	8.400	3.400	8.400	
		Doublo	W	hen not executed	4.300	8.100	3.800	7.500	3.800	7.500	
	ANDED>	precision	When	In conductive status	4 100	7 800	3 500	7 200	3 500	7 200	
		p	executed	In non-conductive status	4.100	1.000	0.000	1.200	0.000	1.200	
		Double	W	hen not executed	0.0	60	0.0	285	0.0	285	
	ORED>	precision	When	In conductive status	3.800	7.700	3.300	7.300	3.300	7.300	
		p	executed	In non-conductive status	4.000	7.900	3.500	7.500	3.500	7.500	
	I DFD<=	Double	In	conductive status	0.0	060	0.0	285	0.0	285	
		precision	In no	on-conductive status	4.100	9.300	3.700	8.800	3.700	8.800	
		Double	W	hen not executed	4.100	9.300	3.700	8.800	3.700	8.800	
	ANDED<=		When	In conductive status	4.000	8.000	3.500	7.400	3.500	7.400	
_			executed	In non-conductive status	4 100	9 400	3 600	8 800	3 600	8 800	
		Double	W	hen not executed		0.100	0.000	0.000		0.000	
	ORED<=	precision	When	In conductive status	0.0	060	0.0	285	0.0	285	
	ţ	precision	executed	In non-conductive status	3.800	7.700	3.300	7.200	3.300	7.200	

Category Instruction Condition (Device) CodU_[E]CPL								Processing	g Time (µs)		
$ \begin{tabular}{ c c c c c c } \hline Mn Ms & Ms $	Category	Instruction		Conditio	on (Device)	Q03UD	(E)CPU	Q(Q06UD()4/ E)HCPU	Q10/Q ² Q26UD(13/Q20/ E)HCPU
IDED Double precision in non-conductive status 4.300 8.300 7.600 3.800 7.600 3.800 7.600 3.800 7.600 3.800 7.600 3.800 7.600 3.800 7.600 3.800 7.400 3.800 7.400 3.800 7.400 3.800 7.400 3.800 7.400 3.800 7.400 3.800 7.400 3.800 7.400 3.800 7.400 3.800 7.400 3.800 7.400 3.800 7.400 3.800 7.400 3.800 7.400 3.800 7.400 3.800 7.400 3.800 7.400 3.800 7.400 3.800 7.800 3.800 7.800 3.800 7.800 3.800 7.800 3.800 7.800 3.800 7.800 3.800 7.800 3.800 7.800 3.800 7.800 3.800 7.800 3.800 7.800 3.800 7.800 3.800 7.800 3.800 7.800 3.800 7.800 3.800 7.800 3.800						Min.	Max.	Min.	Max.	Min.	Max.
Basic Instruction Interm Interm No No <th< td=""><td></td><td>I DED<</td><td>Double</td><td>In</td><td>conductive status</td><td>4.300</td><td>8.300</td><td>3.800</td><td>7.600</td><td>3.800</td><td>7.600</td></th<>		I DED<	Double	In	conductive status	4.300	8.300	3.800	7.600	3.800	7.600
Basic instruction Double precision When not executed in non-conductive status 0.00 Robin 2000 3.000 7.300 3.300 7.300 3.300 7.300 3.300 7.300 3.300 7.300 3.300 7.300 3.300 7.300 3.300 7.300 3.300 7.300 3.300 7.300 3.300 7.300 3.200 7.300 3.200 7.300 3.200 7.300 3.200 7.300 3.200 7.300 9.200 3.700 9.200 3.700 9.2			precision	In no	n-conductive status	3.700	7.900	3.500	7.400	3.500	7.400
ANDED When executed precision When executed in non-conductive status 0.060 0.0235 0.0285 ORED- 0RED Double precision When not executed in non-conductive status 0.00 7.300 3.300 7.300 LDED- precision Double precision In conductive status 4.100 9.600 3.700 9.200 3.700 9.200 ANDED- precision Double precision In conductive status 4.100 9.600 3.600 9.000 3.600 9.000 3.600 9.000 3.600 9.000 8.600 9.000 3.600 9.000 3.600 9.000 3.600 8.600 9.000 3.600 8.600 7.400 0.0285 <td></td> <td></td> <td>Double</td> <td>W</td> <td>hen not executed</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>			Double	W	hen not executed						
Basic executed in non-conductive status 3.000 7.000 3.000 7.300 3.300		ANDED<	precision	When	In conductive status	0.0	060	0.0	285	0.0	285
OREDe Double precision When not executed 3.900 7.900 3.400 2.300 3.800 3.800 LDED>= Double precision In conductive status 4.000 9.600 3.700 9.200 3.700 9.200 ANDED>= Double precision In conductive status 4.000 9.600 3.700 9.200 3.700 9.200 ANDED>= Double precision In conductive status 4.100 9.600 3.600 8.900 3.600 8.900 ANDED>= Double precision When not executed 4.100 9.600 3.600 8.900 3.600 8.900 ANDED>= Double precision When not executed 3.800 8.100 3.400 7.400 3.400 7.600 ANDS In conductive status 4.100 9.600 3.600 8.600 6.600 6.600 IDS In conductive status 4.700 9.000 3.700 9.200 3.700 9.200 3.700 9.200 3.700 9.200 3.600				executed	In non-conductive status	3.800	7.800	3.300	7.300	3.300	7.300
$ \begin{tabular}{ c c c c c c } \hline c c c c c c c c c c c c c c c c c c $			Double	W	hen not executed	3.900	7.900	3.400	3.900	3.400	3.900
Basic Instruction Decision In one-conductive status 4.100 9.600 3.700 9.200 3.700 9.200 LDED= Double precision In non-conductive status 4.100 9.600 3.600 9.000 3.600 9.000 ANDED>= Double precision In non-conductive status 4.100 9.600 3.600 8.900 3.600 8.900 ORED= Double precision When not executed 3.800 7.900 3.400 7.400 3.400 7.400 LDS= Double precision When not executed 3.800 7.900 3.400 7.600 3.600 6.600 3.600 6.600 3.600 6.600 3.600 6.600 3.600 6.600 3.600 6.600 3.600 6.600 3.600 6.600 3.600 6.600 3.600 6.600 3.600 6.600 3.600 6.600 3.600 6.600 3.600 6.600 3.600 6.600 3.600 6.600 3.600 6.600 3.600 6.600		ORED<	precision	When	In conductive status	0.0	060	0.0	285	0.0	285
				executed	In non-conductive status	4.100	9.600	3.700	9.200	3.700	9.200
$ \begin{tabular}{ c c c c c c } \hline c c c c c c c c c c c c c c c c c c $		LDED>=	Double	In	conductive status	4.000	9.600	3.700	9.200	3.700	9.200
$ \begin{tabular}{ c $			precision	In no	n-conductive status	4.100	9.600	3.600	9.000	3.600	9.000
			Double	V	nen not executed	4.100	9.600	3.600	8.900	3.600	8.900
		ANDED>=	precision	When	In conductive status	0.0		0.0295		0.0	205
$ \begin{tabular}{ c c c c c c } \hline Precision & Precis$				executed	In non-conductive status	0.0	7 000	0.0	285	0.0	285
$ \begin{tabular}{ c c c c c } \hline c c c c c c c c c c c c c c c c c c $			Double	VV	nen not executed	3.800	7.900	3.400	7.400	3.400	7.400
$ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		URED>=	precision	When	In conductive status	3.900	8.100	3.400	7.500	3.400	7.500
$ \begin{split} \begin{tabular}{ c c c c c c } \hline c c c c c c c c c c c c c c c c c c $				executed In condu	In non-conductive status	0.0	0.600	0.0	285	2 700	285
$ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		LD\$=				4.100	9.600	3.700	9.200	3.700	9.200
ANDs= In conductive status 4.700 9.000 4.700 6.100 4.700 6.100 Basic instruction In conductive status 4.700 9.000 4.200 4.200 8.200 ORS= When executed 4.400 6.800 3.900 6.400 3.900 6.400 Instruction ORS= When executed 4.400 6.700 4.000 6.300 4.000 6.300 LDS<> In conductive status 0.060 0.0285 0.0285 0.0285 LDS<				In non-con	ductive status	4.000	7.200	3.600	0.600	3.600	0.000
$ \begin{tabular}{ c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$				when h		5.300	8.900	4.700	8.100	4.700	8.100
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		AND\$=	When e	executed	In conductive status	4.700	9.000	4.200	0.200	4.200	0.200
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				When n	In non-conductive status	4 400		2 000	200	2 000	200
$\begin{tabular}{ c c c c c c c } \hline c c c c c c c c c c c c c c c c c c $	Basic			VVIIEII II	In conductive status	4.400	6 700	3.900	6 300	3.900	6 300
LD\$<> In conductive status 5.100 8.200 4.200 7.600 4.200 7.600 LD\$<> In conductive status 5.100 8.200 4.200 7.600 4.200 7.600 AND\$<> In non-conductive status 5.000 8.100 4.000 7.200 4.000 7.200 AND\$<> When not executed 4.800 8.100 4.300 7.500 4.300 7.500 AND\$<> In conductive status 0.060 0.0285 0.0285 0.0285 OR\$<> When not executed 4.300 5.500 4.100 5.100 4.100 5.100 OR\$<> When executed 1n conductive status 0.060 0.0285 0.0285 LD\$ In conductive status 5.100 7.200 4.100 5.700 4.100 6.700 LD\$ In conductive status 5.100 7.200 4.100 6.700 4.100 6.700 LD\$ In conductive status 5.100 7.200 4.300 6.700	instruction	OR\$=	When e	executed		4.500	0.700	4.000	285	4.000	285
$ \begin{split} \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$				In condu	In hon-conductive status	5 100	8 200	4 200	7 600	4 200	7 600
AND\$ When not executed 4.800 8.100 4.300 7.500 4.300 7.500 AND\$<> When not executed 4.800 8.100 4.300 7.500 4.300 7.500 When executed In conductive status 4.700 8.400 4.200 7.800 4.200 7.800 OR\$<>/td> When executed In conductive status 0.060 0.0285 0.0285 0.0285 DR\$ When executed In conductive status 0.060 0.0285 0.0285 0.0285 DR\$ In conductive status 5.200 7.300 4.100 6.700 4.100 6.700 LD\$ In conductive status 5.200 7.300 4.100 6.700 4.100 6.700 AND\$ In conductive status 5.100 7.200 4.100 6.700 4.300 6.700 AND\$ When not executed 4.800 7.700 4.200 7.100 4.200 7.100 AND\$ When not executed 4.500 7.100		LD\$< >			ductive status	5.000	8 100	4.000	7.000	4.000	7.000
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				When n		4 800	8 100	4 300	7.500	4 300	7.500
		AND\$< >		Which h	In conductive status	4 700	8 400	4 200	7.800	4 200	7.800
OR\$<>/th> When not executed 4.300 5.500 4.100 5.100 4.100 5.100 OR\$<> When executed In conductive status 4.500 5.900 4.400 5.400 5.400 LD\$> In conductive status 0.060 0.0285 0.0285 LD\$> In conductive status 5.200 7.300 4.100 6.700 LD\$> In conductive status 5.200 7.300 4.100 6.700 AND\$> In non-conductive status 5.100 7.200 4.100 6.700 AND\$> When not executed 4.800 7.200 4.100 6.700 AND\$> When executed In conductive status 4.800 7.700 4.200 7.100 AND\$> When not executed 4.500 7.100 4.000 6.700 Mhen executed In conductive status 0.060 0.0285 0.0285 OR\$> When executed In conductive status 0.060 0.0285 0.0285 LD\$<=		7	When e	executed	In non-conductive status	0.0	060	0.0	285	0.0	285
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				When n	ot executed	4.300	5.500	4.100	5.100	4.100	5.100
When executed In on-conductive status 0.060 0.0285 0.0285 LD\$> In non-conductive status 5.200 7.300 4.100 6.700 4.100 6.700 LD\$> In conductive status 5.200 7.300 4.100 6.700 4.100 6.700 AND\$> In non-conductive status 5.100 7.200 4.100 6.700 4.100 6.700 AND\$> When not executed 4.800 7.200 4.300 6.700 4.200 7.100 4.200 7.100 AND\$> When not executed 4.800 7.700 4.200 7.100 4.200 7.100 OR\$> When not executed 4.500 7.100 4.000 6.700 0.0285 0.0285 OR\$> When executed In conductive status 0.060 0.0285 0.0285 0.0285 UD\$<=		OR\$< >			In conductive status	4.500	5.900	4.400	5.400	4.400	5.400
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			When e	executed	In non-conductive status	0.0	060	0.0	285	0.0	285
$ \begin{array}{ c c c c c c c } & & & & & & & & & & & & & & & & & & &$				In condu	uctive status	5.200	7.300	4.100	6.700	4.100	6.700
$ \begin{tabular}{ c c c c c c c c c c c } \hline When \mbox{ here} vected & 4.800 & 7.200 & 4.300 & 6.700 & 4.300 & 6.700 & 4.300 & 6.700 & 4.300 & 6.700 & 4.300 & 7.100 & 4.200 & 7.100 & 4.200 & 7.100 & 4.200 & 7.100 & 4.200 & 7.100 & 4.200 & 7.100 & 0.0285$		LD\$>		In non-con	ductive status	5.100	7.200	4.100	6.700	4.100	6.700
$ \begin{tabular}{ c c c c c c c c c c c } \hline AND\$> & \hline When executed & In conductive status & 4.800 & 7.700 & 4.200 & 7.100 & 4.200 & 7.100 \\ \hline In non-conductive status & 0.060 & 0.0285 & 0.0285 \\ \hline OR\$> & \hline When not executed & 4.500 & 7.100 & 4.000 & 6.700 & 4.000 & 6.700 \\ \hline When executed & In conductive status & 4.600 & 7.600 & 4.300 & 7.000 & 4.300 & 7.000 \\ \hline In non-conductive status & 0.060 & 0.0285 & 0.0285 \\ \hline LD\$<= & \hline In conductive status & 5.100 & 6.800 & 4.300 & 6.200 & 4.300 & 6.200 \\ \hline In non-conductive status & 5.200 & 7.200 & 4.300 & 6.600 & 4.300 & 6.600 \\ \hline AND$<= & \hline When not executed & 5.000 & 6.300 & 4.400 & 5.700 & 4.400 & 5.700 \\ \hline When executed & \hline In conductive status & 4.800 & 6.400 & 4.200 & 5.800 & 4.200 & 5.800 \\ \hline When executed & \hline In non-conductive status & 0.060 & 0.0285 & 0.0285 \\ \hline When executed & \hline In conductive status & 4.800 & 6.400 & 4.200 & 5.800 & 4.200 & 5.800 \\ \hline When executed & \hline In non-conductive status & 0.060 & 0.0285 & 0.0285 \\ \hline When executed & \hline In conductive status & 4.800 & 6.400 & 4.200 & 5.800 & 4.200 & 5.800 \\ \hline When executed & \hline In non-conductive status & 0.060 & 0.0285 & 0.0285 \\ \hline When executed & \hline In non-conductive status & 0.060 & 0.0285 & 0.0285 \\ \hline When executed & \hline In non-conductive status & 0.060 & 0.0285 & 0.0285 \\ \hline When executed & \hline In non-conductive status & 0.060 & 0.0285 & 0.0285 \\ \hline When executed & \hline In non-conductive status & 0.060 & 0.0285 & 0.0285 \\ \hline When executed & \hline In non-conductive status & 0.060 & 0.0285 & 0.0285 \\ \hline When executed & \hline In non-conductive status & 0.060 & 0.0285 & 0.0285 \\ \hline When executed & \hline In non-conductive status & 0.060 & 0.0285 & 0.0285 \\ \hline When executed & \hline In non-conductive status & 0.060 & 0.0285 & 0.0285 \\ \hline When executed & \hline When here executed & \hline When here executed & \hline When here executed & 0.060 & 0.0285 & 0.0285 \\ \hline When executed & \hline When here executed & \hline When here executed & 0.060 & 0.0285 & 0.0285 \\ \hline When executed & \hline When here execut$				When n	ot executed	4.800	7.200	4.300	6.700	4.300	6.700
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		AND\$>			In conductive status	4.800	7.700	4.200	7.100	4.200	7.100
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			When e	executed	In non-conductive status	0.0	060	0.0	285	0.0	285
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				When n	ot executed	4.500	7.100	4.000	6.700	4.000	6.700
When executed In non-conductive status 0.060 0.0285 0.0285 LD\$<=		OR\$>			In conductive status	4.600	7.600	4.300	7.000	4.300	7.000
LD\$<= In conductive status 5.100 6.800 4.300 6.200 4.300 6.200 In non-conductive status 5.200 7.200 4.300 6.600 4.300 6.600 AND\$<=			When e	executed	In non-conductive status	0.0	060	0.0	285	0.0	285
LD\$<= In non-conductive status 5.200 7.200 4.300 6.600 4.300 6.600 AND\$<=				In condu	uctive status	5.100	6.800	4.300	6.200	4.300	6.200
AND\$<= When not executed 5.000 6.300 4.400 5.700 4.400 5.700 Mhen executed In conductive status 4.800 6.400 4.200 5.800 4.200 5.800 In non-conductive status 0.060 0.0285 0.0285 0.0285		LD\$<=		In non-con	ductive status	5.200	7.200	4.300	6.600	4.300	6.600
AND\$<= In conductive status 4.800 6.400 4.200 5.800 4.200 5.800 In non-conductive status 0.060 0.0285 0.0285 0.0285				When n	ot executed	5.000	6.300	4.400	5.700	4.400	5.700
vvnen executed In non-conductive status 0.060 0.0285 0.0285		AND\$<=	14/1		In conductive status	4.800	6.400	4.200	5.800	4.200	5.800
			vvnen e	executed	In non-conductive status	0.0	060	0.0	285	0.0	285

				Processing Time (µs)					
Category	Instruction	С	ondition (Device)	Q03UD	(E)CPU	Q0 Q06UD()4/ E)HCPU	Q10/Q ² Q26UD(13/Q20/ E)HCPU
				Min.	Max.	Min.	Max.	Min.	Max.
		V	/hen not executed	0.0	60	0.0	285	0.0	285
	OR\$<=	When	In conductive status	4.700	7.700	4.400	7.200	4.400	7.200
		executed	In non-conductive status	4.600	7.600	4.400	7.100	4.400	7.100
		In	conductive status	4.800	8.100	4.500	7.500	4.500	7.500
	LD\$<	In n	on-conductive status	5.000	8.300	4.500	7.900	4.500	7.900
		v	/hen not executed	0.0	60	0.0	285	0.0	285
	AND\$<	When	In conductive status	4.500	7.100	4.000	6.600	4.000	6.600
		executed	In non-conductive status	4.900	7.500	4.400	7.100	4.400	7.100
		v	/hen not executed	0.0)60	0.0	285	0.0	285
	OR\$<	When	In conductive status	5.100	7.800	4.100	7.200	4.100	7.200
		executed	In non-conductive status	5.000	8.100	4.100	7.600	4.100	7.600
	1 D\$>=	In	conductive status	4.800	6.700	4.500	6.200	4.500	6.200
		In n	on-conductive status	5.000	6.700	4.400	6.300	4.400	6.300
		v	/hen not executed	0.0	60	0.0	285	0.0	285
	AND\$>=	When	In conductive status	4.400	6.800	4.100	6.300	4.100	6.300
		executed	In non-conductive status	4.500	7.000	4.200	6.600	4.200	6.600
	OR\$>=	When not executed		0.0)60	0.0	285	0.0	285
		When	In conductive status	5.400	6.600	4.100	5.800	4.100	5.800
		executed	In non-conductive status	5.300	6.300	4.100	5.700	4.100	5.700
	BKCMP = \$1 \$2 D n		n = 1	8.200	10.700	7.500	10.000	7.500	10.000
Basic			n = 96	57.400	61.800	46.400	48.700	46.400	48.700
instruction	BKCMP<> §1 §2 D n		n = 1	8.200	10.700	7.500	10.000	7.500	10.000
			n = 96	59.500	63.300	45.600	50.400	45.600	50.400
	BKCMP> \$1 \$2 D n		n = 1	8.200	10.800	7.500	10.100	7.500	10.100
			n = 96	59.500	63.400	47.700	50.500	47.700	50.500
	BKCMP<= ⑤1 ⑥2 ① n		n = 1	8.200	10.600	7.500	10.000	7.500	10.000
			n = 1	9 200	10,600	40.400	49.000	46.400	49.000
	BKCMP< §1 §2 D n		n = 96	59 500	63 600	17.500	50 500	17.600	50 500
			n = 1	8 200	10 900	7 500	10.000	7 500	10.000
	BKCMP>= ᢒ1 ᢒ2 D n		n = 96	57 400	62 000	46 400	48 900	46 400	48 900
			n = 1	9 250	14 000	8 600	13 000	8 600	13 000
	DBKCMP = 🔄 😒 D n		n = 96	60 700	67 500	47 900	52 800	47 900	52 800
			n = 1	9 250	14 000	8 600	13 000	8 600	13 000
	DBKCMP<> §1 §2 D n		n = 96	60 700	67 500	47 900	52 800	47 900	52 800
			n = 1	9.250	14.000	8.600	13.000	8.600	13.000
	DBKCMP> §1 §2 D n		n = 96	60.700	67.500	47.900	52.800	47.900	52.800
			n = 1	9.250	14.000	8.600	13.000	8.600	13.000
[DBKCMP<= 🕄 😒 D n		n = 96	60.700	67.500	47.900	52.800	47.900	52.800
		n = 96 n = 1		9.250	14.000	8.600	13.000	8.600	13.000
	DBKCMP< §1 §2 D n	n = 96		60.700	67.500	47.900	52.800	47.900	52.800
		n = 1		9.250	14.000	8.600	13.000	8.600	13.000
	DBKCMP>= 🔄 😒 D n		n = 96	60.700	67.500	47.900	52.800	47.900	52.800

				Processing Time (μs)					
Category	Instruction		Condition (Device)	Q03UD	(E)CPU	Q0 Q06UD()4/ E)HCPU	Q10/Q ² Q26UD(13/Q20/ E)HCPU
				Min.	Max.	Min.	Max.	Min.	Max.
	DB + ⑤ D		When executed	4.900	7.000	4.600	6.400	4.600	6.400
	DB + \$1 \$2 D		When executed	5.200	7.300	4.800	6.700	4.800	6.700
	DB - (S) (D)		When executed	4.900	6.600	4.700	6.000	4.700	6.000
	DB - \$1 \$2 D		When executed	5.200	7.500	4.800	6.600	4.800	6.600
	DB * \$1 \$2 D		When executed	8.300	12.100	8.100	11.600	8.100	11.600
	DB/ \$1 \$2 D		When executed	6.100	9.100	5.800	8.800	5.800	8.800
		Double preci-	(§) = 0, (D) = 0	4.800	8.000	4.300	7.200	4.300	7.200
		sion	(s) = 2^{1023} , (d) = 2^{1023}	4.800	8.000	4.300	7.200	4.300	7.200
		Double preci-	§1) = 0, §2) = 0	5.500	9.800	4.800	9.200	4.800	9.200
		sion	§1) = 2^{1023} , §2) = 2^{1023}	5.500	9.800	4.800	9.200	4.800	9.200
		Double	(s) = 0, (D) = 0	5.000	8.200	4.400	7.500	4.400	7.500
		sion	(s) = 2^{1023} , (d) = 2^{1023}	5.000	8.200	4.400	7.500	4.400	7.500
		Double	§1) = 0, §2) = 0	4.400	8.100	3.800	7.500	3.800	7.500
		sion	$(51) = 2^{1023}, (52) = 2^{1023}$	4.400	8.100	3.800	7.500	3.800	7.500
		Double	§1) = 0, §2) = 0	5.800	9.500	5.100	8.800	5.100	8.800
		sion	§1) = 2 ¹⁰²³ , §2) = 2 ¹⁰²³	5.800	9.500	5.100	8.800	5.100	8.800
Basic instruction	ED / §) §2 D	Double preci- sion	Double precision $(S_1) = 2^{1023}, (S_2) = 2^{1023}$		10.600	5.900	10.000	5.900	10.000
			n = 1	9.100	11.200	8.500	10.600	8.500	10.600
	BK + 🕙 🥸 🕛 n		n = 96	60.700	62.900	44.600	47.000	44.600	47.000
			n = 1	9.700	12.000	8.900	11.300	8.900	11.300
	BK - 🗐 🧐 🛈 n		n = 96	61.300	63.600	45.600	47.900	45.600	47.900
			n = 1	7.000	10.700	6.450	9.950	6.450	9.950
	DBK + (\$1) (\$2) (D) n		n = 96	59.400	63.100	43.700	47.500	43.700	47.500
			n = 1	7.000	10.700	6.450	9.950	6.450	9.950
	DBK - 🗐 🧐 🗩 n		n = 96	59.400	63.100	43.700	47.500	43.700	47.500
	\$ + S D		_	8.800	14.600	8.100	13.900	8.100	13.900
	\$ + \$1 \$2 D		_	7.300	11.100	6.500	10.300	6.500	10.300
	FLTD	Double preci-	s = 0	2.300	5.000	1.800	4.700	1.800	4.700
		sion	<u>(s)</u> = 7FFFн	2.500	5.200	2.200	4.800	2.200	4.800
	DFLTD	Double preci-	s = 0	2.400	5.200	2.000	4.900	2.000	4.900
		sion	(§) = 7FFFFFFFн	2.700	5.400	2.300	5.100	2.300	5.100
	INTD	Double preci-	s = 0	2.700	4.100	2.200	4.100	2.200	4.100
		sion	s) = 32766.5	3.700	5.900	3.200	5.600	3.200	5.600
C	DINTD P	Double preci-	s = 0	2.600	3.900	2.200	3.400	2.200	3.400
		sion	s = 1234567890.3	3.400	5.600	3.000	5.100	3.000	5.100

			Processing Time (µs)							
Category	Instruction	Condition (Device)	Q03UD	(E)CPU	Q(Q06UD()4/ E)HCPU	Q10/Q2 Q26UD(13/Q20/ E)HCPU		
			Min.	Max.	Min.	Max.	Min.	Max.		
	DBL	When executed	2.700	3.400	2.300	2.700	2.300	2.700		
	WORD	When executed	2.900	4.300	2.600	3.600	2.600	3.600		
	GRY	When executed	2.700	3.900	2.300	3.400	2.300	3.400		
	DGRY	When executed	2.900	3.500	2.500	3.000	2.500	3.000		
	GBIN	When executed	4.000	4.800	3.800	4.300	3.800	4.300		
	DGBIN	When executed	5.500	6.100	5.000	5.900	5.000	5.900		
	NEG	When executed	2.400	3.900	2.000	3.300	2.000	3.300		
	DNEG	When executed	2.500	3.700	2.500	3.300	2.500	3.300		
	ENEG	Floating point = 0	2.500	3.300	2.300	2.800	2.300	2.800		
	LINEO	Floating point = -1.0	2.700	4.500	2.500	3.900	2.500	3.900		
	EDNEG	Floating point = 0	2.200	3.500	1.800	3.100	1.800	3.100		
	EDITEO	Floating point = -1.0	2.400	3.500	1.900	3.000	1.900	3.000		
		n = 1	6.600	8.900	5.900	8.200	5.900	8.200		
	BKBCD	n = 96	71.300	74.100	61.000	63.400	61.000	63.400		
		n = 1	6.500	9.800	5.600	9.300	5.600	9.300		
		n = 96	56.300	59.500	49.200	52.500	49.200	52.500		
	ECON		2.600	5.400	2.100	4.500	2.100	4.500		
	EDCON	—	2.800	5.400	2.500	5.400	2.500	5.400		
	EDMOV	—	2.300	5.500	1.700	5.000	1.700	5.000		
	\$MOV	Character string to be transferred = 0	4.000	6.300	3.400	5.600	3.400	5.600		
Basic		Character string to be transferred = 32	14.600	16.500	11.400	13.300	11.400	13.300		
Instruction		n = 1	6.200	7.900	5.500	7.300	5.500	7.300		
	BXCH 🕛 🙂 n	n = 96	67.000	68.800	47.300	49.300	47.300	49.300		
	SWAP		2.400	2.700	1.900	2.200	1.900	2.200		
	GOEND		0.5	00	0.5	500	0.5	500		
	DI		1.800	2.200	1.500	1.800	1.500	1.800		
	EI		3.100	3.800	3.000	3.300	3.000	3.300		
	IMASK	—	9.800	13.300	7.200	10.500	7.200	10.500		
	IRET		1.0	00	1.0	000	1.0	000		
	DSE X n	n = 1	4.200	5.900	3.700	5.600	3.700	5.600		
		n = 96	11.400	13.800	10.700	12.400	10.700	12.400		
		n = 1	3.800	4.800	3.400	4.800	3.400	4.800		
	KOF I II	n = 96	8.500	9.500	8.100	8.900	8.100	8.900		
	UDCNT1		0.900	1.500	0.500	0.983	0.500	0.983		
	UDCNT2		0.900	1.700	0.600	1.300	0.600	1.300		
	TTMR		3.900	6.100	3.400	5.400	3.400	5.400		
	STMR		6.800	13.500	5.800	12.500	5.800	12.500		
	ROTC		9.000	10.500	8.000	9.400	8.000	9.400		
	RAMP	—	5.900	8.800	5.200	8.400	5.200	8.400		
	SPD	—	0.900	1.900	0.500	1.400	0.500	1.400		
F	PLSY		1.900	2.200	1.500	1.800	1.500	1.800		
	PWM	—	1.200	1.600	0.900	1.200	0.900	1.200		
	MTR		10.400	19.800	9.400	10.000	9.400	10.000		

						Processing	g Time (µs)		
Category	Instruction	Condi	tion (Device)	Q03UD	(E)CPU	Q0 Q06UD(04/ E)HCPU	Q10/Q Q26UD(13/Q20/ E)HCPU
				Min.	Max.	Min.	Max.	Min.	Max.
			n = 1	9.000	11.700	8.300	11.000	8.300	11.000
	BKAND 🗐 🧐 🕛 n		n = 96	57.400	63.100	43.800	47.300	43.800	47.300
			n = 1	7.700	10.000	7.700	9.500	7.700	9.500
	BKOR SI SI U n		n = 96	57.400	61.900	44.300	45.800	44.300	45.800
			n = 1	7.800	10.100	7.300	9.200	7.300	9.200
	BKXOR S S O n		n = 96	57.300	61.500	43.800	45.800	43.800	45.800
			n = 1	7.800	9.600	7.600	8.900	7.600	8.900
			n = 96	57.400	61.400	43.900	45.300	43.900	45.300
	BSED D n		n = 1	3.700	5.400	3.200	4.800	3.200	4.800
	BOFK		n = 96	6.900	9.000	5.800	7.700	5.800	7.700
	BSEL D n		n = 1	4.100	5.900	3.400	5.100	3.400	5.100
			n = 96	7.100	9.100	6.000	7.900	6.000	7.900
	SETBR D n1 n2	n1 =	16 / n2 = 1	7.950	17.500	7.600	16.900	7.600	16.900
		n1 =	16 / n2 = 15	7.950	17.500	7.550	16.900	7.550	16.900
	SETBL D n1 n2	n1 =	16 / n2 = 1	7.950	17.900	7.500	17.400	7.500	17.400
		n1 =	16 / n2 = 15	7.900	17.800	7.500	17.300	7.500	17.300
	SFTWR D n1 n2	n1 =	16 / n2 = 1	5.950	10.600	4.600	8.700	4.600	8.700
		n1 =	16 / n2 = 15	5.900	10.600	4.600	8.700	4.600	8.700
	SFTWI D n1 n2	n1 =	16 / n2 = 1	5.950	10.700	4.550	8.700	4.550	8.700
		n1 =	16 / n2 = 15	5.950	10.700	4.600	8.800	4.600	8.800
	BSET D n		n = 1	3.000	3.400	2.500	2.800	2.500	2.800
Application			n = 15	3.000	3.500	2.500	2.800	2.500	2.800
instruction	BRST D n		n = 1	3.000	3.400	2.600	2.800	2.600	2.800
	7507		n = 15	3.000	3.400	2.500	2.800	2.500	2.800
	IESI	Whe	en executed	4.400	5.300	3.700	4.700	3.700	4.700
	DIESI	vvne	en executed	4.500	5.400	3.900	4.800	3.900	4.800
	BKRST D n		n = 1	4.300	4.600	3.700	4.100	3.700	4.100
			n = 96	6.000	6.800	5.100	6.000	5.100	6.000
		n = 1	All match	4.900	5.300	4.200	4.600	4.200	4.000
	SER §1 §2 D n			32,200	22,000	4.200	4.000	4.200	4.000
		n = 96	Nono match	32.300	32.900	25.900	20.300	25.900	20.300
				6 100	6 500	5 400	5 700	5 400	5 700
		n = 1	None match	6 200	6.600	5.500	5.000	5.500	5.000
	DSER §1 §2 D n	n -		52 800	54 200	41 200	41 800	41 200	41 800
		96	None match	52.800	54 200	41 200	41.800	41 200	41 800
				02.000	4.400		41.000		
			(s) = 0	3.700	4.100	3.300	3.600	3.300	3.600
		(s) =	FFFFFFF	3.800	4.100	3.200	3.700	3.200	3.700
			n = 2	6.000	7.500	5.300	6.900	5.300	6.900
			n = 8	8.100	9.300	6.800	7.800	6.800	7.800
		n = 2	M1 = ON	5.300	5.700	4.700	5.100	4.700	5.100
			M4 = ON	5.200	5.700	4.600	5.000	4.600	5.000
	ENCO S D n	n = 8	M1 = ON	10.400	11.400	9.000	10.000	9.000	10.000
		-	M256 = ON	5.700	6.800	5.100	6.100	5.100	6.100

					Processing	g Time (µs)		
Category	Instruction	Condition (Device)	Q03UD	(E)CPU	Q0 Q06UD()4/ E)HCPU	Q10/Q ² Q26UD(13/Q20/ E)HCPU
			Min.	Max.	Min.	Max.	Min.	Max.
		n = 1	4.400	5.300	3.800	4.600	3.800	4.600
	DIS 🖲 🕛 n	n = 4	4.800	5.700	4.000	5.000	4.000	5.000
		n = 1	5.000	5.300	3.500	4.800	3.500	4.800
		n = 4	5.600	6.000	4.000	5.100	4.000	5.100
	NDIS	When executed	11.000	13.100	11.000	13.200	11.000	13.200
	NUNI	When executed	10.600	12.700	7.300	13.200	7.300	13.200
		n = 1	5.000	6.500	4.400	5.800	4.400	5.800
	WIOB © © h	n = 96	36.000	38.400	28.200	29.300	28.200	29.300
		n = 1	5.100	6.100	4.600	5.500	4.600	5.500
	BIOM	n = 96	29.900	32.000	22.800	23.800	22.800	23.800
		n = 1	4.300	6.900	4.000	6.100	4.000	6.100
	MAX I U n	n = 96	31.200	33.500	24.700	27.000	24.700	27.000
		n = 1	4.400	6.800	4.000	6.000	4.000	6.000
		n = 96	30.300	34.800	26.500	28.300	26.500	28.300
		n = 1	4.800	9.100	4.800	8.100	4.800	8.100
		n = 96	56.400	62.200	47.100	49.600	47.100	49.600
		n = 1	4.800	6.800	4.300	5.900	4.300	5.900
		n = 96	55.400	60.200	45.400	47.400	45.400	47.400
		n = 1	6.200	9.300	5.600	8.800	5.600	8.800
	SOKI OI OO	n = 96	6.200	9.400	5.600	8.600	5.600	8.600
		n = 1	6.200	9.300	5.600	8.200	5.600	8.200
		n = 96	6.100	9.100	5.600	8.400	5.600	8.400
Application	WSUM (S) (D) n	n = 1	4.800	6.200	4.200	5.500	4.200	5.500
instruction		n = 96	26.900	28.700	21.300	22.300	21.300	22.300
		n = 1	5.500	7.000	4.800	6.100	4.800	6.100
		n = 96	53.000	56.300	42.700	44.000	42.700	44.000
	MEAN (S) (D) n	n = 1	4.300	8.650	3.900	7.800	3.900	7.800
		n = 96	16.000	21.400	12.900	18.000	12.900	18.000
	DMFAN (S) (D) n	n = 1	5.700	10.600	5.300	9.950	5.300	9.950
		n = 96	29.200	35.200	23.000	28.800	23.000	28.800
	NEXT	—	0.940	1.400	0.770	1.200	0.770	1.200
	BREAK	—	10.400	5.500	9.100	5.000	9.100	5.000
	RET	Return to original program	2.000	3.000	1.600	2.600	1.600	2.600
		Return to other program	2.300	3.700	2.000	3.100	2.000	3.100
	FCALL Pn		3.100	4.400	2.700	3.600	2.700	3.600
		Common pointer	4.000	5.700	3.600	5.100	3.600	5.100
	FCALL Pn 🕙 to 🗐	—	19.300	21.500	16.500	18.600	16.500	18.600
	ECALL * Pn *: Program name	—	70.300	82.300	65.900	77.600	65.900	77.600
	ECALL * Pn Sto S5	_	101.000	114.000	91.800	105.000	91.800	105.000
	EFCALL * Pn *: Program name	_	70.700	82.800	66.200	78.100	66.200	78.100
	EFCALL * Pn 🕙 to 😒 *: Program name	³⁹ —		107.000	78.800	91.600	78.800	91.600
	XCALL	_	3.800	5.700	3.700	5.200	3.700	5.200
							1	l

					Processing	g Time (µs)		
Category	Instruction	Condition (Device)	Q03UD	(E)CPU	Q0 Q06UD()4/ E)HCPU	Q10/Q2 Q26UD(13/Q20/ E)HCPU
			Min.	Max.	Min.	Max.	Min.	Max.
		When selecting I/O refresh only	12.800	29.100	12.400	28.600	12.400	28.600
		When selecting CC-Link refresh only (Master station side)	16.000	39.500	15.500	39.100	15.500	39.100
		When selecting CC-Link refresh only (Local station side)	16.100	39.500	15.500	39.100	15.500	39.100
		When selecting MELSECNET/H refresh only (Control station side)	34.700	70.400	34.400	69.800	34.400	69.800
		When selecting MELSECNET/H refresh only (Normal station side)	34.700	70.400	34.400	69.800	34.400	69.800
	СОМ	When selecting intelli auto refresh only	12.800	33.200	12.800	33.200	12.800	33.200
	ССОМ	When selecting I/O outside the group only (Input only)	7.900	21.100	7.700	20.700	7.700	20.700
		When selecting I/O outside the group only (Output only)	16.900	44.800	16.500	44.200	16.500	44.200
		When selecting I/O outside the group only (Both I/O)	22.600	52.600	22.400	52.600	22.400	52.600
		When selecting refresh of multi- ple CPU high speed transmission area only	13.000	33.800	12.700	33.200	12.700	33.200
		When selecting communication with peripheral device	7.250	18.800	7.100	18.500	7.100	18.500
	EIE\//	Number of data points = 0	3.700	5.300	3.200	4.600	3.200	4.600
		Number of data points = 96	3.800	4.400	3.300	3.800	3.300	3.800
Application	FIER	Number of data points = 0	4.300	5.000	3.800	4.400	3.800	4.400
instruction		Number of data points = 96	33.500	35.500	24.800	25.700	24.800	25.700
	FPOP	Number of data points = 0	4.300	5.900	3.800	5.300	3.800	5.300
		Number of data points = 96	4.300	5.900	3.700	5.400	3.700	5.400
	FINS	Number of data points = 0	4.800	5.900	3.700	5.300	3.700	5.300
		Number of data points = 96	4.300	5.900	3.700	5.300	3.700	5.300
	FDEL	Number of data points = 0	4.900	6.500	4.200	5.800	4.200	5.800
		Number of data points = 96	34.200	35.900	25.400	25.900	25.400	25.900
	FROM n1 n2 D n3	n3 = 1	10.800	24.100	10.700	23.600	10.700	23.600
		n3 = 1000	392.600	413.300	390.900	410.200	390.900	410.200
	DFRO n1 n2 D n3	n3 = 1	13.600	27.700	12.600	26.700	12.600	26.700
		n3 = 500	392.600	413.300	390.900	410.200	390.900	410.200
	TO n1 n2 医 n3	13 = 1	10.200	21.900	9.600	21.300	9.600	21.300
		n3 = 1000	373.700	394.100	372.500	390.800	372.500	390.800
	DTO n1 n2 n3	h3 = 1	13.000	26.700	12.000	25.700	12.000	25.700
		n3 = 500	373.700	394.100	372.500	390.800	372.500	390.800
		No display→no display	2.400	2.600	1.900	2.000	1.900	2.000
	LEDR	LED instruction execution→no display	28.100	39.400	24.400	35.800	24.400	35.800
		(§) = 1	4.900	6.500	4.300	5.600	4.300	5.600
		(s) = -32768	7.200	8.700	6.500	8.000	6.500	8.000
	DBINDA (S) (D)	(s) = 1	5.700	7.100	4.900	6.300	4.900	6.300
	DBINDA (S) (D)	s) = -2147483648	10.400	12.000	9.600	11.000	9.600	11.000

			Processing Time (µs)						
Category	Instruction	Condition (Device)	Q03UD	(E)CPU			Q10/Q1 Q26UD(3/Q20/ F)HCPU	
			Min.	Max.	Min.	Max.	Min.	Max.	
		(s) = 1	4.400	5.900	3.800	5.200	3.800	5.200	
	BINHA (S) (D)	(s) = FFFFн	4.400	5.800	3.700	5.200	3.700	5.200	
		(s) = 1	5.200	6.700	4.600	6.000	4.600	6.000	
	DBINHA (S) (U)	(s) = FFFFFFFFн	5.100	6.500	4.600	6.000	4.600	6.000	
		(s) = 1	4.300	5.800	3.600	5.000	3.600	5.000	
		(S) = 9999	4.700	6.100	4.100	5.400	4.100	5.400	
		(S) = 1	4.800	6.300	4.000	5.500	4.000	5.500	
		s = 99999999	5.600	7.100	4.900	6.300	4.900	6.300	
		(S) = 1	6.500	8.500	5.800	7.800	5.800	7.800	
		(s) = -32768	6.300	8.300	5.600	7.700	5.600	7.700	
		<u>(s)</u> = 1	9.400	11.500	8.500	10.500	8.500	10.500	
		s) = -2147483648	9.100	11.200	8.100	10.200	8.100	10.200	
Application		(S) = 1	4.900	7.100	4.400	6.400	4.400	6.400	
instruction		(s) = FFFFн	5.100	7.300	4.600	6.500	4.600	6.500	
		(s) = 1	6.000	8.100	5.300	7.300	5.300	7.300	
		(s) = FFFFFFFFн	6.300	8.500	5.600	7.700	5.600	7.700	
		(s) = 1	5.000	7.100	4.400	6.300	4.400	6.300	
		(s) = 9999	5.000	7.100	4.300	6.300	4.300	6.300	
		(s) = 1	6.200	8.300	5.500	7.400	5.500	7.400	
	DDABCD © ©	s = 99999999	6.200	8.300	5.500	7.500	5.500	7.500	
	COMRD		51.600	52.400	50.900	51.200	50.900	51.200	
		1 character	4.100	6.200	3.600	5.500	3.600	5.500	
		96 characters	19.800	22.200	16.800	18.700	16.800	18.700	
	STR		6.900	11.100	6.600	10.400	6.600	10.400	
	DSTR		10.200	12.500	9.600	11.500	9.600	11.500	
	VAL		9.800	14.200	8.900	13.000	8.900	13.000	
	DVAL		14.000	18.700	12.700	16.800	12.700	16.800	
	ESTR		18.700	24.100	17.900	23.100	17.900	23.100	

						Processing	g Time (µs)		
Category	Instruction	Conditio	n (Device)	Q03UD	(E)CPU	Q(Q06UD()4/ E)HCPU	Q10/Q2 Q26UD(13/Q20/ E)HCPU
				Min.	Max.	Min.	Max.	Min.	Max.
	EVAL	Decimal p all 2-digit s	point format	23.300	30.400	22.800	29.000	22.800	29.000
		Expone all 6-digit s	nt format	23.300	30.500	22.500	29.000	22.500	29.000
		n	= 1	5.600	9.000	5.400	8.300	5.400	8.300
	ASCOUN	n :	= 96	28.700	32.100	25.200	28.400	25.200	28.400
		n	= 1	6.000	9.700	5.400	9.000	5.400	9.000
	HEX I Un	n :	= 96	35.600	39.800	31.300	35.000	31.300	35.000
		n	= 1	7.600	9.400	7.300	6.600	7.300	6.600
		n :	= 96	36.300	40.000	29.200	31.600	29.200	31.600
		n	= 1	6.500	8.900	5.900	8.200	5.900	8.200
		n :	= 96	36.200	39.700	29.200	31.500	29.200	31.500
	MIDR			9.500	12.100	8.100	10.300	8.100	10.300
	MIDW	-		10.300	12.000	8.800	10.200	8.800	10.200
		No i	natch	19.300	21.800	16.600	18.400	16.600	18.400
	INSTR	Match	Head	10.300	12.800	9.100	10.900	9.100	10.900
		Watch	End	51.100	54.200	42.700	44.900	42.700	44.900
	EMOD	-		10.300	11.800	9.600	11.000	9.600	11.000
	EREXP	-		19.300	21.000	18.800	20.100	18.800	20.100
		(s) = 128 n	/ ① = 40 / = 1	41.100	54.200	35.300	47.600	35.300	47.600
Application		(s) = 128 n :	/ (D) = 40 / = 48	56.700	81.400	48.600	61.700	48.600	61.700
Instruction		(s) = 128 / (D) = 40 / n = 1		39.000	49.500	34.800	44.600	34.800	44.600
	STRDEL SUn	(s) = 128 n :	/ (D) = 40 / = 48	36.000	45.200	29.200	38.100	29.200	38.100
	SIN	Single	precision	4.500	6.200	4.100	5.700	4.100	5.700
	COS	Single	precision	4.300	6.000	4.000	5.600	4.000	5.600
	TAN	Single	precision	5.100	7.200	5.100	6.700	5.100	6.700
	ASIN	Single	precision	6.100	8.900	5.900	8.500	5.900	8.500
	ACOS	Single	precision	6.800	9.300	6.700	8.900	6.700	8.900
	ATAN	Single	precision	4.000	6.500	3.900	6.000	3.900	6.000
	SIND	Double	precision	8.800	14.300	8.500	13.800	8.500	13.800
	COSD	Double	precision	9.300	15.100	8.800	14.600	8.800	14.600
	TAND	Double	precision	11.200	16.900	10.800	16.500	10.800	16.500
	ASIND	Double	precision	12.000	17.100	11.600	16.600	11.600	16.600
	ACOSD	Double	precision	11.700	16.500	11.200	16.200	11.200	16.200
	ATAND	Double	precision	9.500	14.200	9.100	13.800	9.100	13.800
	RAD	Single	precision	2.500	4.800	2.100	4.300	2.100	4.300
	RADD	Double	precision	4.000	9.600	3.600	9.200	3.600	9.200
	DEG	Single	precision	2.500	4.700	2.200	4.400	2.200	4.400
	DEGD	Double	precision	4.300	9.000	3.800	9.000	3.800	9.000
	SQR	Single	precision	3.000	4.600	2.600	4.300	2.600	4.300
	SQRD	Double	precision	5.600	11.500	5.200	11.000	5.200	11.000

				Processing Time (µs)							
Category	Instruction	Condi	tion (Device)	Q03UD	(E)CPU	Q0 Q06UD()4/ E)HCPU	Q10/Q13/Q20/ Q26UD(E)HCPU			
				Min.	Max.	Min.	Max.	Min.	Max.		
		Single	(s) = -10	4.000	6.100	3.800	5.500	3.800	5.500		
		precision	(s) = 1	4.000	6.100	3.800	5.600	3.800	5.600		
		Double	(s) = -10	8.700	13.900	8.200	13.500	8.200	13.500		
		precision	(s) = 1	8.400	13.600	8.000	13.200	8.000	13.200		
		Single	(s) = 1	4.100	6.900	3.800	6.400	3.800	6.400		
		precision	(s) = 10	5.600	8.200	5.200	7.700	5.200	7.700		
		Double	(s) = 1	8.100	13.000	7.700	12.500	7.700	12.500		
		precision	(s) = 10	9.700	14.800	9.200	14.300	9.200	14.300		
	RND		—	1.200	2.300	0.800	1.800	0.800	1.800		
	SRND		_	1.400	2.400	1.100	2.000	1.100	2.000		
		(S) = 0		1.800	3.300	1.600	2.800	1.600	2.800		
	BOOK O O	S) = 9999	5.100	8.800	5.100	8.000	5.100	8.000		
			s) = 0	1.900	3.400	1.500	3.000	1.500	3.000		
Application		(s) =	99999999	7.500	10.200	7.500	9.900	7.500	9.900		
instruction	BSIN	—		8.600	15.100	8.100	14.500	8.100	14.500		
	BCOS			7.800	14.400	7.800	13.700	7.800	13.700		
	BTAN			9.000	13.800	9.000	13.300	9.000	13.300		
	BASIN			10.600	13.400	10.100	12.800	10.100	12.800		
	BACOS			11.600	14.400	11.100	14.100	11.100	14.100		
	BATAN		—	9.800	11.700	9.100	10.900	9.100	10.900		
	POW (S1) (S2 (D)	Single	§1) = 12.3 E + 5								
		precision	© = 3.45 E + 0	8.750	11.400	8.400	10.900	8.400	10.900		
		Double	Ŝ1) = 12.3 E + 5								
		precision	€2 = 3.45 E + 0								
	LOG10	Sing	e precision	18.600	27.200	18.200	26.500	18.200	26.500		
	LOG10D	Doub	le precision								
	LIMIT		—	5.900	8.550	5.700	8.050	5.700	8.050		
	DLIMIT		—	11.500	19.400	11.100	18.600	11.100	18.600		
	BAND		—	2.800	3.100	2.400	2.700	2.400	2.700		
	DBAND		—	3.200	3.500	2.800	3.000	2.800	3.000		
	ZONE	—		3.000	4.300	2.700	3.800	2.700	3.800		
	DZONE		_	3.600	5.100	3.300	4.600	3.300	4.600		

			Processing Time (µs)						
Category	Instruction	Conditi	ion (Device)	Q03UD	(E)CPU	Q0 Q06UD()4/ E)HCPU	Q10/Q13/Q20/ Q26UD(E)HCPU	
				Min.	Max.	Min.	Max.	Min.	Max.
		SM750	Point No.1 < §1 < Point No.2	13.200	23.600	12.300	22.500	12.300	22.500
		= ON	Point No.9 < §1) < Point No.10	13.300	23.600	12.600	22.700	12.600	22.700
	SCL (5) (52 (1)	SM750	Point No.1 < ©1 < Point No.2	12.000	23.100	11.400	22.200	11.400	22.200
		= OFF	Point No.9 < Sî) < Point No.10	14.100	25.300	12.800	23.900	12.800	23.900
		SM750	Point No.1 < §1) < Point No.2	12.800	23.800	11.900	23.000	11.900	23.000
	nsci 61 62 (D	= ON	Point No.9 < §1) < Point No.10	12.900	23.900	12.100	23.000	12.100	23.000
Application		SM750	Point No.1 < §1) < Point No.2	11.500	22.400	10.900	21.500	10.900	21.500
		= OFF	Point No.9 < §1) < Point No.10	13.800	24.900	12.700	23.600	12.700	23.600
instruction		SM750	Point No.1 < §1) < Point No.2	12.700	24.200	11.900	23.300	11.900	23.300
	sci 2 (5) (2) (0)	= ON	Point No.9 < §1) < Point No.10	12.900	24.600	12.100	23.300	12.100	23.300
	3012 0 0 0	SM750	Point No.1 < §1) < Point No.2	12.300	23.400	11.500	22.600	11.500	22.600
		= OFF	Point No.9 < §1) < Point No.10	13.700	25.000	12.600	23.900	12.600	23.900
		SM750	Point No.1 < §1) < Point No.2	12.600	23.800	11.800	22.900	11.800	22.900
c		= ON	Point No.9 < §1) < Point No.10	13.000	23.900	12.200	22.800	12.200	22.800
	DSCL2 (5) (52 (D) -	SM750	Point No.1 < §1) < Point No.2	11.500	22.400	11.000	21.400	11.000	21.400
		= OFF	Point No.9 < §1 < Point No.10	13.900	24.900	12.800	23.600	12.800	23.600

				Processing Time (µs)						
Category	Instruction	Condit	ion (Device)	Q03UD	(E)CPU	Q(Q06UD()4/ E)HCPU	Q10/Q Q26UD(13/Q20/ E)HCPU	
				Min.	Max.	Min.	Max.	Min.	Max.	
	RSET	Stan	dard RAM	3.000	6.300	2.700	5.900	2.700	5.900	
		SR	AM card	3.000	6.400	2.600	5.800	2.600	5.800	
	QDRSET	SRAM card	to standard RAM	120.000	134.000	115.000	134.000	115.000	134.000	
		Standard RA	AM to SRAM card	533.000	560.000	520.000	553.000	520.000	553.000	
	QCDSET	SRAM card	to standard ROM	306.000	346.000	305.000	346.000	305.000	346.000	
		Standard RC	DM to SRAM card	311.000	342.000	300.000	334.000	300.000	334.000	
				3.200	5.000 9.700	2.500	4.200 8.000	2.500	4.200	
	DAILWIN	No digit increase		5 100	8,000	4 700	6 600	4 700	6 600	
	DATE +	Digit increase		5.700	8.000	4.600	6.500	4.600	6.500	
		No dia	git increase	5.800	8.500	4.600	7.000	4.600	7.000	
	DATE -	Digit	increase	5.700	7.400	4.600	6.500	4.600	6.500	
	SECOND			2.600	3.900	2.200	3.400	2.200	3.400	
	HOUR	_		2.900	4.800	2.400	4.300	2.400	4.300	
	LDDT =	Comparison	In conductive status	7.400	11.400	6.800	10.900	6.800	10.900	
		date	In nonconductive status	7.400	11.600	6.800	10.900	6.800	10.900	
		Comparison of current	In conductive status	5.900	10.000	5.500	9.700	5.500	9.700	
		date	In nonconductive status	5.900	10.100	5.500	9.700	5.500	9.700	
Application		When r	not executed	0.0	008	0.0	38	0.0)38	
instruction	ANDDT=	Comparison of specified date	In conductive status	7.200	11.400	6.500	10.700	6.500	10.700	
			In nonconductive status	7.200	11.400	6.500	10.700	6.500	10.700	
		Comparison	In conductive status	5.700	9.900	5.300	9.300	5.300	9.300	
		date	In nonconductive status	5.700	9.900	5.300	9.300	5.300	9.300	
		When r	not executed	0.0	008	0.0)38	0.0)38	
		Comparison of specified	In conductive status	7.400	11.500	6.700	10.800	6.700	10.800	
	ORDT=	date	In nonconductive status	7.400	11.500	6.700	10.800	6.700	10.800	
		Comparison of current	In conductive status	5.900	10.000	5.400	9.600	5.400	9.600	
		date	In nonconductive status	5.900	10.000	5.400	9.600	5.400	9.600	
		Comparison	In conductive status	7.400	11.400	6.800	10.900	6.800	10.900	
		date	In nonconductive status	7.400	11.600	6.800	10.900	6.800	10.900	
		Comparison	In conductive status	5.900	10.000	5.500	9.700	5.500	9.700	
		date	In nonconductive status	5.900	10.100	5.500	9.700	5.500	9.700	

				Processing Time (µs)						
Category	Instruction	Condit	ion (Device)	Q03UD	(E)CPU	Q0 Q06UD(04/ (E)HCPU	Q10/Q2 Q26UD(13/Q20/ E)HCPU	
				Min.	Max.	Min.	Max.	Min.	Max.	
		When r	not executed	0.0	800	0.0	038	0.0)38	
		Comparison	In conductive status	7.200	11.400	6.500	10.700	6.500	10.700	
	ANDDT<>	date	In nonconductive status	7.200	11.400	6.500	10.700	6.500	10.700	
		Comparison of current	In conductive status	5.700	9.900	5.300	9.300	5.300	9.300	
		date	In nonconductive status	5.700	9.900	5.300	9.300	5.300	9.300	
		When not executed		0.0	800	0.0	038	0.0)38	
		Comparison of specified	In conductive status	7.400	11.500	6.700	10.800	6.700	10.800	
	ORDT<>	date	In nonconductive status	7.400	11.500	6.700	10.800	6.700	10.800	
		Comparison of current	In conductive status	5.900	10.000	5.400	9.600	5.400	9.600	
		date	In nonconductive status	5.900	10.000	5.400	9.600	5.400	9.600	
	LDDT>	Comparison	In conductive status	7.400	11.400	6.800	10.900	6.800	10.900	
Application		date	In nonconductive status	7.400	11.600	6.800	10.900	6.800	10.900	
instruction		Comparison	In conductive status	5.900	10.000	5.500	9.700	5.500	9.700	
		date	In nonconductive status	5.900	10.100	5.500	9.700	5.500	9.700	
		When r	not executed	0.0	800	0.0)38	0.038		
		Comparison	In conductive status	7.200	11.400	6.500	10.700	6.500	10.700	
	ANDDT>	date	In nonconductive status	7.200	11.400	6.500	10.700	6.500	10.700	
		Comparison of current	In conductive status	5.700	9.900	5.300	9.300	5.300	9.300	
		date	In nonconductive status	5.700	9.900	5.300	9.300	5.300	9.300	
		When r	not executed	0.0	800	0.0)38	0.0)38	
		Comparison of specified	In conductive status	7.400	11.500	6.700	10.800	6.700	10.800	
	ORDT>	date	In nonconductive status	7.400	11.500	6.700	10.800	6.700	10.800	
		Comparison	In conductive status	5.900	10.000	5.400	9.600	5.400	9.600	
		date	In nonconductive status	5.900	10.000	5.400	9.600	5.400	9.600	

				Processing Time (µs)						
Category	Instruction	Conditi	ion (Device)	Q03UD	(E)CPU	Q0 Q06UD()4/ E)HCPU	Q10/Q ² Q26UD(13/Q20/ E)HCPU	
				Min.	Max.	Min.	Max.	Min.	Max.	
		Comparison of specified	In conductive status	7.400	11.400	6.800	10.900	6.800	10.900	
	LDDT<=	date	In nonconductive status	7.400	11.600	6.800	10.900	6.800	10.900	
		Comparison of current	In conductive status	5.900	10.000	5.500	9.700	5.500	9.700	
		date	In nonconductive status	5.900	10.100	5.500	9.700	5.500	9.700	
		When r	not executed	0.0	08	0.0	38	0.0)38	
		Comparison of specified	In conductive status	7.200	11.400	6.500	10.700	6.500	10.700	
	ANDDT<=	date	In nonconductive status	7.200	11.400	6.500	10.700	6.500	10.700	
		Comparison of current	In conductive status	5.700	9.900	5.300	9.300	5.300	9.300	
		date	In nonconductive status	5.700	9.900	5.300	9.300	5.300	9.300	
		When not executed		0.0	08	0.0)38	0.0)38	
	ORDT<=	Comparison of specified	In conductive status	7.400	11.500	6.700	10.800	6.700	10.800	
		date	In nonconductive status	7.400	11.500	6.700	10.800	6.700	10.800	
		Comparison of current	In conductive status	5.900	10.000	5.400	9.600	5.400	9.600	
Application		date	In nonconductive status	5.900	10.000	5.400	9.600	5.400	9.600	
instruction	LDDT<	Comparison of specified	In conductive status	7.400	11.400	6.800	10.900	6.800	10.900	
		date	In nonconductive status	7.400	11.600	6.800	10.900	6.800	10.900	
		Comparison of current	In conductive status	5.900	10.000	5.500	9.700	5.500	9.700	
		date	status	5.900	10.100	5.500	9.700	5.500	9.700	
		When r	not executed	0.0	08	0.0)38	0.0)38	
		Comparison of specified	In conductive status	7.200	11.400	6.500	10.700	6.500	10.700	
	ANDDT<	date	In nonconductive status	7.200	11.400	6.500	10.700	6.500	10.700	
		Comparison of current	In conductive status	5.700	9.900	5.300	9.300	5.300	9.300	
		date	status	5.700	9.900	5.300	9.300	5.300	9.300	
		When r	not executed	0.0	08	0.0	38	0.0	38	
		Comparison of specified	in conductive status	7.400	11.500	6.700	10.800	6.700	10.800	
	ORDT<	date	status	7.400	11.500	6.700	10.800	6.700	10.800	
		Comparison of current	in conductive status	5.900	10.000	5.400	9.600	5.400	9.600	
		date	in nonconductive status	5.900	10.000	5.400	9.600	5.400	9.600	

				Processing Time (µs)						
Category	Instruction	Condit	on (Device)	Q03UD	(E)CPU	Q(Q06UD()4/ E)HCPU	Q10/Q ² Q26UD(13/Q20/ E)HCPU	
				Min.	Max.	Min.	Max.	Min.	Max.	
		Comparison of specified	In conductive status	7.400	11.400	6.800	10.900	6.800	10.900	
	LDDT>=	date	In nonconductive status	7.400	11.600	6.800	10.900	6.800	10.900	
		Comparison of current	In conductive status	5.900	10.000	5.500	9.700	5.500	9.700	
		date	In nonconductive status	5.900	10.100	5.500	9.700	5.500	9.700	
		When not executed		0.0	800	0.0)38	0.0	38	
		Comparison of specified	In conductive status	7.200	11.400	6.500	10.700	6.500	10.700	
	ANDDT>=	date	In nonconductive status	7.200	11.400	6.500	10.700	6.500	10.700	
		Comparison of current	In conductive status	5.700	9.900	5.300	9.300	5.300	9.300	
		date	In nonconductive status	5.700	9.900	5.300	9.300	5.300	9.300	
		When not executed		0.0	800	0.0)38	0.0	38	
	ORDT>=	Comparison of specified	In conductive status	7.400	11.500	6.700	10.800	6.700	10.800	
		date	In nonconductive status	7.400	11.500	6.700	10.800	6.700	10.800	
		Comparison of current	In conductive status	5.900	10.000	5.400	9.600	5.400	9.600	
Application instruction		date	In nonconductive status	5.900	10.000	5.400	9.600	5.400	9.600	
	I DTM=	Comparison of specified ciock	In conductive status	7.300	11.500	6.700	10.800	6.700	10.800	
			In nonconductive status	7.300	11.500	6.700	10.800	6.700	10.800	
		Comparison	In conductive status	5.800	9.900	5.400	9.500	5.400	9.500	
		ciock	In nonconductive status	5.800	9.900	5.400	9.500	5.400	9.500	
		When r	tot executed	0.0	800	0.0	138	0.0	38	
		Comparison of specified	In conductive status	7.000	11.500	6.300	10.800	6.300	10.800	
	ANDTM=	ciock	In nonconductive status	7.000	11.500	6.300	10.800	6.300	10.800	
		Comparison of current	In conductive status	5.500	9.900	5.100	9.500	5.100	9.500	
		ciock	In nonconductive status	5.500	9.900	5.100	9.500	5.100	9.500	
		When r	iot executed	0.0	801	0.0	138	0.0	აგ	
		Comparison of specified	in conductive status	7.300	11.500	6.600	10.800	6.600	10.800	
	ORTM=	ciock	status	7.300	11.500	6.600	10.800	6.600	10.800	
		of current ciock	In conductive status	5.900	9.900	5.300	9.500	5.300	9.500	

				Processing Time (µs)						
Category	Instruction	Conditi	ion (Device)	Q03UD	(E)CPU	Q0 Q06UD()4/ E)HCPU	Q10/Q2 Q26UD(13/Q20/ E)HCPU	
				Min.	Max.	Min.	Max.	Min.	Max.	
		Comparison	In conductive status	7.300	11.500	6.700	10.800	6.700	10.800	
	LDTM<>	ciock	In nonconductive status	7.300	11.500	6.700	10.800	6.700	10.800	
		Comparison of current	In conductive status	5.800	9.900	5.400	9.500	5.400	9.500	
		ciock	In nonconductive status	5.800	9.900	5.400	9.500	5.400	9.500	
		When r	not executed	0.008		0.038		0.0	38	
		Comparison of specified	In conductive status	7.000	11.500	6.300	10.800	6.300	10.800	
	ANDTM<>	ciock	In nonconductive status	7.000	11.500	6.300	10.800	6.300	10.800	
		Comparison of current	In conductive status	5.500	9.900	5.100	9.500	5.100	9.500	
		ciock	In nonconductive status	5.500	9.900	5.100	9.500	5.100	9.500	
		When not executed		0.0	08	0.0	38	0.0	38	
	ORTM<>	Comparison of specified	In conductive status	7.300	11.500	6.600	10.800	6.600	10.800	
		ciock	In nonconductive status	7.300	11.500	6.600	10.800	6.600	10.800	
		Comparison of current	In conductive status	5.900	9.900	5.300	9.500	5.300	9.500	
Application		ciock	In nonconductive status	5.900	9.900	5.300	9.500	5.300	9.500	
instruction	LDTM>	Comparison of specified	In conductive status	7.300	11.500	6.700	10.800	6.700	10.800	
		ciock	In nonconductive status	7.300	11.500	6.700	10.800	6.700	10.800	
		Comparison of current	In conductive status	5.800	9.900	5.400	9.500	5.400	9.500	
		ciock	status	5.800	9.900	5.400	9.500	5.400	9.500	
		when r	not executed	0.0	08	0.0	38	0.0	38	
		Comparison of specified	In conductive status	7.000	11.500	6.300	10.800	6.300	10.800	
	ANDTM>	ciock	In nonconductive status	7.000	11.500	6.300	10.800	6.300	10.800	
		Comparison of current	status	5.500	9.900	5.100	9.500	5.100	9.500	
		ciock	status	5.500	9.900	5.100	9.500	5.100	9.500	
		when		0.0	00	0.0	130	0.0		
		Comparison of specified	status	7.300	11.500	6.600	10.800	6.600	10.800	
	ORTM>	ciock	status	7.300	11.500	6.600	10.800	6.600	10.800	
		Comparison of current	status	5.900	9.900	5.300	9.500	5.300	9.500	
		of current ciock	status	5.900	9.900	5.300	9.500	5.300	9.500	

Α

Appendix1 OPERATION PROCESSING TIME Appendix 1.4 Operation Processing Time of Universal Model QCPU

				Processing Time (µs)						
Category	Instruction	Condit	ion (Device)	Q03UD	(E)CPU	Q(Q06UD()4/ E)HCPU	Q10/Q2 Q26UD(13/Q20/ E)HCPU	
				Min.	Max.	Min.	Max.	Min.	Max.	
		Comparison	In conductive status	7.300	11.500	6.700	10.800	6.700	10.800	
	I DTM<=	ciock	In nonconductive status	7.300	11.500	6.700	10.800	6.700	10.800	
		Comparison of current	In conductive status	5.800	9.900	5.400	9.500	5.400	9.500	
		ciock	In nonconductive status	5.800	9.900	5.400	9.500	5.400	9.500	
		When r	not executed	0.008		0.038		0.0)38	
		Comparison of specified	In conductive status	7.000	11.500	6.300	10.800	6.300	10.800	
	ANDTM<=	ciock	In nonconductive status	7.000	11.500	6.300	10.800	6.300	10.800	
		Comparison of current	In conductive status	5.500	9.900	5.100	9.500	5.100	9.500	
		ciock	In nonconductive status	5.500	9.900	5.100	9.500	5.100	9.500	
		When not executed		0.0	008	0.0)38	0.0)38	
	ORTM<=	Comparison of specified	In conductive status	7.300	11.500	6.600	10.800	6.600	10.800	
		ciock	In nonconductive status	7.300	11.500	6.600	10.800	6.600	10.800	
		Comparison of current	In conductive status	5.900	9.900	5.300	9.500	5.300	9.500	
Application		ciock	In nonconductive status	5.900	9.900	5.300	9.500	5.300	9.500	
instruction	LDTM<	Comparison of specified	In conductive status	7.300	11.500	6.700	10.800	6.700	10.800	
		ciock	In nonconductive status	7.300	11.500	6.700	10.800	6.700	10.800	
		Comparison of current	In conductive status	5.800	9.900	5.400	9.500	5.400	9.500	
		ciock	In nonconductive status	5.800	9.900	5.400	9.500	5.400	9.500	
		When r	not executed	0.4	80	0.3	320	0.2	240	
		Comparison of specified	In conductive status	8.200	25.500	8.200	25.500	6.500	25.500	
	ANDTM<	ciock	In nonconductive status	8.200	25.500	8.200	25.500	6.500	25.500	
		Comparison of current	In conductive status	6.500	23.100	6.500	23.100	6.500	23.100	
		ciock	In nonconductive status	6.500	23.100	6.500	23.100	6.500	23.100	
		When r	not executed	0.4	80	0.3	320	0.2	240	
		Comparison of specified	In conductive status	8.200	25.500	8.200	25.500	6.500	25.500	
	ORTM<	ciock	in nonconductive status	8.200	25.500	8.200	25.500	6.500	25.500	
		Comparison of current ciock	In conductive status	6.500	23.100	6.500	23.100	6.500	23.100	
			In nonconductive status	6.500	23.100	6.500	23.100	6.500	23.100	

						Processing	ι Time (μs)		
Category	Instruction	Condition (Device)		Q03UD	(E)CPU	Q0 Q06UD()4/ E)HCPU	Q10/Q1 Q26UD(13/Q20/ E)HCPU
				Min.	Max.	Min.	Max.	Min.	Max.
		Comparison	In conductive status	7.300	11.500	6.700	10.800	6.700	10.800
	I DTM<	ciock	In nonconductive status	7.300	11.500	6.700	10.800	6.700	10.800
		Comparison of current	In conductive status	5.800	9.900	5.400	9.500	5.400	9.500
		ciock	In nonconductive status	5.800	9.900	5.400	9.500	5.400	9.500
		When r	not executed	0.4	80	0.3	20	0.2	40
		Comparison of specified ciock	In conductive status	8.200	25.500	8.200	25.500	6.500	25.500
	ANDTM<		In nonconductive status	8.200	25.500	8.200	25.500	6.500	25.500
		Comparison of current	In conductive status	6.500	23.100	6.500	23.100	6.500	23.100
		ciock	In nonconductive status	6.500	23.100	6.500	23.100	6.500	23.100
	ORTM<	When not executed		0.4	80	0.320		0.2	40
		Comparison	In conductive status	8.200	25.500	8.200	25.500	6.500	25.500
Application		ciock	In nonconductive status	8.200	25.500	8.200	25.500	6.500	25.500
instruction		Comparison of current	In conductive status	6.500	23.100	6.500	23.100	6.500	23.100
		ciock	In nonconductive status	6.500	23.100	6.500	23.100	6.500	23.100
	S.DATERD			9.250	51.000	9.250	51.000	9.250	51.000
	S.DATE +	No dig	jit increase	16.800	75.400	16.800	75.400	16.800	75.400
		Digit	increase	16.800	75.400	16.800	75.400	16.800	75.400
	S.DATE -	No dig	jit increase	17.600	75.300	17.600	75.300	17.600	75.300
	DOTOD	Digit	increase	16.900	75.300	16.900	75.300	16.900	75.300
	PSTOP			82.200	199.000	82.200	199.000	82.200	199.000
	PUFF			82.600	198.000	82.600	198.000	82.600	198.000
	PSCAN			2 000	200.000	2 000	200.000	2 000	200.000
				2.900	12.000	2.900	12.000	2.900	27.500
	TIMCHK			5 350	24.500	5 350	24.500	5 350	24.500
		File register	of standard RAM	4 100	4 200	4 100	4 200	4 100	4 200
	ZRRDB	File registe	r of SRAM card						
		File register	of standard RAM	5.400	5.500	5.400	5.500	5.400	5.500
	ZRWRB	File registe	r of SRAM card			_			
	ADRSET	.		2.400	6.650	2.400	6.650	2.400	6.650
	ZPUSH		_	9.200	20.500	9.200	20.500	9.200	20.500
	ZPOP —		<u> </u>	9.000	15.500	9.000	15.500	9.000	15.500

				Processing Time (µs)							
Category	Instruction	Condition (De	vice)	Q03UD	(E)CPU	Q0 Q06UD()4/ E)HCPU	Q10/Q2 Q26UD(13/Q20/ E)HCPU		
				Min.	Max.	Min.	Max.	Min.	Max.		
		When mounting (module (Master station	CC-Link side)	19.600	26.500	19.300	26.000	19.300	26.000		
		When mounting (module (Local station	When mounting CC-Link module (Local station side)		26.500	19.100	26.200	19.100	26.200		
	S.ZCOM	When moun MELSECNE CC-Link IEcon network module(station side	ting T/H, troller (Control e)	53.500	73.500	53.000	72.700	53.000	72.700		
		When mounting MELSECNET/H, CC-Link IEcontroller network module(Normal station side)		29.800	41.200	29.800	40.600	29.800	40.600		
Application	S.RTREAD			5.900	11.000	5.400	10.500	5.400	10.500		
instruction	S.RTWRITE			6.700	11.100	6.000	10.400	6.000	10.400		
		n2 = 1		4.000	8.400	3.700	8.000	3.700	8.000		
	UNIRD n1 🕛 n2	n2 = 16	n2 = 16		17.000	12.200	16.600	12.200	16.600		
	TYPERD			29.800	53.000	29.500	52.300	29.500	52.300		
	TRACE	Start		46.600	48.300	43.800	44.700	43.800	44.700		
	TRACER			3.300	6.800	2.600	6.000	2.600	6.000		
		When standard	1 point	11.300	16.800	9.200	15.100	9.200	15.100		
		RAM is used	1000 points	120.700	127.100	61.000	68.600	61.000	68.600		
	RBNOV S U n	When SRAM	1 point	11.200	16.700	9.400	15600	9.400	15.600		
		card is used	1000 points	180.700	187.100	165.000	172.600	165.000	172.600		
	SP.FWRITE			6.700	11.100	6.000	10.400	6.000	10.400		
	SP.FREAD			5.900	11.000	5.400	10.500	5.400	10.500		
;	SP.DEVST	_		4.500	36.500	4.000	34.500	4.000	34.500		
	S.DEVLD			11.000	17.800	10.000	17.000	10.000	17.000		

			Processing Time (µs)						
Category	Instruction	Condition (D	evice)	Q03UD	(E)CPU	Q0 Q06UD()4/ E)HCPU	Q10/Q ² Q26UD(13/Q20/ E)HCPU
				Min.	Max.	Min.	Max.	Min.	Max.
		Writing to host	n4 = 1	34.700	34.900	33.500	34.400	33.500	34.400
	S.TO n1 n2 n3 n4 🛈	CPU shared memory	n4 = 320	85.900	87.600	75.200	75.500	75.200	75.500
		Writing to host	n3 = 1	4.700	23.800	5.200	23.300	5.200	23.300
	TO n1 n2 🕲 n3	CPU shared memory	n3 = 320	57.500	76.200	47.100	64.500	47.100	64.500
		Writing to host	n3 = 1	5.300	23.800	5.800	23.300	5.800	23.300
	DTO n1 n2 S n3	CPU shared memory	n3 = 320	111.300	128.400	91.500	108.500	91.500	108.500
Multiple		Reading from	n3 = 1	5.000	23.800	4.300	23.300	4.300	23.300
CPU dedicated instruction	FROM n1 n2 ① n3	host CPU shared memory	n3 = 320	51.400	65.600	44.400	60.700	44.400	60.700
		Reading from	n3 = 1	11.600	17.700	10.600	13.900	10.600	13.900
		other CPU	n3 = 320	142.000	160.000	142.000	149.000	142.000	149.000
		shared memory	n3 = 1000	431.000	463.000	422.000	448.000	422.000	448.000
		Reading from	n3 = 1	5.200	23.800	5.600	23.300	5.600	23.300
	DFRO n1 n2 🛈 n3	host CPU shared memory	n3 = 320	96.400	113.200	83.600	100.800	83.600	100.800
		Reading from	n3 = 1	12.900	20.800	12.200	17.100	12.200	17.100
		other CPU	n3 = 320	277.000	299.000	274.000	291.000	274.000	291.000
		shared memory	n3 = 1000	838.000	860.000	835.000	857.000	835.000	857.000
			n=1	34.700	34.900	33.500	34.400	33.500	34.400
	D.DDWR n §1 §2 01 02		n=16	85.900	87.600	75.200	75.500	75.200	75.500
		Writes devices to	n=96	5.600	10.200	3.300	9.900	3.300	9.900
Multiple		another CPU.	n=1	36.700	42.400	34.300	39.200	34.300	39.200
CPU high-	DP.DDWR n (\$1) (\$2) (D1) (02)		n=16	5.000	12.100	3.100	10.500	3.100	10.500
transmis-			n=96	59.100	66.800	55.300	65.100	55.300	65.100
sion dedi-			n=1	3.300	12.700	2.400	9.600	2.400	9.600
cated	D.DDRD n 🔄 😒 🛈 😡	5	n=16	50.900	64.400	45.200	48.200	45.200	48.200
instruction		from another	n=96	11.600	17.700	10.600	13.900	10.600	13.900
		CPU.	n=1	142.000	160.000	142.000	149.000	142.000	149.000
	DP.DDRD n \$1 \$2 01 02		n=16	431.000	463.000	422.000	448.000	422.000	448.000
			n=96	6.700	12.600	2.800	9.900	2.800	9.900

A

Remark

the instructions for which a rise execution instruction (\Box P) is not specified, the processing time is the same as an ON execution instruction.

. .

Example WORDP instruction and TOP instruction

(2) Table of the time to be added when file register, module access device or link direct device is used

(a) When using Q00UJCPU, Q00UCPUI, Q01UCPU and Q02UCPU

Device name data Device Specification Processing Time (µs)							
Device	ename	uala	Location	Q00UJCPU	Q00UCPU	Q01UCPU	Q02UCPU
		Dit	Source	0.100	0.100	0.100	0.100
		ы	Destination	0.100	0.100	0.100	0.100
	When standard	Mard	Source	0.100	0.100	0.100	0.100
	RAM is used	vvora	Destination	0.100	0.100	0.100	0.100
		Double word	Source	0.100	0.100	0.100	0.200
			Destination	0.100	0.100	0.100	0.200
		Dit	Source				0.220
	When SRAM	Ы	Destination				0.180
File register (P)	card is used	Word	Source				0.220
File register (K)	(Q2MEM-1MBS,	vvoiu	Destination				0.180
	Q2MEM-2MBS)	Double word	Source			—	0.440
			Destination				0.380
		Pit	Source				0.160
	When SRAM	Dit	Destination			—	0.140
	card is used	Word	Source				0.160
	(Q3MEM-4MBS,	vvoiu	Destination				0.140
	Q3MEM-8MBS)	Double word	Source				0.320
			Destination			—	0.300
		Bit	Source	0.120	0.120	0.120	0.120
		Dit	Destination	0.120	0.120	0.120	0.120
	When standard	Word	Source	0.120	0.120	0.120	0.120
	RAM is used		Destination	0.120	0.120	0.120	0.120
		Double word	Source	0.120	0.120	0.120	0.220
		Double word	Destination	0.120	0.120	0.120	0.220
	When SRAM	Bit	Source				0.240
		DIL	Destination			—	0.200
File register (7R)	card is used	Word	Source		—	—	0.240
	(Q2MEM-1MBS,	Word	Destination				0.200
	Q2MEM-2MBS)	Double word	Source				0.460
		Bouble Word	Destination				0.400
		Bit	Source				0.180
	When SRAM		Destination				0.160
	card is used	Word	Source				0.180
	(Q3MEM-4MBS,		Destination				0.160
	Q3MEM-8MBS)	Double word	Source				0.340
		2002.0	Destination				0.320
		Bit	Source				12.000
			Destination				17.300
Module access de	evice	Word	Source				9.700
(Un\G □ , U3En\0	G0 to G4095)		Destination			—	33.000
		Double word	Source	—		—	24.200
			Destination				34.800
		Bit	Source	—		—	32.900
			Destination	—		—	67.300
Link direct device		Word	Source	—		—	37.200
(Jn\ 🗌)			Destination	—		—	37.000
		Double word	Source	—		—	39.500
			Destination		—	—	41.900

(b) When using Q03UD(E)CPU, Q04UD(E)HCPU, Q06UD(E)HCPU, Q10UD(E)HCPU, Q13UD(E)HCPU, Q20UD(E)HCPU and Q26UD(E)HCPU

			Device Specification		Processing Time (μs)	
Device	e name	data	Location	Q03UD(E)CPU	Q04/ Q06UD(E)HCPU	Q10/Q13/Q20/ Q26UD(E)HCPU
			Source	0.100	0.048	0.048
		Bit	Destination	0.100	0.038	0.038
	When standard		Source	0.100	0.048	0.048
	RAM is used	Word	Destination	0.100	0.038	0.038
			Source	0.200	0.095	0.095
		Double word	Destination	0.200	0.086	0.086
		5.1	Source	0.220	0.200	0.200
	When SRAM	Bit	Destination	0.180	0.162	0.162
	card is used)0/and	Source	0.220	0.200	0.200
File register (R)	(Q2MEM-1MBS,	vvord	Destination	0.180	0.162	0.162
	Q2MEM-2MBS)	Double word	Source	0.440	0.399	0.399
		Double word	Destination	0.380	0.361	0.361
		Dit	Source	0.160	0.152	0.152
	When SRAM	DIL	Destination	0.140	0.133	0.133
	card is used	Word	Source	0.160	0.152	0.152
	(Q3MEM-4MBS,	vvoru	Destination	0.140	0.133	0.133
	Q3MEM-8MBS)	Double word	Source	0.320	0.304	0.304
		Double word	Destination	0.300	0.295	0.295
		Dit	Source	0.120	0.057	0.057
		ы	Destination	0.120	0.048	0.048
	When standard	Word	Source	0.120	0.057	0.057
	RAM is used	vvoru	Destination	0.120	0.048	0.048
		Doublo word	Source	0.220	0.105	0.105
		Double word	Destination	0.220	0.095	0.095
File rExtended		Bit	Source	0.240	0.209	0.209
data register (D)/	When SRAM	Dit	Destination	0.200	0.171	0.171
Extended link	card is used	Word	Source	0.240	0.209	0.209
register (W))	(Q2MEM-1MBS,	Word	Destination	0.200	0.171	0.171
egister (7R)	Q2MEM-2MBS)		Source	0.460	0.409	0.409
09.000 (2.1)		Bouble word	Destination	0.400	0.371	0.371
		Bit	Source	0.180	0.162	0.162
	When SRAM	Bit	Destination	0.160	0.143	0.143
	card is used	Word	Source	0.180	0.162	0.162
	(Q3MEM-4MBS,		Destination	0.160	0.143	0.143
	Q3MEM-8MBS)	Double word	Source	0.340	0.314	0.314
		2000101010	Destination	0.320	0.304	0.304
		Bit	Source	11.700	11.200	11.200
			Destination	15.400	15.300	15.300
Module access de	evice	Word	Source	9.460	9.410	9.410
(Un\G □ , U3En\0	G0 to G4095)		Destination	19.000	19.000	19.000
		Double word	Source	11.000	10.900	10.900
			Destination	18.800	18.700	18.700
		Bit	Source	32.700	31.300	31.300
			Destination	52.300	29.900	29.900
Link direct device		Word	Source	28.500	17.300	17.300
(Jn\ 🗌)			Destination	27.500	14.700	14.700
		Double word	Source	30.300	18.100	18.100
			Destination	30.600	15.700	15.700

Appendix 2 CPU PERFORMANCE COMPARISON

Appendix 2.1 Comparison of Q with AnNCPU, AnACPU, and AnUCPU

Appendix 2.1.1 Usable devices

TableApp.2.1 Device Comparison

Devi	ce name		QCPU			AnUCPU	AnACPU	AnNCPU	
Number o	f I/O points ^{*9}	Q00J: 256 points Q00: 1024 points Q01: 1024 points	Q00UJ: 256 points Q00U: 1024 points Q01U: 1024 points	Q02 Q02H Q06H Q12H Q25H Q02PH Q12PH Q12PH Q12PH Q12PRH Q12PRH Q12PRH Q12PRH Q12PRH Q12PRH Q12D(E)H Q04UD(E)H Q10UD(E)H Q10UD(E)H Q10UD(E)H Q20UD(E)H Q20UD(E)H Q20UD(E)H Q20UD(E)H Q20UD(E)H	4096 points	A2U: 512 points A2U-S1: 1024 points A3U: 2048 points A4U: 4096 points	A2A: 512 points A2A-S1: 1024 points A3A: 2048 points 	A1N: 256 points A2N: 512 points A2N-S1: 1024 points A3N: 2048 points 	
Number of I/	O device points*8	2048 points ^{*1}	81	92 points ^{*1}		8192 points	Same with I/O device	s points of each CPU	
Internal re	elay		8192 points	s*1				Total 2048 points	
Latch rela	у	2048 points ^{*1}	81	92 points ^{*1}		Total 819	92 points	10(01 2040 points	
Sten	Sequence								
relay	program	*6		100 11					
	SFC	2048 points ⁶	8	192 points					
Annunciat	tor	1024 points	nts ^{*1} 2048 points ^{*1} 2			2048 points	2048 points	256 points	
Edge relay	у	1024 points ^{*1}	1 2048 points 1						
Link relay		2048 points ^{*1}	81	92 points ^{*1}		8192 points	4096 points	1024 points	
Link speci	ial relay	1024 points	20	048 points			56 points		
Timer		512 points ^{*1}	20	48 points ^{*1}		Total 20/	18 noints	Total 256 points	
Retentive	timers		0 points [*]	1		10101 20-	to points	10101 200 001113	
Counter	Counter 512 points ^{*1} 1024 points ^{*1}			1024	points	256 points			
Data regis	ster	11136 points ^{*1}	122	288 points ^{*1}		8192 points	6144 points	1024 points	
Link regist	ter	2048 points ^{*1}	81	92 points ^{*1}		8192 points	4096 points	1024 points	
Link speci	ial register	1024 points	20	048 points		56 points			
Function i	nput		16 points (FX0 to	o FXF) ^{*7}					
Function of	output		16 points (FY0 to	o FYF) ^{*7}					
Special re	lay	1000 points	20	048 points			256 points		
Function r	register		5 points (FD0 to	o FD4)					
Special re	gister	1000 points	20	048 points			256 points		
Link direct	t device		Designated by J						
Intelligent fur device	nction module		Designated by U	□ \G □					
Index	Z	10 points (Z0 to Z9)	16 poi	nts (Z0 to Z15)		7 points (Z	, Z1 to Z6)	1 point (Z)	
register	V*2		<u> </u>			7 points (V	, V1 to V6)	1 point (V)	
File regist	er	32768 points/ block ^{*5} (R0 to R32767)	32768 points/b	block(R0 to R3276	67) ^{*10}	8192	points/block(R0 to F	8191)	
Accumula	tor ^{*3}		·				2 points		
Nesting			15 points	.			8 points		
Pointer		300 points	512 points	4096 poin	ts		256 points		
Interrupt p	pointers	128 points 128 points 256 points				32 points			
SFC block	KS	126 ^{*6}	3	20 points) points —				
SFC trans	ition devices		5	12 points					
Decimal c	onstants			K - 2147	483648 t	oK2147483647			
Hexadecimal constants H0 to HFFFFFF			+++++						
Real numb	er constants ^{*6}	E±	1.17550-38 to E	± 3.40282+38					
Character	string		"QnACPU", "AE	BCD" ^{*4}		—			

- *1 : The number of device points can be changed at the parameters.
- *2 : QCPU uses V as an edge relay.
- *3 : Instructions that used accumulators with the AnNCPU, AnACPU, and AnUCPU have different formats with the QCPU.
- *4 : Can only be used by the \$MOV instruction with the Q00JCPU, Q00CPU, and Q01CPU.
- *5 : The Q00JCPU does not have file registers.
- *6 : Applicable to products with the first 5 digits of the serial number 04122 or higher (Q00JCPU, Q00CPU, and QCPU).
- *7 : Each 5 points of FX0 to FX4 and FY0 to FY4 can be used on the programs.
- *8 : The number of points that can be used on the programs
- *9 : The number of accessible points to actual I/O modules
- *10 : The Q00UJCPU does not have file registers.%ParaEnd%

Appendix 2.1.2 I/O control mode

TableApp.2.2 I/O Control Mode

I/O control mode			QCPU	AnUCPU	AnACPU	AnNCPU
Refresh mode		0	0	0	⊖ ^{*2}	
		Partial refresh instructions	0	0	0	0
Direct I/O m	Direct	Dedicated instruction ^{*1}	_	0	0	
	I/O method	Direct access input	0	_	_	_
		Direct access output	0	_	_	_
Direct mode		_			⊖* 2	

Symbol in table O: Usable, —: Unusable

- *1 : The DOUT, DSET, and SRST instructions are direct output dedicated instructions. There are no dedicated instructions for direct input.
- *2 : Switching between the refresh mode and direct mode is conducted with an AnNCPU DIP switch.

Appendix 2.1.3 Data that can be used by instructions

Setting) Data	QCPU	AnUCPU	AnACPU	AnNCPU
	Bit device	0	0	0	0
Bit data	Word device	O (Bit specification required)	PU AnUCPU AnACPU AnNCPU) () () () <		
Word data	Bit device	O (Digit specification required)	O (Digit specification required)	Oigit specification required)	O (Digit specification required)
	Word device	0	0	0	0
Double word data	Bit device	O (Digit specification required)	O (Digit specification required)	O (Digit specification required)	O (Digit specification required)
	Word device	0	0	0	0
Real number data		O ^{*1}	0	0	
Character string data		^*2			_

TableApp.2.3 Data That Can Be Used by Instruction

Symbols in table \bigcirc : Usable, - : Unusable

- *1 : Applicable to products with the first 5 digits of the serial number 04122 or higher (Q00JCPU, Q00CPU, and Q01CPU).
- *2 : Usable with only the MOV instruction for the Q00JCPU, Q00CPU, and Q01CPU.

Appendix 2.1.4 Timer comparison

TableApp.2.4 Timer Comparison

Function		QCPU	AnUCPU AnACPU AnNCPL		
Low speed timer	Measurement unit	100ms (default value) Change of measurement unit at the parameter is enabled. QCPU : 1 to 1000ms (1ms unit)	Fixed at 100ms		
	Designation method				
High speed timer	Measurement unit	10ms (default value) Change of measurement unit at the parameter is enabled. QnUCPU : 0.01 to 100ms (0.01ms unit) QCPU(Other than QnUCPU) : 0.1 to 100ms (0.1ms unit)	Fixed at 10ms		
	Designation method	High speed timer specification	High speed timer setting: Conducted	00 00	
	Measurement unit	Same measurement unit as low speed timer	Fixed at 100ms		
Retentive timers	Designation method				
	Measurement unit	Same measurement unit as high speed timer			
High speed reten- tive timer	Designation method	High speed timer specification	None		
Setting range for set values		1 to 32767	1 to 32767		
Processing for set value 0		Momentarily ON	No maximum (does not time out)		
	Contact	Enabled (only Z0 and Z1 are usable)	Enabled	Disabled	
Index modification	Coil	Enabled (only Z0 and Z1 are usable)	Disabled	Disabled	
index modification	Set value	Enabled (Z0 to Z15 are usable) ^{*1}	Disabled	Disabled	
	Present value	Enabled (Z0 to Z15 are usable) ^{*1}	Enabled	Enabled	
Update processing for present value Contact ON/OFF processing		When OUT Tn instruction is executed	When END processing is done		

*1 : The Q00J/Q00/Q01CPU can use Z0 to Z9.

The Universal model QCPU can use Z0 to Z19.

The Universal model QCPU can use 20 to 21

(1) Cautions on using timers

QCPU updates the present value of timers and turns ON/OFF the contacts of them at the execution of OUT T \Box instruction.

Therefore, if "Present value \geq Set value" when the timer coil is turned ON, the contact of that timer is turned ON.

When creating a program in which the operation of the timer contact triggers the operation of another timer, create the program for the timer that operates later first.

In the following cases, all timers go ON at the same scan if the program is created in the order the timers operate.

- With high speed timers, if the set value is smaller than a scan time.
- With slow timers, if "1" is set.

Example

• For timers T0 to T2, the program is created in the order the timer operates later.

• For timers T0 to T2, the program is created in the order of timer operation.

Appendix 2.1.5 Comparison of counters

Function		QCPU	AnUCPU AnACPU	AnNCPU
Designation method				
	Contact	Enabled (only Z0 and Z1 are usable)	Enabled	Disabled
	Coil	Enabled (only Z0 and Z1 are usable)	Disabled	Disabled
Index modification	Set value	Disabled	Disabled	Disabled
	Present	\sim Enchlod (70 to 715 are upphie) ^{*1}	• Enabled	• Enabled
	value	• Ellabled (20 to 215 are usable)		Enabled
Update processing for present value		• When OLIT Cn instruction is executed	• When FND processing is done	
Contact ON/OFF proces	sing		when End processing is done	

TableApp.2.5 Comparison of Counters

*1: The Q00J/Q00/Q01CPU can use Z0 to Z9.

The Universal model QCPU can use Z0 to Z19.

Appendix 2.1.6 Comparison of display instructions

Instruction	QCPU	AnUCPU	AnACPU	AnNCPU	
PR*1	 When SM701 is OFF: Output continued until 00_H encountered When SM701 is ON: 16 characters output 	When M9049 is OFF: Output continued u encountered When M9049 is ON: 16 characters outpu			
PRC*1	 When SM701 is OFF: 32-character comment output When SM701 is ON: Upper 16 characters output 	16-character com	ment output		

TableApp.2.6 Comparison of Display Instructions

*1: Unusable for the Q00J/Q00/Q01CPU.

Appendix 2.1.7 Instructions whose designation format has been changed (Except dedicated instructions for AnACPU and AnUCPU)

Because the QCPU does not have accumulators (A0, A1), the format of AnUCPU, AnACPU and AnNCPU instructions that used accumulators has been changed.

TableApp.2.7 Instructions Whose Expression Has Changed

Function	QCP	U	AnUCPU/AnACPU/AnNCPU		
Function	Instruction Format	Remarks	Instruction Format	Remarks	
	ROR D n	D : Rotation data	ROR n	 Rotation data are set at A0. 	
16-bit rotation to right	RCR D n	 D : Rotation data SM700 is used for carry flag. 	RCR n	 Rotation data are set at A0. M9012 is used for carry flag. 	
	ROL D n	• D : Rotation data	ROL n	 Rotation data are set at A0. 	
16-bit rotation to left	RCL D n	 D : Rotation data SM700 is used for carry flag. 	RCL n	 Rotation data are set at A0. M9012 is used for carry flag. 	
	DROR D n	• D : Rotation data	DROR n	 Rotation data are set at A0 and A1. 	
32-bit rotation to right	- DRCR D n	 D : Rotation data SM700 is used for carry flag. 	DRCR n	 Rotation data are set at A0 and A1. M9012 is used for carry flag. 	
	DROL D n	• D : Rotation data	DROL n	 Rotation data are set at A0 and A1. 	
32-bit rotation to left	-DRCL D n	 D : Rotation data SM700 is used for carry flag. 	- DRCL n	 Rotation data are set at A0 and A1. M9012 is used for carry flag. 	
16-bit data search	- SER S1 S2 D n	 Search results are stored at the D and D+1 devices. 	- SER S1 S2 n	Search results are stored at A0 and A1.	
32-bit data search	- DSER S1 S2 D n	 Search results are stored at the D and D+1 devices. 	DSER S1 S2 n	Search results are stored at A0 and A1.	
16-bit data bit check	- SUM S D	 Check results are stored at the D device. 	SUM	Check results are stored at A0.	
16-bit data bit check	-DSUM S D-	 Check results are stored at the D device. 	-DSUM S-	Check results are stored at A0.	
Partial refresh	RFS D n	 Dedicated instruction is added. 	- SEG D n	• Only when M9052 is ON	
8-character ASCII conversion	- \$MOV (Character string) D	—	ASC (Character string) D	_	
Carry flag set	- SET SM700-	 No dedicated instruction 	- STC -		
Carry flag reset	RST SM700	 No dedicated instruction 		_	
Jump to END instruction	GOEND	Dedicated instruction is added.	- CJ P255	P255: END instruction designation	
CHK instruction ^{*1}	нн на казана и снк стана и снк стана и списата и списат	The CHKST instruction is added.	Ч⊢СЈ Рп- Р254 Н⊢⊢⊦Н_СНК	_	

*1: Unusable for the Q00J/Q00/Q01CPU.

Appendix 2.1.8 AnACPU and AnUCPU dedicated instructions

(1) Method of expression of dedicated instructions

Dedicated instructions based on the LEDA, LEDB, LEDC, SUB, and LEDR instructions, that are used with the AnACPU or AnUCPU have been changed for the same format as the basic instructions and the application instructions for the QCPU.

The instructions that cannot be converted due to the absence of the corresponding instructions in the QCPU are converted into OUT SM1255/OUT SM999 (for the Q00J/Q00/Q01CPU).

The instructions that have been converted into OUT SM1255/OUT SM999 should be replaced by other instructions or deleted.

TableApp.2.8 Method of Expression of Dedicated Instruction

(2) Dedicated instructions whose names have been changed

Dedicated instructions for the AnUCPU or AnACPU which have the same instruction name as is used for basic instructions and application instructions have undergone name changes in the QCPU.

Function	OCPU	Anl ICPLI/AnACPLI
Floating point addition	E+	ADD
Floating point subtraction	E-	SUB
Floating point multiplication	E*	MUL
Floating point division	E/	DIV
Data dissociation	NDIS	DIS
Data association	NUNI	UNI
Updating check patterns	CHKCIR, CHKEND	CHK, CHKEND

TableApp.2.9 Method of Expression of Dedicated Instruction

Special relays, SM, are internal relays whose applications are fixed in the Programmable Controller.

For this reason, they cannot be used by sequence programs in the same way as the normal internal relays.

However, they can be turned ON or OFF as needed in order to control the CPU module.

The heading descriptions in the following special relay lists are shown in 3.1.

TableApp.3.1 Explanation of special relay list

Item	Function of Item					
Number	 Indicates special re 	egister number				
Name	Indicates name of special relay					
Meaning	 Indicates contents 	of special relay				
Explanation	 Discusses contents 	s of special relay in more detail				
Set by (When set)	 Indicates whether the set by> S : Set by system U : Set by use S/U : Set by both When set> Indicated only for reference Each END Initial Status change Error Instruction execution Request System switching 	 the relay is set by the system or user, and, if it is set by the system, when setting is performed. em r (sequence programs or test operations from GX Developer) in system and user gisters set by system Set during each END processing Set only during initial processing (when power supply is turned ON, or when going from STOP to RUN) Set only when there is a change in status Set when error occurs in: Set when instruction is executed Set only when there is a user request (through SM, etc.) Set when system switching is executed. 				
Corresponding	(When the content	is are changed the special relay is represented M9 \square \square format change. Incompatible with the				
	Q00J/Q00/Q01 and	d QnPRH.)				
	New indicates the	special relay newly added to the Q series CPU module.				
	Indicates the corresp	onding CPU module type name.				
	QCPU	: Indicates all the Q series CPU modules.				
	Q00J/Q00/Q01	: Indicates the Basic model QCPU.				
Corresponding	Qn(H)	: Indicates the High Performance model QCPU.				
CPU	QnPH	: Indicates the Process CPU.				
	QnPRH	: Indicates the Redundant CPU.				
	QnU	: Indicates the Universal model QCPU				
	Each CPU module m	odel name: Indicates the relevant specific CPU module. (Example: Q02U)				
	E a a al a taille a	un the following items and a to the following mean sole.				

For details on the following items, refer to the following manuals:

- SFC → QCPU(Q mode)/QnACPU Programming Manual (SFC)

Do not change the values of special relays set by the system with user program or device test operations.

Doing so may result in system downtime or communication fault.

(1) Diagnostic Information

TableApp.3.2 Special relay

Number	Name	Meaning	Explanation	Set by (When Set)	Corres- ponding ACPU M9 🗆 🗆 🗖	Corresponding CPU
SM0	Diagnostic errors	OFF : No error	 Turns ON if an error occurs as a result of diagnosis. (Includes when an annunciator is ON, and when an error is detected with CHK instruction) Remains ON even if the condition is restored to normal thereafter. 	S (Error)	New	Qn(H) QnPH QnPRH
			 Turns ON if an error occurs as a result of diagnosis. (Includes when an annunciator is ON) Remains ON even if the condition is restored to normal thereafter. 	S (Error)	New	res- fing PU Corresponding CPU Image: Corresponding CPU Image: Corresponding Correspondence Image: Corresponding CPU Image: Corresponding Correspondence Image: Corresponding Correspondence Image: Correspondence Image: Correspondence Image: Correspondence Ima
SM1	OFF : No self-diag		 Turns ON if an error occurs as a result of diagnosis. (Does not include when an annunciator is ON or when an error is detected by the CHK instruction) Remains ON even if the condition is restored to normal thereafter. 	S (Error)	M9008	Qn(H) QnPH QnPRH
		ON : Self-diagnosis	 Turns ON if an error occurs as a result of diagnosis. (Does not include when an annunciator is ON) Remains ON even if the condition is restored to normal thereafter. 	S (Error)	New	Q00J/Q00/Q01 QnU
SM5	Error common information	OFF : No error common information ON : Error common information	o error common iformation • When SM0 is ON, turns ON if there is error common information iformation		New	
SM16	Error individual information information ON : Error individual information		When SM0 is ON, turns ON if there is error individual information	S (Error)	New	QCPU
SM50	Error reset	$OFF \to ON \text{: Error reset}$	Conducts error reset operation	U	New	
SME1	Potton Jow Jotob	OFF : Normal	 Turns ON if battery voltage at CPU module or memory card drops below rated value. Remains ON even if the battery voltage returns to normal thereafter. Synchronizes with the BAT. LED. 	S (Error)	M9007	Qn(H) QnPH QnPRH QnU
SMOT	Battery low laten	ON : Battery low	 Turns ON if battery voltage at CPU module drops below rated value. Remains ON even if the battery voltage returns to normal thereafter. Synchronous with ERR. LED 	S (Error)	New	Q00J/Q00/Q01
SM52	Battery low	OFF : Normal ON : Battery low	Same as SM51, but turns OFF subsequently when battery voltage returns to normal.	S (Error)	M9006	
SM53	AC/DC DOWN detection	OFF : AC/DC DOWN not detected ON : AC/DC DOWN detected	 Turns ON if an instantaneous power failure of within 20ms occurs during use of the AC power supply module. Reset when the power supply is switched OFF, then ON. Turns ON if an instantaneous power failure of within 10ms occurs during use of the DC power supply module. Reset when the power supply is switched OFF, then ON 	S (Error)	M9005	QCPU

TableApp.3.2 Special relay

Number	Name	Meaning		Explanation	Set by (When Set)	Corres- ponding ACPU M9□□□	Corresponding CPU		
SM56	Operation error	OFF : Normal ON : Operation error	 ON when ope Remains ON thereafter. 	eration error is generated if the condition is restored to normal	S (Error)	M9011			
SM60	Blown fuse detection	OFF : Normal ON : Module with blown fuse	Turns ON if there is at least one output module whose fuse has blown. Remains ON if the condition is restored to normal thereafter. Blown fuse status is checked even for remote I/O station output modules.		S (Error)	M9000	QCPU		
SM61	I/O module verify error	OFF : Normal ON : Error	 Turns ON if the I/O module differs from the status registered at power on. Remains ON if the condition is restored to normal thereafter. I/O module verification is also conducted for remote I/O station modules. 		S (Error)	M9002			
SM62	Annunciator detection	OFF : Not detected ON : Detected	Goes ON if e	ven one annunciator (F) goes ON.	S (Instruction execution)	M9009			
SM80	CHK detection	OFF : Not detected ON : Detected	 Goes ON if e Remains ON thereafter. 	rror is detected by CHK instruction. if the condition is restored to normal	S (Instruction execution)	New	Qn(H) QnPH QnPRH		
SM90			Corresponds to SD90			M9108			
SM91			Corresponds to SD91			M9109			
SM92			Corresponds to SD92			M9110			
SM93			Corresponds to SD93	Goes ON when measurement of step transition monitoring timer is commenced. Resets step transition monitoring timer when it noes OFF	t of er is U ring	M9111	Qn(H) QnPH QnPRH		
SM94	Startup of monitoring timer for step transition	OFF : Not started(monitoring timer reset)	Corresponds to SD94			M9112			
SM95	(Enabled only when SFC program exists)	ON : Started(monitoring timer started)	Corresponds to SD95			M9113			
SM96			Corresponds to SD96			M9114			
SM97		Corresponds to SD97			New				
SM98					Corresponds to SD98			New	
SM99			Corresponds to SD99			New			
SM100	Serial communication function using flag	OFF : Serial communication function is not used. ON : Serial communication function is used.	Stores the se communication communication	tting of whether the serial on function is used or not in the serial on setting parameter	S (Power-ON or reset)	-	Q00/Q01		
SM101	Communication protocol status flag	OFF : GX Developer ON : MC protocol communication device	 Stores wheth the RS-232 in communication 	er the device that is communicating via tterface is GX Developer or MC protocol on device	S (RS232 communication)				
SM110	Protocol error	OFF : Normal ON : Abnormal	 Turns ON wh make commu function. Remains ON thereafter 	en an abnormal protocol was used to inication in the serial communication if the condition is restored to normal	S (Error)				
SM111	Communication status	OFF : Normal ON : Abnormal	 Turns ON wh communication serial commutive Remains ON thereafter. 	en the mode used to make on was different from the setting in the inication function. if the condition is restored to normal	S (Error)	New	Q00UJ Q00U Q01U Q02U ^{*7}		
SM112	Error information clear	ON : Cleared	Turns ON wh SM111, SD1 ² when turned	en the error codes stored in SM110, 10 and SD111 are cleared. (Activated from OFF to ON)	U				
SM113	Overrun error	OFF : Normal ON : Abnormal	Turns ON when an overrun error occurred in the serial communication error.		S (Error)	1			
SM114	Parity error	OFF : Normal ON : Abnormal	 Turns ON wh communication 	en a parity error occurred in the serial on error.	S (Error)	1			
SM115	Framing error	OFF : Normal ON : Abnormal	 Turns ON wh communication 	en a framing error occurred in the serial on error.	S (Error)				
SM165	Program memory batch transfer execution status	OFF : Completed ON : Not being executed or Not completed	 Turns ON wh cache memory Turns OFF will is completed. Remains ON not executed cache memory 	en the data is written to the program ry. hen the program memory batch transfer if the program memory batch transfer is after the data is written to the program ry.	S (When status changed)	New	QnU* ⁶		

*6: The relevant modules are as follows:

The Universal model QCPU whose serial number (first five digits) is "10012" or later.
Q13UDHCPU, Q26UDHCPU

*7: The module whose first 5 digits of serial No. is "10102" or later.

(2) System information

Number	Name	Meaning	Explanation	Set by (When Set)	Corres- ponding ACPU M9 🗆 🗆 🗆	Corresponding CPU
SM202	LED OFF command	$OFF \to ON: LED\;OFF$	When this relay goes from OFF to ON, the LEDs corresponding to the individual bits at SD202 go off	U	New	Qn(H) QnPH QnPRH QnU
SM203	STOP contact	STOP status	Goes ON at STOP status	S (Status change)	M9042	QCPU
SM204	PAUSE contact	PAUSE status	Goes ON at PAUSE status	S (Status change)	M9041	
SM206	PAUSE enable coil	OFF : PAUSE disabled ON : PAUSE enabled	PAUSE status is entered if this relay is ON when the PAUSE contact goes ON	U	M9040	
SM210	Clock data set request	OFF : Ignored ON : Set request	 When this relay goes from OFF to ON and after END instruction execution of subsequent scan, clock data stored in SD210 to SD213 are written to the CPU module. 	U	M9025	
SM211	Clock data error	OFF : No error ON : Error	 ON when error is generated in clock data (SD210 to SD213) value, and OFF if no error is detected. 	S (Request)	M9026	
SM213	Clock data read request	OFF : Ignored ON : Read request	 When this relay is ON, clock data is read to SD210 to SD213 as BCD values. 	U	M9028	
SM220	CPU No.1 preparation completed	OFF : CPU No.1 preparation uncompleted ON : CPU No.1 preparation completed	Turned ON when access can be made to the CPU module No.1 from the other CPU module at power-on or reset operation. SM220 is used as interlock for accessing the CPU module No.1 when the multiple CPU synchronous setting is asynchronous.	S (When status changed)	New	QnU
SM221	CPU No.2 preparation completed	OFF : CPU No.2 preparation uncompleted ON : CPU No.2 preparation completed	Turned ON when access can be made to the CPU module No.2 from the other CPU module at power-on or reset operation. SM221 is used as interlock for accessing the CPU module No.2 when the multiple CPU synchronous setting is asynchronous.			QnU ^{*8}
SM222	CPU No.3 preparation completed	OFF : CPU No.3 preparation uncompleted ON : CPU No.3 preparation completed	Turned ON when access can be made to the CPU module No.3 from the other CPU module at power-on or reset operation. SM222 is used as interlock for accessing the CPU module No.3 when the multiple CPU synchronous setting is asynchronous.			
SM223	CPU No.4 preparation completed	OFF : CPU No.4 preparation uncompleted ON : CPU No.4 preparation completed	Turned ON when access can be made to the CPU module No.4 from the other CPU module at power-on or reset operation. SM223 is used as interlock for accessing the CPU module No.4 when the multiple CPU synchronous setting is asynchronous.			QnU ^{*5}
SM235	Online module change flag	OFF : Online module change is not in progress ON : Online module change in progress	Turns on during online module change. (for host CPU)	S (During online module change)	New	QnPH
SM236	Online module change complete flag	OFF : Online module change incomplete ON : Online module change complete	 Turns ON for one scan after online module change is complete. This contact point can only be used by the scan program. (for host CPU) 	S (When online module change is complete)	New	
SM237	Device range check inhibit flag	OFF : Device range checked ON : Device range not checked	 Selects whether to check a device range during execution of the BMOV, FMOV or DFMOV instruction (only when the conditions for subset processing are established). 	U	New	QnU ^{*6}

*5: The Universal model QCPU except the Q00UJCPU, Q00UCPU, Q01UCPU, and Q02UCPU.

*6: The relevant modules are as follows:
The Universal model QCPU whose serial number (first five digits) is "10012" or later.

• Q13UDHCPU, Q26UDHCPU

*8: The Universal model QCPU except the Q00UJCPU.

TableApp.3.3 Special relay

Number	Name	Meaning	Explanation	Set by (When Set)	Corres- ponding ACPU M9 🗆 🗆	Corresponding CPU
SM240	No. 1 CPU reset flag	OFF : No. 1 CPU reset cancel ON : No. 1 CPU resetting	 Goes OFF when reset of the No. 1 CPU is canceled. Comes ON when the No. 1 CPU is resetting (including the case where the CPU module is removed from the base). The other CPUs are also put in reset status. 			
SM241	No. 2 CPU reset flag	OFF : No. 2 CPU reset cancel ON : No. 2 CPU resetting	Goes OFF when reset of the No. 2 CPU is canceled. Comes ON when the No. 2 CPU is resetting (including the case where the CPU module is removed from the base). The other CPUs result in "MULTI CPU DOWN" (error code: 7000).			Q00/Q01 ^{*1} Qn(H) ^{*1} QnPH QnU ^{*8}
SM242	No. 3 CPU reset flag	OFF : No. 3 CPU reset cancel ON : No. 3 CPU resetting	 Goes OFF when reset of the No. 3 CPU is canceled. Comes ON when the No. 3 CPU is resetting (including the case where the CPU module is removed from the base). The other CPUs result in "MULTI CPU DOWN" (error code: 7000). 			
SM243	No. 4 CPU reset flag	OFF : No. 4 CPU reset cancel ON : No. 4 CPU resetting	 Goes OFF when reset of the No. 4 CPU is canceled. Comes ON when the No. 4 CPU is resetting (including the case where the CPU module is removed from the base). The other CPUs result in "MULTI CPU DOWN" (error code: 7000). 	S (Status change)	New	Qn(H) ^{*1} QnPH QnU ^{*5}
SM244	No. 1 CPU error flag	OFF : No. 1 CPU normal ON : No. 1 CPU during stop error	 Goes OFF when the No. 1 CPU is normal (including a continuation error). Comes ON when the No. 1 CPU is during a stop error. 			
SM245	No. 2 CPU error flag	OFF : No. 2 CPU normal ON : No. 2 CPU during stop error	 Goes OFF when the No. 2 CPU is normal (including a continuation error). Comes ON when the No. 2 CPU is during a stop error. 			Q00/Q01 ^{*1} Qn(H) ^{*1} QnPH QnU ^{*8}
SM246	No. 3 CPU error flag	OFF : No. 3 CPU normal ON : No. 3 CPU during stop error	 Goes OFF when the No. 3 CPU is normal (including a continuation error). Comes ON when the No. 3 CPU is during a stop error. 			
SM247	No. 4 CPU error flag	OFF : No. 4 CPU normal ON : No. 4 CPU during stop error	 Goes OFF when the No. 4 CPU is normal (including a continuation error). Comes ON when the No. 4 CPU is during a stop error 	S (Status change)	New	Qn(H) ^{*1} QnPH QnU ^{*5}
SM250	Max. loaded I/O read	OFF : Ignored ON : Read	 When this relay goes from OFF to ON, maximum loaded I/O number is read to SD250. 	U	New	2 (1)
SM254	All stations refresh command	OFF : Refresh arrival station ON : Refresh all stations	 Effective for the batch refresh (also effective for the low speed cyclic) Designate whether to receive arrival stations only or to receive all slave stations in the MELSECNET/H. 	U Ne		Qn(H) QnPH QnPRH
			Designate whether to receive arrival stations only or to receive all slave stations in the CC-Link IE controller network .		New	Qn(H)* ² QnPH* ⁶ QnPRH* ⁶
			Effective for the batch refresh (also effective for the low speed cyclic) Specify whether to receive only arrival station or all stations in the MELSECNET/H or CC-Link IE controller network.			QnU

*1: This applies to the CPU of function version B or later.

*2: The module whose first 5 digits of serial No. is "09012" or later.

*5: The Universal model QCPU except the Q00UJCPU, Q00UCPU, Q01UCPU, and Q02UCPU.

*6: The module whose first 5 digits of serial No. is "10042" or later.

*8: The Universal model QCPU except the Q00UJCPU.

Number	Name	Meaning	Explanation	Set by (When Set)	Corres- ponding ACPU M9 🗆 🗖	Corresponding CPU
SM255	MELSECNET/10,	OFF : Operative network ON : Standby network	 Goes ON for standby network(If no designation has been made concerning active or standby, active is assumed.) 	S (Initial)	New	
SM256	MELSECNET/H module 1 information	OFF : Reads ON : Does not read	 For refresh from link to CPU module (B, W, etc.) indicate whether to read from the link module. 	U	New	
SM257		OFF : Writes ON : Does not write	 For refresh from CPU module to link (B, W, etc.), designate whether to write to the link module. 	U	New	
SM260	MELSECNET/10,	OFF : Operative network ON : Standby network	Goes ON for standby network (If no designation has been made concerning active or standby, active is assumed.)	S (Initial)	New	
SM261	MELSECNET/H module 2 information	OFF : Reads ON : Does not read	 For refresh from link to CPU module (B, W, etc.) indicate whether to read from the link module. 	U	New	
SM262		OFF : Writes ON : Does not write	 For refresh from CPU module to link (B, W, etc.), designate whether to write to the link module. 	U	New	
SM265	MELSECNET/10,	OFF : Operative network ON : Standby network	Goes ON for standby network (If no designation has been made concerning active or standby, active is assumed.)	S (Initial)	New	Qn(H) QnPH QnPRH
SM266	MELSECNET/H module 3 information	OFF : Reads ON : Does not read	 For refresh from link to CPU module (B, W, etc.) indicate whether to read from the link module. 	U	New	
SM267		OFF : Writes ON : Does not write	 For refresh from CPU module to link (B, W, etc.), designate whether to write to the link module. 	U	New	
SM270	MELSECNET/10,	OFF : Operative network ON : Standby network	Goes ON for standby network (If no designation has been made concerning active or standby, active is assumed.)	S (Initial)	New	
SM271	MELSECNET/H module 4 information	OFF : Reads ON : Does not read	 For refresh from link to CPU module (B, W, etc.) indicate whether to read from the link module. 	U	New	
SM272		OFF : Writes ON : Does not write	 For refresh from CPU module to link (B, W, etc.), designate whether to write to the link module. 	U	New	
SM280	CC-Link error	OFF : Normal ON : Error	 Goes ON when a CC-Link error is detected in any of the installed CC-Link module. Goes OFF when normal operation is restored. 	S (Status change)	New	
SM315	Communication reserved time delay enable/disable flag	OFF:Without delay ON :With delay	 This flag is enabled when the time reserved for communication processing is set in SD315. Turns ON to delay the END processing by the time set in SD315 in order to perform communication processing. (The scan time increases by the period set in SD315.) Turns OFF to perform the END processing without a delay of the time set in SD315 when there is no communication processing. (Defaults to OFF) 	U	New	Q00J/Q00/Q01
SM320	Presence/absence of SFC program	OFF : SFC program absent ON : SFC program present	Turns ON when an SFC program is registered.OFF when an SFC program is not registered.	S (Initial)	M9100	000 1/000/001*1
SM321	Start/stop SFC program	OFF : SFC program not executed (stop) ON : SFC program executed (start)	 Initial value is set at the same value as SM320. (Goes ON automatically if SFC program is present.) Turn this relay from ON to OFF to stop program execution. Turn this relay from OFF to ON to resume program execution. 	S (Initial)/U	M9101form at change	Qn(H) Qn(H) QnPH QnPRH QnU

*1: This applies to the CPU of function version B or later.

А

TableApp.3.3 Special relay

Number	Name	Meaning	Explanation	Set by (When Set)	Corres- ponding ACPU M9	Corresponding CPU
SM322	SFC program start status	OFF : Initial start ON : Resume start	The SFC program starting mode in the SFC setting of the PLC parameter dialog box is set as the initial value. AT initial start: OFF At continued start: ON	S (Initial)/U	M9102form at change	
SM323	Presence/absence of continuous transition for entire block	OFF : Continuous transition not effective ON : Continuous transition effective	Set the presence/absence of continuous transition for the block where "Continuous transition bit" of the SFC data device has not been set.	U	M9103	
SM324	Continuous transition prevention flag	OFF : When transition is executed ON : When no transition	 OFF during operation in the continuous transition mode or during continuous transition, and ON when continuous transition is not executed. Always ON during operation in the no continuous transition mode. 	S (Instruction execution) S (Status change)	M9104 New	Q00J/Q00/Q01 ^{*1} Qn(H) QnPH QnPRH
SM325	Output mode at block stop	OFF : OFF ON : Preserves	 Select whether the coil outputs of the active steps are held or not at the time of a block stop. As the initial value, the output mode at a block stop in the parameter is OFF when the coil outputs are OFF, and ON when the coil outputs are held. All coil outputs go OFF when this relay is OFF. Coil outputs are preserved when this relay is ON. 	S (Initial)/U	M9196	QIU
SM326	SFC device clear mode	OFF : Clear device ON : Preserves device	Selects the device status when the stopped CPU is run after the sequence program or SFC program has been modified when the SFC program exists.	U	New	
SM327	Output during end step execution	OFF : Hold step output turned OFF (cleared) ON : Hold step output held	Select the device status at the time of switching from STOP to program write to RUN.(All devices except the step relay)	S (Initial)/U	New	Qn(H) QnPH QnPRH QnU
				U		Q00J/Q00/Q01*1
SM328	Clear processing mode when end step is reached	OFF : Clear processing is performed. ON : Clear processing is not performed.	 Select whether clear processing will be performed or not if active steps other than the ones being held exist in the block when the end step is reached.? When this relay turns OFF, all active steps are forcibly terminated to terminate the block. When this relay is ON, the execution of the block is continued as-is. If active steps other than the ones being held do not exist when the end step is reached, the steps being held are terminated to terminate the block. 	U	New	Q00J/Q00/Q01 ^{*1} QnU
SM330	Operation mode for low speed execution type program	OFF : Asynchronous mode ON : Synchronous mode	 Select whether the low speed execution type program will be executed in the asynchronous mode or in the synchronous mode. Asynchronous mode (this relay is turned OFF.) Mode in which the operation of the low speed execution type program is performed continuously within the excess time. Synchronous mode (this relay is turned ON.) Mode in which the operation of the low speed execution type program is not performed continuously and operation is performed from the next scan if there is excess time. 	U	New	Qn(H) QnPH
SM331	Normal SFC program execution status	OFF : Not executed ON : Being executed	 Indicates whether the normal SFC program is being executed or not. Used as an SFC control instruction execution interlock. 	S (Status change) New	New	Qn(H) ^{*3} QnPH ^{*4} QnPRH
SM332	Program execution management SFC program execution status	OFF : Not executed ON : Being executed	 Indicates whether the program execution management SFC program is being executed or not. Used as an SFC control instruction execution interlock. 			
SM390	Access execution flag	ON indicates completion of intelligent function module access	The status of the intelligent function module access instruction executed immediately before is stored. (This data is overwritten when the intelligent function module access instruction is executed again.) Used by the user in a program as a completion bit.	S (Status change)	New	Qn(H) QnPH QnPRH
SM391	GINT instruction execution completion flag	OFF : Not executed ON : Execution completed	Indicates execution status of the S(P).GINT instruction. • Turned OFF before the instruction is executed. • Turned ON after the instruction is completed.	S (Instruction execution)	New	QnU

*1: This applies to the CPU of function version B or later.
*3: The module whose first 5 digits of serial No. is "04122" or later.
*4: The module whose first 5 digits of serial No. is "07032" or later.
(3) System clocks/counters

TableApp.3.4	Special	relay
--------------	---------	-------

Number	Name	Meaning	Explanation	Set by (When Set)	Corres- ponding ACPU M9 🗆 🗆 🗖	Corresponding CPU
SM400	Always ON	ON OFF	Normally is ON	S (Every END processing)	M9036	OCPU
SM401	Always OFF	ON OFF	Normally is OFF	S (Every END processing)	M9037	
SM402	After RUN, ON for 1 scan only	ON1 scan OFF◀ → ↓	 After RUN, ON for 1 scan only. This connection can be used for scan execution type programs only. When an initial execution type program is used, this relay turns OFF at the END processing of the scan execution type program in the first scan after RUN. ON OFF Initial 1 scan of scan execution type program execution type program 	S (Every END processing)	M9038	Qn(H) QnPH QnPRH QnU
			After RUN, ON for 1 scan only.	S (Every END processing)	New	Q00J/Q00/Q01
SM403	After RUN, OFF for 1 scan only	ON OFF 1 scan	 After RUN, OFF for 1 scan only. This connection can be used for scan execution type programs only. When an initial execution type program is used, this relay turns OFF at the END processing of the scan execution type program in the first scan after RUN. ON OFF Initial 1 scan of scan execution type program Initial execution type program 	S (Every END processing)	M9039	Qn(H) QnPH QnPRH QnU
			After RUN, OFF for 1 scan only.	S (Every END processing)	New	Q00J/Q00/Q01
SM404	Low speed execution type programON for 1 scan only after RUN	ON 1 scan	After RUN, ON for 1 scan only. This connection can be used for low speed execution type programs only.	S (Every END processing)	New	Qn(H)
SM405	Low speed execution type programAfter RUN, OFF for 1 scan only	ON ← → 1 scan	 After RUN, OFF for 1 scan only. This connection can be used for low speed execution type programs only. 	S (Every END processing)	New	QnPH
SM409	0.01 second clock	0.005s	 Repeatedly changes between ON and OFF at 5-ms interval. When Programmable Controller power supply is turned ON or a CPU module reset is performed, goes from OFF to start. (Note that the ON-OFF status changes when the designated time has elapsed during the execution of the program.) 	S (Status change)	New	Qn(H) QnPH QnPRH QnU
SM410	0.1 second clock	0.05s	Repeatedly changes between ON and OFF at each		M9030	
SM411	0.2 second clock	0.1s	 designated time interval. When Programmable Controller power supply is turned ON or a CPU module reset is performed, goes from OFF to start. (Note that the ON-OFF status changes when the designated time has elapsed during the execution of 	S (Status change)	M9031	
SM412	1 second clock	0.5s		- (M9032	
SM413	2 second clock	1s1s	the program.)		M9033	QCPU
SM414	2n second clock	ns ns	 This relay alternates between ON and OFF at intervals of the time (unit: s) specified in SD414. When Programmable Controller power supply is turned ON or a CPU module reset is performed, goes from OFF to start. (Note that the ON-OFF status changes when the designated time has elapsed during the execution of the program.) 	S (Status change)	M9034form at change	

Appendix 3 SPECIAL RELAY LIST

Α

App-127

Number	Name	Meaning	Explanation	Set by (When Set)	Corres- ponding ACPU M9□□□	Corresponding CPU
SM415	2n (ms) clock	n(ms)n(ms)	 This relay alternates between ON and OFF at intervals of the time (unit: ms) specified in SD415. When Programmable Controller power supply is turned ON or a CPU module reset is performed, goes from OFF to start. (Note that the ON-OFF status changes when the designated time has elapsed during the execution of the program.) 	S (Status change)	New	Qn(H) QnPH QnPRH QnU
SM420	User timing clock No.0		Relay repeats ON/OFF switching at fixed scan		M9020	
SM421	User timing clock No.1		intervals. • When Programmable Controller power supply is turned ON or a CPU module reset is performed, goes from OFF to start.		M9021	
SM422	User timing clock No.2				M9022	
SM423	User timing clock No.3				M9023	
SM424	User timing clock No.4	n2 scan n2 scan n1 scan	(For the redundant CPU, however, this relay is always OFF after system switching.) • The ON/OFF intervals are set with the DUTY instruction DUTY n1 n2 SM420 n1: ON scan interval n2: OFF scan interval	S (Every END processing)	M9024	QCPU
SM430	User timing clock No.5					
SM431	User timing clock No.6					0 (1)
SM432	User timing clock No.7		For use with SM420 to SM424 low speed programs	S (Every END processing)	New	Qn(H) QnPH
SM433	User timing clock No.8			p		
SM434	User timing clock No.9					

(4) Scan information

TableApp.3.5 Special relay

Number	Name	Meaning	Explanation	Set by (When Set)	Corres- ponding ACPU M9□□□	Corresponding CPU
SM510	Low speed program execution flag	OFF : Completed or not executed ON : Execution under way.	Goes ON when low speed execution type program is executed.	S (Every END processing)	New	Qn(H) QnPH
SM551	Reads module service interval	OFF : Ignored ON : Read	 When this relay goes from OFF to ON, the module service interval designated by SD550 is read to SD551 to SD552. 	U	New	Qn(H) QnPH QnPRH

(5) I/O refresh

TableApp.3.6 Special relay

Number	Name	Meaning	Explanation	Set by (When Set)	Corres- ponding ACPU M9 🗆 🗆 🗖	Corresponding CPU
SM580	Program to program I/ O refresh	OFF : Not refreshed ON : Refreshed	 When this special relay is turned ON, I/O refresh is performed after execution of the first program, and the next program is then executed. When a sequence program and an SFC program are to be executed, the sequence program is executed, I/O refresh is performed, and the SFC program is then executed. 	U	New	Q00J/Q00/Q01 ^{*1}

*1: This applies to the CPU of function version B or later.

(6) Memory cards

TableApp.3.7 Special relay

Number	Name	Meaning	Explanation	Set by (When Set)	Corres- ponding ACPU M9□□□	Corresponding CPU
SM600	Memory card usable flags	OFF : Unusable ON : Use enabled	ON when memory card is ready for use by user	S (Status change)	New	
SM601	Memory card protect flag	OFF : No protect ON : Protect	Goes ON when memory card protect switch is ON	S (Status change)	New	
SM602	Drive 1 flag	OFF : No drive 1 ON : Drive 1 present	Turns ON when the mounted memory card is RAM	S (Status change)	New	
SM603	Drive 2 flag	OFF : No drive 2 ON : Drive 2 present	Turns ON when the mounted memory card is ROM	S (Status change)	New	Qn(H)
SM604	Memory card in-use flag	OFF : Not used ON : In use	Goes ON when memory card is in use	S (Status change)	New	QnPH QnPRH
SM605	Memory card remove/ insert prohibit flag	OFF : Remove/insert enabled ON : Remove/insert prohibited	Goes ON when memory card cannot be inserted or removed	U	New	QnU ^{*1}
SM609	Memory card remove/ insert enable flag	OFF : Remove/insert prohibited ON : Remove/insert enabled	 Turned ON by user to enable the removal/insertion of memory card. Turned OFF by the system after the memory card is removed. This contact can be used only when SM604 and SM605 are OFF. 	S/U	New	
SM620	Drive 3/4 usable flags	OFF : Unusable ON : Use enabled	Always ON	S (Initial)	New	QCPU
SM622	Drive 3 flag	OFF : No drive 3 ON : Drive 3 present	• Always ON	S (Initial)	New	Q00J/Q00/Q01 Qn(H) QnPH QnPRH QnU ^{*2}
SM623	Drive 4 flag	OFF : No drive 4 ON : Drive 4 present	Always ON	S (Initial)	New	QCPU
SM624	Drive 3/4 in-use flag	OFF : Not used ON : In use	Goes ON when the file within Drive 3 (standard RAM) or Drive 4 (standard ROM) is used.	S (Status change)	New	Qn(H) QnPH QnPRH QnU
SM640	File register use	OFF : File register not used ON : File register in use	Goes ON when file register is in use	S (Status change)	New	Q00J/Q00/Q01 Qn(H) QnPH QnPRH QnU ^{*2}

*1: The Universal model QCPU except the Q00UJCPU, Q00UCPU, and Q01UCPU. *2: The Universal model QCPU except the Q00UJCPU.

А

Number	Name	Meaning	Explanation	Set by (When Set)	Corres- ponding ACPU M9 🗆 🗖	Corresponding CPU
SM650	Comment use	OFF : File register not used ON : File register in use	Goes ON when comment file is in use	S (Status change)	New	Qn(H) QnPH QnPRH QnU
SM660	Boot operation	OFF : Internal memory execution ON : Boot operation in progress	 Goes ON while boot operation is in process Goes OFF if boot designation switch is OFF 	S (Status change)	New	Qn(H) QnPH QnPRH
5		OFF : Program memory execution ON : Boot operation in progress	Goes ON while boot operation is in process	S (Status change)	New	Q00J/Q00/Q01 QnU ^{*1}
SM671	Latch data backup to standard ROM completion flag	OFF : Not completed ON : Completed	 Turned ON when latch data backup to the standard ROM is completed. Time when the latch data backup to the standard ROM was performed is stored in SD672 or later. 	S (Status change)	New	QnU
SM672	Memory card file register access range flag	OFF : Within access range ON : Outside access range	 Goes ON when access is made to area outside the range of file register of memory card(Set within END processing.) Reset at user program 	S/U	New	Qn(H) QnPH QnPRH
SM675	Error completion of latch data backup to standard ROM	OFF : No Error ON : Error	 Turned ON when data cannot be backuped to the standard ROM by the latch data backup normally. Turned OFF when data is backuped to the standard ROM by the latch data backup normally. 	S	New	
SM676	Specification of restration repeated execution	OFF : Not specified ON : Specified	 If latch data backup is performed when SM676 is ON, restore the data every time turning ON from OFF the power supply from the next power-on. Delete the backuped latch data, or restore the data every time turning ON from OFF the power supply until the latch data backup operation will be executed again. 	U	New	
SM680	Program memory write error	OFF : Write error ON : Write not executed/ normal	 Turns ON if a write error is detected at writing to program memory (flash ROM). Turns OFF by the write direction. 	S (At write)	New	
SM681	Program memory writing flag	OFF : During writing ON : Write not executed	 Turns ON when writing to the program memory (flash ROM) is in progress, and turns OFF when writing is completed. 	S (At write)	New	QnU
SM682	Program memory overwrite count error flag	OFF : Overwrite count is 100,000 or more ON : Overwrite count is less than 100,000	Turns ON when the overwrite count of program memory (flash ROM) reaches 100,000.	S (At write)	New	
SM685	Standard ROM write error	OFF : Write error ON : Write not executed/ normal	 Turns ON when write error is detected at writing to standard ROM (flash ROM). Turns OFF by the write direction. 	S (At write)	New	
SM686	Standard ROM writing flag	OFF : During overwriting ON : Overwrite not executed	 Turns ON when writing to the standard ROM (flash ROM) is in progress, and turns OFF when writing is completed. 	S (At write)	New	
SM687	Standard ROM overwrite count error flag	OFF : Overwrite count is 100,000 or more ON : Overwrite count is less than 100,000	• Turns ON when the overwrite count of standard ROM (flash ROM) reaches 100,000. (It is necessary to change CPU module.)	S (At write)	New	
SM691	Backup start preparation status flag	OFF : Backup start preparation not completed ON : Backup start preparation completed	Turns on when the backup start preparation is completed.	S (Status change)	New	QnU ^{*3}
SM692	Restoration complete flag	OFF : Restoration not completed ON : Restoration completed	Turns on when restoration of the backup data in the memory card is completed.	S (Status change)	New	l

*1: The Universal model QCPU except the Q00UJCPU, Q00UCPU, and Q01UCPU.

*3: The modules whose serial number (first five digits) is "10102" or later are the relevant models. (Except the Q00UJCPU, Q00UCPU, and Q01UCPU)

(7) Instruction-Related Special Relays

TableApp.3.8	Special	relay
--------------	---------	-------

Number	Name	Meaning	Explanation	Set by (When Set)	Corres- ponding ACPU M9 🗆 🗖	Corresponding CPU
SM700	Carry flag	OFF : Carry OFF ON : Carry ON	Carry flag used in application instruction	S (Instruction execution)	M9012	QCPU
SM701	Number of output characters selection	Switching the number of output characters and the output pattern	 Used for the PR, PRC, BINDA, DBINDA, BINHA, DBINHA, BCDDA, DBCDDA, or COMRD instruction 	U	M9049	Qn(H) QnPH QnPRH QnU
SM702	Search method	OFF : Search next ON : 2-part search	Designates method to be used by search instruction.Data must be arranged for 2-part search.	U	New	
SM703	Sort order	OFF : Ascending order ON : Descending order	 The sort instruction is used to designate whether data should be sorted in ascending order or in descending order. 	U	New	QCPU
SM704	Block comparison	OFF : Non-match found	Goes ON when all data conditions have been met for the BKCMP instruction.	S (Instruction execution)	New	
Chinoq	blook companion	ON : All match	 Goes ON when all data conditions have been met for the DBKCMP instruction. 	S (Instruction execution)	New	
SM709	DT/TM instruction improper data detection flag	OFF : Improper data not detected ON : Improper data detected	Turns on when the data to be compared by the DT or TM instruction is not recognized as date data or time data, or the device (3 words) to be compared exceeds the specified device range.	S (Instruction execution) or U	New	QnU ^{*2}
SM710	CHK instruction priority ranking flag	OFF : Conditions priority ON : Pattern priority	 Remains as originally set when OFF. CHK priorities updated when ON.	S (Instruction execution)	New	Qn(H) QnPH QnPRH
SM715	El flag	OFF : During DI ON : During EI	ON when EI instruction is being executed.	S (Instruction execution)	New	QCPU
SM716	Block comparison (Except an interrupt program)	OFF : Mismatch found ON : No mismatch	Turns on when all data conditions are confirmed that they are met by the DBKCMP instruction. (Initial execution type program, scan execution type program, stand-by type program executed from initial execution type program or scan execution type program)			QnU*2
SM717	Block comparison (Interrupt program)	OFF : Mismatch found ON : No mismatch	Turns on when all data conditions are confirmed that they are met by the DBKCMP instruction. (Interrupt program, fixed scan execution type program, stand-by type program executed from interrupt program or fixed scan execution type program)	S (Instruction execution)	New	
SM718	Block comparison (Interrupt program (I45))	OFF : Mismatch found ON : No mismatch	Turns on when all data conditions are confirmed that they are met by the DBKCMP instruction. (Interrupt program (I45) or Stand-by type program executed from interrupt program (I45))			QnU ^{*3}
SM720	Comment read	OFF : Comment read not completed	 Turns on only during one scan when the processing of the COMRD or PRC instruction is completed. 	S (Status change)	New	Qn(H) QnPH
011120	completion flag	ON : Comment read completed	 Turns on only during one scan when the processing of the COMRD instruction is completed. 	e (etatus enange)	New	QnPRH QnU
			 Switches ON while a file is being accessed by the SP. FWRITE, SP. FREAD, COMRD, PRC, or LEDC instruction. 			Qn(H) QnPH
SM721	File being accessed	OFF : File not accessed	 Switches ON while a file is being accessed by the SP. FWRITE, SP. FREAD, COMRD or LEDC instruc- tion. 	S (Status change) Ne	New	Qn(H) QnPH QnPRH
		Cra . The being accessed	 Switches ON while a file is being accessed by the SP. FWRITE, SP. FREAD, COMRD or SP.DEVST instruction. 			QnU
			 Turns ON while the ATA card or standard ROM is being accessed. 			QnU ^{*1}
SM722	BIN/DBIN instruction error disabling flag	OFF : Error detection performed ON : Error detection not performed	Turned ON when "OPERATION ERROR" is suppressed for BIN or DBIN instruction.	U	New	QCPU

*1: The module whose first 5 digits of serial No. is "09042" or later.

*2: The relevant modules are as follows:

The Universal model QCPU whose serial number (first five digits) is "10102" or later.

• Q00UJCPU, Q00UCPU, Q01UCPU

*3: The relevant modules are as follows:

The Universal model QCPU whose serial number (first five digits) is "10102" or later.
Q00UCPU, Q01UCPU

Number	Name	Meaning	Explanation	Set by (When Set)	Corres- ponding ACPU M9 🗆 🗆 🗖	Corresponding CPU
SM734	XCALL instruction execution condition designation	OFF : Not executed by execution condition risen ON : Executed by execution condition risen	 During OFF, XCALL instructions will not be executed even if execution condition is risen. During ON, XCALL instructions will be executed when execution condition is risen. 	U	New	Qn(H) ^{*1}
SM735	SFC comment readout instruction in execution flag	OFF : SFC comment readout instruction is inactivated. ON : SFC comment readout instruction is activating.	 Turns on the instructions, (S(P).SFCSCOMR) to read the SFC step comments and (S(P). SFCTCOMR) to read the SFC transition condition comments. 	S (status change)	New	Qn(H) ^{*2} QnPH ^{*3} QnPRH ^{*3}
SM738	MSG instruction reception flag	OFF : Instruction not executed ON : Instruction execution	Goes ON when MSG instruction is executed	S (Instruction execution)	New	Qn(H) QnPRH
SM750	Scaling instruction search method setting	OFF : Search next ON : 2-part search	Determines a search method when the scaling instruction is executed.	U	New	QnU ^{*8}
SM774	PID bumpless processing (for complete derivative)	OFF : Matched ON : Not matched	Specifies whether to match the set value (SV) with the process value (PV) or not in the manual mode.	U	New	Q00J/Q00/Q01 ^{*4} Qn(H) QnPRH QnU
	Selection of refresh	OFF : Performs link refresh ON : Performs no link refresh	Select whether link refresh processing will be performed or not when only communication with the CPU module is made at the execution of the COM instruction.	U	New	Q00J/Q00/Q01 Qn(H) QnPH
SM775	processing during COM/CCOM instruction execution	OFF : Performs refresh processes other than an I/O refresh ON : Performs refresh set by SD778	Select whether to perform refresh processes other than an I/O refresh set by SD778 when the COM or CCOM instruction is executed.	U	New	Q00J/Q00/Q01 ^{*4} Qn(H) ^{*5} QnPH ^{*3} QnPRH QnU
SM776	Enable/disable local device at CALL	OFF : Local device disabled ON : Local device enabled	 Set whether the local device of the subroutine program called at execution of the CALL instruction is valid or invalid. 	U	New	Qn(H) QnPH
SM777	Enable/disable local device in interrupt program	OFF : Local device disabled ON : Local device enabled	 Set whether the local device at execution of the interrupt program is valid or invalid. 	U	New	QnPRH QnU ^{*9}
SM794	PID bumpless processing(for incomplete derivative)	OFF : Matched ON : Not matched	Specifies whether to match the set value (SV) with the process value (PV) or not in the manual mode.	U	New	Q00J/Q00/Q01 ^{*4} Qn(H) ^{*6} QnPRH QnU

*1: The module whose first 5 digits of serial No. is "06082" or later.

*2: The module whose first 5 digits of serial No. is "07012" or later.

*3: The module whose first 5 digits of serial No. is "07032" or later.

*4: This applies to the CPU module of function version B or later.

*5: The module whose first 5 digits of serial No. is "04012" or later.

*6: The module whose first 5 digits of serial No. is "05032" or later.

*8: The relevant modules are as follows:

• The Universal model QCPU whose serial number (first five digits) is "10102" or later.

• Q00UJCPU, Q00UCPU, Q01UCPU

*9: The Universal model QCPU except the Q00UJCPU.

Number	Name	Meaning	Explanation	Set by (When Set)	Corres- ponding ACPU M9 🗆 🗖	Corresponding CPU
SM796	Block information using multiple CPU high-speed transmission dedicated instruction (for CPU No.1)	OFF : Block is secured ON : Block set by SD796 cannot be secured	 Turns ON when the number of the remaining blocks of the dedicated instruction transmission area used for the multiple CPU high-speed transmission dedicated instruction(target CPU= CPU No.1) is less than the number of blocks specified by SD796. Turns ON at instruction execution. Turns OFF when the empty area exists at END processing. 	S (When instruction/END processing executed)	New	
SM797	Block information using multiple CPU high-speed transmission dedicated instruction (for CPU No.2)	OFF : Block is secured ON : Block set by SD797 cannot be secured	 Turns ON when the number of the remaining blocks of the dedicated instruction transmission area used for the multiple CPU high-speed transmission dedicated instruction (target CPU= CPU No.2) is less than the number of blocks specified by SD797. Turns ON at instruction execution. Turns OFF when the empty area exists at END processing. 	S (When instruction/END processing executed)	New	011
SM798	Block information using multiple CPU high-speed transmission dedicated instruction (for CPU No.3)	OFF : Block is secured ON : Block set by SD798 cannot be secured	 Turns ON when the number of the remaining blocks of the dedicated instruction transmission area used for the multiple CPU high-speed transmission dedicated instruction (target CPU= CPU No.3) is less than the number of blocks specified by SD798. Turns ON at instruction execution. Turns OFF when the empty area exists at END processing. 	S (When instruction/END processing executed)	New	QIU
SM799	Block information using multiple CPU high-speed transmission dedicated instruction (for CPU No.4)	OFF : Block is secured ON : Block set by SD799 cannot be secured	 Turns ON when the number of the remaining blocks of the dedicated instruction transmission area used for the multiple CPU high-speed transmission dedicated instruction(target CPU= CPU No.4) is less than the number of blocks specified by SD799. Turns ON at instruction execution. Turns OFF when the empty area exists at END processing. 	S (When instruction/END processing executed)	New	

*7: The Universal model QCPU except the Q00UJCPU, Q00UCPU, Q01UCPU, and Q02UCPU.

(8) Debug

TableApp.3.9 Special relay

Number	Name	Meaning	Explanation	Set by (When Set)	Corres- ponding ACPU M9 🗆 🗆	Corresponding CPU
SM800	Trace preparation	OFF : Not ready ON : Ready	Switches ON when the trace preparation is completed	S (Status change)	New	
SM801	Trace start	OFF : Suspend ON : Start	 Trace is started when this relay switches ON. Trace is suspended when this relay switches OFF. (All related special Ms switches OFF.) 	U	M9047	
SM802	Trace execution in progress	OFF : Suspend ON : Start	Switches ON during execution of trace.	S (Status change)	M9046	Qn(H)
SM803	Trace trigger	OFF → ON: Start	Trace is triggered when this relay switches from OFF to ON. (Identical to TRACE instruction execution status)	U	M9044	QnPH QnPRH QnU ^{*1}
SM804	After trace trigger	OFF : Not after trigger ON : After trigger	Switches ON after trace is triggered.	S (Status change)	New	
SM805	Trace completed	OFF : Not completed ON : End	Switches ON at completion of trace	S (Status change)	M9043	
SM826	Trace error	OFF : Normal ON : Errors	Switches ON if error occurs during execution of trace	S (Status change)	New	
SM829	Forced registration specification of trace setting	ON : Forced registration enabled OFF : Forced registration disabled	 Even when the trace condition or the trigger condition is established, the sampling trace setting can be set to the CPU module by turning SM829 ON and registering the sampling trace setting by GX Developer. 	U	New	QnU*1

*1: The Universal model QCPU except the Q00UJCPU.

А

(9) A to Q conversion correspondences

Special relays SM1000 to SM1255 are the relays which correspond to ACPU special relays M9000 to M9255 after A to Q conversion.

(However, the Basic model QCPU and Redundant CPU do not support the A to Q conversion.)

These special relays are all set by the system, and cannot be set by the user program. To turn them ON/OFF by the user program, change the special relays in the program into those of QCPU.

However, some of SM1084 and SM1200 to SM1255 (corresponding to M9084 and M9200 to M9255 before conversion) can be turned ON/OFF by the user program, if they could be turned ON/OFF by the user program before conversion.For details on the ACPU special relays, see the user's manuals for the individual CPUs, and MELSECNET or MELSECNET/ B Data Link System Reference Manuals

Check "Use special relay/special register from SM/SD1000" for "A-PLC" on the PLC system tab of PLC parameter in GX Developer when the converted special relays are used with the High Performance model QCPU, Process CPU, and Universal model QCPU.

When not using the converted special relays, uncheck "Use special relay/special register from SM/SD1000" to save the time taken for processing special relays.

Remark

The following are additional explanations about the Special Relay for Modification column.

- ① When a special relay for modification is provided, the device number should be changed to the provided QCPU special relay.
- 2 When is provided, the converted special relay can be used for the device number.
- 3 When \blacksquare is provided, the device number does not work with QCPU.

ACPU Special Relay	Special Relay after Conversion	Special Relay for Modification	Name	Meaning	Details	Corresponding CPU
M9000	SM1000	_	Fuse blown	OFF : Normal ON : Module with blown fuse	Turned on when there is one or more output modules of which fuse has been blown. Remains ON if the condition is restored to normal thereafter. Output modules of remote I/O stations are also checked fore fuse condition.	On/H)
M9002	SM1002	_	I/O module verify error	OFF : Normal ON : Error	 Turned on if the status of I/O module is different form entered status when power is turned on. Remains ON if the condition is restored to normal thereafter. I/O module verification is done also to remote I/O station modules. Reset is enabled only when special registers SD1116 to SD1123 are reset. 	QnPH QnU ^{*1}

TableApp.3.10 Special relay

*1: The relevant modules are as follows:

• The Universal model QCPU whose serial number (first five digits) is "10102" or later.

• Q00UJCPU, Q00UCPU, Q01UCPU

ACPU Special Relay	Special Relay after Conversion	Special Relay for Modification	Name	Meaning	Details	Corresponding CPU						
M9005	SM1005	_	AC DOWN detection	OFF : AC DOWN not detected ON : AC DOWN detected	 Turns ON if an instantaneous power failure of within 20ms occurs during use of the AC power supply module. Reset when the power supply is switched OFF, then ON. Turns ON if an instantaneous power failure of within 10ms 							
					 occurs during use of the DC power supply module. Reset when the power supply is switched OFF, then ON. 							
M9006	SM1006	-	Battery low	OFF : Normal ON : Battery low	Turns ON when the battery voltage drops to or below the specified. Turns OFF when the battery voltage returns to normal thereafter.							
M9007	SM1007	-	Battery low latch	OFF:Normal ON :Battery low	 Turns ON when the battery voltage drops to or below the specified. Remains ON if the battery voltage returns to normal thereafter. 	Qn(H) QnPH QnU ^{*1}						
M9008	SM1008	SM1	Self-diagnosis error	OFF : No error ON : Error	 Turned on when error is found as a result of self- diagnosis. 							
M9009	SM1009	SM62	Annunciator detection	OFF : No F number detected ON : F number detected	 Turned on when OUT F of SET F instruction is executed. Switched off when SD1124 data is cleared to zero. 							
M9011	SM1011	SM56	Operation error flag	OFF : No error ON : Error	 Turned on when operation error occurs during execution of application instruction. Remains ON if the condition is restored to normal thereafter. 							
M9012	SM1012	SM700	Carry flag	OFF : Carry OFF ON : Carry ON	Carry flag used in application instruction.							
M9016	SM1016	×	Data memory clear flag	OFF : Ignored ON : Output claered	 Clears the data memory including the latch range (other than special relays and special registers) in remote run mode from computer, etc. when SM1016 is on. 	Qn(H) QnPH						
M9017	SM1017	×	Data memory clear flag	OFF : Ignored ON : Output claered	 Clears the unlatched data memory (other than special relays and special registers) in remote run mode from computer, etc. when SM1017 is on. 							
M9020	SM1020	-	User timing clock No.0		 Relay which repeats on/off at intervals of predetermined scan. When power is turned on or reset is per-formed, the clock starts with off 							
M9021	SM1021	-	User timing clock No.1		Set the intervals of on/off by DUTY instruction.							
M9022	SM1022	-	User timing clock No.2	n2 scan n2 scan	n1: ON scan interval n2: OFF scan interval * : If DUTY instruction, which specified from SM 1020 to							
M9023	SM1023	_	User timing clock No.3								SM 1024 of User timing clock in programs other than a program for a Universal model QCPU, changes the programmable controller to the Universal model QCPU, the special relays SM 420 to 424 will be	Qn(H) QnPH QnU ^{*1}
M9024	SM1024	_	User timing clock No.4		replaced. (Universal model QCPUs cannot specify the special relays from SM 1020 to SM1024.)							
M9025	SM1025	_	Clock data set request	OFF : Ignored ON : Set request present used	 Writes the clock data stored in SD1025 to SD1028 to the CPU module after the END instruction is executed in the scan in which SM1025 turned from OFF to ON. 							
M9026	SM1026	_	Clock data error	OFF : No error ON : Error	Switched on by clock data (SD1025 to SD1028) error							
M9028	SM1028	-	Clock data read request	OFF : Ignored ON : Read request	 Reads clock data to SD1025 to SD1028 in BCD when SD1028 is on. 							
M9029	SM1029	×	Batch processing of data communications requests	OFF : Batch processing not conducted ON : Batch processing conducted	 The SM1029 relay is turned on using a sequence program to process all data communication requests accepted during one scan in the END processing of that scan. The batch processing of the data communication requests can be turned on and off during running. The default is OFF (processed one at a time for each END processing in the order in which data communication requests are accepted). 	Qn(H) QnPH						
M9030	SM1030	-	0.1 second clock	0.05s								
M9031	SM1031	_	0.2 second clock	0.1s	 0.1 second, 0.2 second, 1 second and 2 second, clocks are generated. Not turned on or off per scan but turned on and off even 	Qn(H) QnPH						
M9032	SM1032	_	1 second clock	0.5s	during scan if corresponding time has elapsed.Starts with off when Programmable Controller power supply is turned on or CPU module reset is performed.	QnU ^{*1}						
M9033	SM1033	_	2 second clock	1s1s								

*1: The relevant modules are as follows:
The Universal model QCPU whose serial number (first five digits) is "10102" or later.
Q00UJCPU, Q00UCPU, Q01UCPU

А

ACPU Special Relay	Special Relay after Conversion	Special Relay for Modification	Name	Meaning	Details	Corresponding CPU
M9034	SM1034	_	2n minute clock(1 minute clock) ^{*2}	ns ns	 Alternates between ON and OFF according to the seconds specified at SD414. (Default: n = 30) Not turned on or off per scan but turned on and off even during scan if corresponding time has elapsed. Starts with off when Programmable Controller power supply is turned on or CPU module reset is performed. 	
M9036	SM1036	_	Always ON	ON OFF	Used as dummy contacts of initialization and application instruction in sequence program	Qn(H)
M9037	SM1037	_	Always OFF	ON OFF	 SM1038 and SM1037 are turned on and off without regard to position of key switch on CPU module front. SM1038 and SM1039 are under the same condition as RUN status 	QnPH QnU ^{*1}
M9038	SM1038	_	ON for 1 scan only after RUN	ON1 scan	except when the key switch is at STOP position, and turned off and on. Switched off if the key switch is in STOP position. SM1038 is on for one scan only and SM1039 is off for one scan only if the key switch is not in STOP	
M9039	SM1039	-	RUN flag(After RUN, OFF for 1 scan only)	ON OFF 1 scan	position.	
M9040	SM1040	SM206	PAUSE enable coil	OFF : PAUSE disabled ON : PAUSE enabled	When RUN key switch is at PAUSE position or pause contact has turned on and if SM4040 is an BAUSE mode	Qn(H) QnPH
M9041	SM1041	SM204	PAUSE status contact	OFF : PAUSE not in effect ON : PAUSE in effect	is set and SM1041 is turned on.	
M9042	SM1042	SM203	STOP status contact	OFF : STOP not in effect ON : STOP in effect	 Switched on when the RUN key switch or RUN/STOP switch is in STOP position. 	Qn(H) QnPH
M9043	SM1043	SM805	Sampling trace completed	OFF : Sampling trace in progress ON : Sampling trace completed	 Turned on upon completion of sampling trace performed the number of times preset by parameter after STRA instruction is executed. Reset when STRAR instruction is executed. 	QnU ^{*1}
M9044	SM1044	SM803	Sampling trace	OFF → ON Same as STRA instruction execution ON → OFF Same as STRAR instruction execution	 Turning on/off SM1044 can execute STRA/STRAR instruction. (SM1044 is forcibly turned on/off by a peripheral device.) When switched from OFF to ON: STRA instruction When switched from ON to OFF: STRAR instruction The value stored in SD1044 is used as the condition for the sampling trace. At scanning, at time → Time (10 ms unit) 	Qn(H) QnPH
M9045	SM1045	×	Watchdog timer (WDT) reset	OFF : Does not reset WDT ON : Resets WDT	 The SM1045 relay is turned on to reset the WDT when the ZCOM instruction and data communication request batch processing are executed (used when the scan time exceeds 200 ms). 	
M9046	SM1046	SM802	Sampling trace	OFF : Trace not in progress ON : Trace in progress	Switched on during sampling trace.	Qn(H) QnPH QnU ^{*1}
M9047	SM1047	SM801	Sampling trace preparations	OFF : Sampling trace suspended ON : Sampling trace started	 Sampling trace is not executed unless SM1047 is turned ON. Sampling trace is suspended when SM1047 goes OFF. 	
M9049	SM1049	SM701	Switching the number of output characters	OFF : Output until NULL code encountered ON : 16 characters output	 When SM1049 is OFF, characters up to NULL (00H) code are output. When SM1049 is ON, ASCII codes of 16 characters are output. 	Qn(H)
M9051	SM1051	×	CHG instruction execution disable	OFF : Enabled ON : Disable	Switched ON to disable the CHG instruction. Switched ON when program transfer is requested. Automatically switched OFF when transfer is complete.	QnPH
M9052	SM1052	×	SEG instruction switch	OFF : 7SEG segment display ON : I/O partial refresh	 When SM1052 is ON, the SEG instruction is executed as an I/O partial refresh instruction. When SM1052 is OFF, the SEG instruction is executed as a 7-SEG display instruction. 	

*1: The relevant modules are as follows:
The Universal model QCPU whose serial number (first five digits) is "10102" or later.
Q00UJCPU, Q00UCPU, Q01UCPU

*2: minute clock indicates the name of the special relay (M9034) of the ACPU.

ACPU Special Relay	Special Relay after Conversion	Special Relay for Modification	Name	Meaning	Details	Corresponding CPU
M9056	SM1056	×	Main side P, I set request	OFF : Other than when P, I set being requested ON : P, I set being requested	 Provides P, I set request after transfer of the other program (for example subprogram when main program is 	
M9057	SM1057	×	Sub side P, I set request	OFF : Other than when P, I set being requested ON : P, I set being requested	being run) is complete during run. Automatically switched off when P, I setting is complete.	
M9058	SM1058	×	Main side P, I set completion	Momentarily ON at P, I set completion	completion • Turned ON once when the P, I set has been completed,	
M9059	SM1059	×	Sub program P, I set completion	Momentarily ON at P, I set completion	and then turned OFF again.	
M9060	SM1060	×	Sub program 2 P, I set request	OFF : Other than when P, I set being requested ON : P, I set being requested	 Provides P, I set request after transfer of the other program (for example subprogram when main program is 	
M9061	SM1061	×	Sub program 3 P, I set request	OFF : Other than when P, I set being requested ON : P, I set being requested	being run) is complete during run. Automatically switched off when P, I setting is complete.	
M9070	SM1070	×	A8UPU/ A8PUJrequired search time ^{*3}	OFF : Read time not shortened ON : Read time shortened	Turned ON to shorten the search time in the A8UPU/ A8PUJ. (In this case, the scan time is extended by 10 %.)	Qn(H)
M9084	SM1084	×	Error check	OFF : Error check executed ON : No error check	It is set whether the error checks below are performed or not when the END instruction is processed (to set the END instruction processing time). • Check for fuse blown. • Check of battery • Collation check of I/O module	QnPH
M9091	SM1091	×	Operation error details flag	OFF : No error ON : Error	 Turns ON when the detail factor of the operation error is stored into SD1091. Remains ON if the condition is restored to normal thereafter. 	
M9100	SM1100	SM320	Presence/absence of SFC program	OFF : SFC programs not used ON : SFC programs used	 Turned on if the SFC program is registered. Turned off if the SFC program is not registered. 	
M9101	SM1101	SM321	Start/stop SFC program	OFF : SFC programs stop ON : SFC programs start	 The value in SM1100 is set as the initial value. (The relay automatically turns ON when the SFC program is present.) When this relay turns from ON to OFF, execution of the SFC program stops. When this relay turns from OFF to ON, execution of the SFC program resumes. 	
M9102	SM1102	SM322	SFC program start status	OFF : Initial start ON : Resume start	The SFC program start mode in the SFC setting of the PLC parameter dialog box is set as the initial value. At initial start: OFF At continue start: ON	

*3: The A8UPU/A8PUJ is not available for the QCPU/QnACPU.

А

ACPU Special Relay	Special Relay after Conversion	Special Relay for Modification	Name	Meaning		Meaning Details		Corresponding CPU		
M9103	SM1103	SM323	Presence/absence of continuous transition	OFF : 0 r ON : 0	Continuo not effect Continuo effective	us transition live us transition	 Set whether continuous transition will be performed for the block where the "continuous transition bit" of the SFC information device is not set. 			
M9104	SM1104	SM324	Continuous transition suspension flag	OFF : When transition is completed ON : When no transition		OFF : When transition is completed ON : When no transition		nsition is d transition	OFF during operation in the continuous transition mode or during continuous transition, and ON when continuous transition is not executed. Always ON during operation in the no continuous transition mode.	
M9108	SM1108	SM90	Step transition monitoring timer start (equivalent of SD90)							
M9109	SM1109	SM91	Step transition monitoring timer start (equivalent of SD91)							
M9110	SM1110	SM92	Step transition monitoring timer start (equivalent of SD92)							
M9111	SM1111	SM93	Step transition monitoring timer start (equivalent of SD93)	OFF : Monitoring timer reset ON : Monitoring timer reset start			Turns ON when the measurement of the step transition monitoring timer is started. Turning this relay OFF resets the step transition monitoring timer.	Qn(H) QnPH		
M9112	SM1112	SM94	Step transition monitoring timer start (equivalent of SD94)							
M9113	SM1113	SM95	Step transition monitoring timer start (equivalent of SD95)							
M9114	SM1114	SM96	Step transition monitoring timer start (equivalent of SD96)							
M9196	SM1196	SM325	Operation output at block stop	OFF : (ON : (Coil outp Coil outp	ut OFF ut ON	Selects the operation output when block stop is executed. ON : Retains the ON/OFF status of the coil being used by using operation output of the step being executed at block stop. OFF : All coil outputs are turned off. (Operation output by the SET instruction is retained regardless of the ON/OFF status of SM1196.)			
				SM 1197	SM 1198	I/O numbers to be				
M9197	SM1197	×		OFF	OFF	X/Y0 to 7F0	Switches I/O numbers in the fuse blow module storage			
			Switch between blown fuse and I/O verify error display	ON	OFF	X/Y800 to FF0	registers (SD1100 to SD1107) and I/O module verify error storage registers (SD1116 to SD1123) according to the			
M9198	SM1198	, ,	,	OFF	ON	X/Y1000 to 17F0	combination of ON/OFF of the SM1197 and SM1198.			
W0100		×		ON	ON	X/Y1800 to 1FF0				
M9199	SM1199	×	Data recovery of online sampling trace/status latch	OFF : Data recovery disabled ON : Data recovery enabled		OFF : Data recovery disabled ON : Data recovery enabled		overy disabled	 Recovers the setting data stored in the CPU module at restart when sampling trace/status latch is executed. SM1199 should be ON to execute again. (Unnecessary when writing the data again from peripheral devices.) 	

(10) QCPU with built-in Ethernet port

TableApp.3.12 Special relay

Number	Name	Meaning	Explanation	Set by (When Set)	Corres- ponding ACPU M9 🗆 🗖	Corresponding CPU
SM1270	Time setting function (SNTP client) execution	OFF : No time setting function (SNTP client) execution ON : Time setting function (SNTP client) execution	Set this to ON when executing the time setting function (SNTP client). (Only when the time setting function is in "Use" with the time setting parameter.)	U	New	QnU*1
SM1273	Remote password mismatch count clear	OFF : Normal ON : Clear	To clear the acumulated numeber (SD979 to 999) of mismatched remote passwords, the setting SM1273 is executed.	U	New	

 * 1: This applies to the Built-in Ethernet port QCPU.

(11) Process control instructions

TableApp.3.13 Special relay

Number	Name	Meaning	Explanation	Set by (When Set)	Corres- ponding ACPU M9□□□	Corresponding CPU
SM1500	Hold mode	OFF : No-hold ON : Hold	 Specifies whether or not to hold the output value when a range over occurs for the S.IN instruction range check. 	U	New	QnPH
SM1501	Hold mode	OFF : No-hold ON : Hold	 Specifies whether or not the output value is held when a range over occurs for the S.OUT instruction range check. 	U	New	QnPRH

(12) For redundant systems (Host system CPU information *1)

SM1510 to SM1599 are only valid for redundant systems.

All off for standalone systems.

TableApp.3.14 Special relay

Number	Name	Mea	ning		Explanation	Set by (When Set)	Corres- ponding ACPU M9 🗆 🗆 🗖	Corresponding CPU
SM1510	Operation mode	OFF : Redund backup alone sy ON : Redund separate	ant system mode, stand- /stem ant system e mode	Turns o system	on when the operating mode is redundant separate.	S (Each END)	New	
SM1511	System A identification	DistinguisheThe flag state	es between sy tus does not c	stem A and sy hange even if	rstem B. the tracking cable is disconnected.			
			System A	System B	When TRK. CABLE ERR. (error code: 6210) occurs (Unknown)	S (Initial)	New	
SM1512	System B identification	SM1511	ON	OFF	OFF			
0	flag	SM1512 OFF		ON	OFF			QnPRH
SM1513	Debug mode status flag	OFF : Not in o ON : Debug	lebug mode mode	Turns o mode is	on when the redundant system operating s set to debug mode.	S (Initial)	New	
SM1515	Control system	 Indicates op The flag state 	eration syster tus does not c	n status. hange even if	the tracking cable is disconnected.			
			Control system	Standby system	Standby When TRK. CABLE ERR. system (error code: 6210) occurs (Unknown)		New	
SM1516	Standby system	SM1515	ON	OFF	OFF			
5101510	judgment flag	SM1516	OFF	ON	OFF			

*1: The information of the host CPU module is stored.

A

Number	Name	Meaning		Exp	lanation	Set by (When Set)	Corres- ponding ACPU M9□□□	Corresponding CPU
SM1517	CPU module startup status	OFF : Power supply on startup ON : Operation system switch start up	Turns or system s to the co standby a power	n when the CP switching (swite ontrol system). system is swit -ON startup.	S (Status change)	New		
SM1518	Standby system to control system switching status flag	ON1 scan OFF ◀ → ↓	 Turns O control s This stat type pro 	 Turns ON once switch between standby system to control system, (ON for 1 scan only) occurs. This status flag can only be used for scan execution type programs. 			New	
SM1519	Previous Control System Identification Flag	ON1 scan	On the language of the second se	ast operation C er supply is su STEM togethe System A side.	Control System was System pplied, or reset is released on r,After RUN, ON for 1 scan	S (Each END)	New	
SM1520			SM1520	Block 1				
SM1521			SM1521	Block 2				
SM1522			SM1522	Block 3				QnPRH
SM1523			SM1523	Block 4				
SM1524			SM1524	Block 5	When data is transferred based on the tracking setting of the redundant			
SM1525			SM1525	Block 6				
SM1526			SM1526	Block /				
SM1527			SM1527	BIOCK 8				
SM1520			SM1520	Block 10				
SM1530			SM1530	Block 11				
SM1531			SM1531	Block 12	parameter dialog box, the			
SM1532			SM1532	Block 13	as trigger			
SM1533			SM1533	Block 14	do linggon.			
SM1534	Data tracking transfer	OFF : No trigger	SM1534	Block 15	When "Auto Tracking	S (initial)/U	New	
SM1535	trigger specification	ON : Trigger	SM1535	Block 16	the tracking setting.	. ,		
SM1536			SM1536	Block 17	SM1520 is turned ON by			
SM1537			SM1537	Block 18	the system at power ON/			
SM1538			SM1538	Block 19	cases, SM1520 to			
SM1539			SM1539	Block 20	SM1583 are turned ON			
SM1540			SM1540	Block 21	by the user.			
SM1541			SM1541	Block 22				
SM1542			SM1542	Block 23				
SM1543			SM1543	Block 24				
SM1544			SM1544	Block 25				
SM1545			SM1545	Block 26				
SM1546			SM1546	Block 27				
SM1547			SM1547	Block 28				
SM1548			SM1548	Block 29				

Number	Name	Meaning		Expl	anation	Set by (When Set)	Corres- ponding ACPU M9 🗆 🗆	Corresponding CPU
SM1549			SM1549	Block 30				
SM1550			SM1550	Block 31				
SM1551			SM1551	Block 32				
SM1552			SM1552	Block 33				
SM1553			SM1553	Block 34				
SM1554			SM1554	Block 35				
SM1555			SM1555	Block 36				
SM1556			SM1556	Block 37				
SM1557			SM1557	Block 38				
SM1558			SM1558	Block 39				
SM1559			SM1559	Block 40				
SM1560			SM1560	Block 41	When data is transferred			
SM1561			SM1561	Block 42	based on the tracking set-			
SM1562			SM1562	Block 43	parameter dialog box, the			
SM1563			SM1563	Block 44	target block is specified			
SM1564			SM1564	Block 45	as trigger.			
SM1565	Data tracking transfer	OFF . No trigger	SM1565	Block 46	• When "Auto tracking			
SM1566	trigger specification	ON : Trigger	SM1566	Block 47	 When Auto tracking block No. 1" is enabled in 	S (initial)/U	New	
SM1567			SM1567	Block 48	the tracking setting,			
SM1568			SM1568	Block 49	SM1520 is turned ON by the system at power ON/ STOP to RUN. In other			l l
SM1569			SM1569	Block 50				
SM1570			SM1570	Block 51	cases, SM1520 to			
SM1571			SM1571	Block 52	SM1583 are turned ON			
SM1572			SM1572	Block 53	by the user.			QnPRH
SM1573			SM1573	Block 54				
SM1574			SM1574	Block 55				
SM1575			SM1575	Block 56				
SM1576			SM1576	Block 57				
SM1577			SM1577	Block 58				
SM1578			SM1578	Block 59				
SM1579			SM1579	BIOCK 60				
SIVI1580			SM1580	BIOCK 61				
SIVI 130 1			SIVI 150 1	BIOCK 02				
SIVI 1302			SIVI 1502	Block 64				
3111303		OFE : System switching	31011363	DIUCK 04				
SM1590	System switching enable/disable flag from network module	request issuing module absent ON : System switching	Turns O from the issued s	N when a syste e network modu system switchin	em switching request is issued ile. The module No. that g can be checked by SD1590.	S (Each END)	New	
		request issuing module present	• Turns O	FF when all bit	s of SD1590 are OFF.			
SM1591	Standby system error detection disable flag at system switching	ON : Error is not detected by new standby system at system switching OFF : Error is detected by new standby system at system switching	This flag is detects 62 This applie • System • System • System	used to detern 10:STANDBY c so to the following switching from switching using switching by the	nine if the new standby station luring system switching. ng switching methods: GX Developer dedicated instruction intelligent function module	U	New	
SM1592	Enable/disable user system switching	OFF : Disable user system switching ON : Enable user system switching	This flag GX Dev (SP.CO	g enables syste eloper or by de NTSW).	m switching by the user from dicated instruction.	U	New	

Number	Name	Meaning	Explanation	Set by (When Set)	Corres- ponding ACPU M9 🗆 🗆	Corresponding CPU
SM1593	Setting to access extension base unit of standby system CPU	OFF : Error ON : Ignored	Sets the operation for the case accessing buffer memory of the intelligent function module mounted on the extension base unit from the standby system CPU in separate mode. OFF : "OPERATION ERROR" (error code: 4112) will be returned when accessing buffer memory of the intelligent function module on the extension base unit from the standby system CPU. ON : No processing is performed when accessing buffer memory of intelligent function module on the extension base unit from the standby system CPU.	U	New	QnPRH*2
SM1595	Memory copy to other system start flag	OFF : Start memory copy ON : No memory copy initiated	 When SM1595 is turned from OFF to ON, memory copy from control system to standby system starts. Note that when SM1595 is turned from OFF to ON, memory copy does not start if the I/O No. of the copy destination (standby system CPU module: 3D1H) is not stored in SD1595. 			
SM1596	Memory copy to other system status flag	OFF : Memory copy not executed ON : Memory copy executed	Turns on while memory is copied to other system. Turns off when memory copy execution has completed.	S (Starting to copy/finish)		QnPRH
SM1597	Memory copy to other system completion flag	OFF : Memory copy not completed ON : Memory copy completed	Turns on once the memory copying to the other system has completed.	S (finish)/U	Now	
SM1598	Copy contents of standard ROM during memory copy	OFF : Copy standard ROM data ON : Standard ROM data is not copied	 If set to on by user, the standard ROM data is not copied to the other system while memory copy is executing. 	U	New	

*2: The module whose first 5 digits of serial No. is "09012" or later.

(13) For redundant system (Other system CPU information *1)

SM1600 to SM1650 only valid for the CPU redundant system backup mode, so they cannot be refreshed during the separate mode.

Either the backup mode or the separate mode is valid for the SM4651 to SM1699.

SM1600 to SM1699 are all turned off for stand-alone system.

TableApp.3.14 Special relay

Number	Name	Meaning	Explanation	Set by (When Set)	Corresp onding Host SM 🗆 🗖 *2	Corresponding CPU
SM1600	Other system error flag	OFF : No error ON : Error	Turns on when an error occurs during redundant system. Error check (Turns on single bit of SD1600.) Is off when no errors are present	S (Each END)	-	QnPRH
SM1610	Other system diagnostics error	OFF : No error ON : Error	 Turns on when a diagnostics error occurs. (Includes error detection when annunciator is ON, and by CHK instruction) Corresponds to status of SM0 at other system 	S (Each END)	SM0	
SM1611	Other systems self diagnostics error.	OFF : No self diagnostics error occurred ON : Self diagnostics error occurred	 Turns on when a self diagnostics error occurs. (Does not include error detection when annunciator is ON, and by CHK instruction) Corresponds to status of SM1 at other system 	S (Each END)	SM1	
SM1615	Other system common error information	OFF : No common error information present ON : Common error information present	 Turns on when there is common error information at other system Corresponds to status of SM5 at other system 	S (Each END)	SM5	QnPRH
SM1626	Error individual information for other systems	OFF : No individual error information present ON : Individual error information present	 Turns on when there is individual error information at other system Corresponds to status of SM16 at other system 	S (Each END)	SM16	
SM1649	Standby system cancel error flag	OFF to ON: Cancels error of standby system	By turning this relay from OFF to ON, the continue error that occurred in the standby system CPU module can be canceled. Use SD1649 to specify the error code of the error to be canceled.	U	_	

*1 Stores other system CPU diagnostic information and system information.

*2 This shows the special relay(SM \Box \Box) for the host system CPU.

(14) For redundant system (tracking)

Either the backup mode or the second mode is valid for SM1700 to SM1799. All is turned off for stand-alone system.

Number	Name	Meaning	Explanation	Set by (When Set)	Corres- ponding ACPU M9□□□	Corresponding CPU
SM1700	Transfer trigger completion flag	OFF : Transfer not completed ON : Transfer completed	 Turns on for one scan, once transfer of block 1 to block 64 is completed. 	S (status change)		
SM1709	Manual system switching disable/ enable setting during online program change redundant tracking	ON : Manual system switching enabled (Disable canceled) OFF : Manual system switching disabled	 Turning this relay from OFF to ON enables manual system switching during online program change redundant tracking. After the manual system switching disable status is canceled, the system automatically turns off SM1709. System switching due to any of the following conditions is executed even during online program change redundant tracking, regardless of the status of this relay. Power off, reset, hardware failure, CPU stop error In either of the following statuses, the system switching disable status can also be canceled by this relay. Multiple-block online program change redundant tracking execution status File batch online program change redundant tracking execution status 	S (When executed)/U	New	QnPRH
SM1710	Transfer tracking data during online program change enable flag	OFF : No device tracking ON : Transfer device memory	 Set whether the tracking of the following data will be executed or not during online program change redundant tracking. Device memory (Including SM/SD that will automatically execute tracking) PIDINIT information, S.PIDINIT information, SFC information SM1710 can be also used to set whether tracking will be executed or not while online change of multiple program blocks or batch of files is being performed to ensure consistency of both systems. This SM is also transferred form control system CPU module to standby system CPU module by tracking data. 	U		

TableApp.3.15 Special relay

Number	News	Manatian		F				Corresponding
Number	Name	Meaning	Explanation			(When Set)	ACPU	CPU
	i i i i i i i i i i i i i i i i i i i			1			M9 🗆 🗆 🗆	
SM1712			SM1712	Block 1				
SM1713			SM1713	Block 2				
SM1714			SM1714	Block 3				
SIV11715			SM1715	BIOCK 4				
SIVI 17 10			SM1717	Block 6				
SM1718			SM1718	Block 7				
SM1719			SM1719	Block 8				
SM1720			SM1720	Block 9				
SM1721			SM1721	Block 10				
SM1722			SM1722	Block 11				
SM1723			SM1723	Block 12				
SM1724			SM1724	Block 13				
SM1725			SM1725	Block 14				
SM1726			SM1726	Block 15				
SM1727			SM1727	Block 16				
SM1728			SM1728	Block 17				
SM1729			SM1729	Block 18				
SM1730			SM1730	Block 19				
SM1731			SM1731	Block 20				
SM1732			SM1732	Block 21				
SM1733			SM1733	Block 22				
SM1734			SM1734	Block 23	Turns ON only during one			
SIVI 17 33	I ransfer trigger	OFF : Transfer uncompleted	SIVI 1735	Block 24	scan when the transmission of the corresponding block is	S (status change)	New	QnPRH
SM1737	·		SM1730	Block 26	completed.			
SM1738			SM1738	Block 27				
SM1739			SM1739	Block 28				
SM1740			SM1740	Block 29				
SM1741			SM1741	Block 30				
SM1742			SM1742	Block 31				
SM1743			SM1743	Block 32				
SM1744			SM1744	Block 33				
SM1745			SM1745	Block 34				
SM1746			SM1746	Block 35				
SM1747			SM1747	Block 36				
SM1748			SM1748	Block 37				
SM1749			SM1749	Block 38				
SM1750			SM1750	Block 39				
SM1751			SM1751	Block 40				
SM1752	-		SM1752	Block 41				
SM1753			SM1753	Block 42				
SIV11754	4		SM1754	BIOCK 43				
SM1755	1		SM1756	Block 44				
SM1757			SM1757	Block 46				
SM1758	1		SM1758	Block 47				
SM1759	1		SM1759	Block 48				

Number	Name	Meaning	Explanation			Set by (When Set)	Corres- ponding ACPU M9 🗆 🗖	Corresponding CPU
SM1760			SM1760	Block 49				
SM1761			SM1761	Block 50				
SM1762			SM1762	Block 51				
SM1763			SM1763	Block 52	Turns ON only during one scan when the transmission			
SM1764			SM1764	Block 53				
SM1765			SM1765	Block 54				
SM1766			SM1766	Block 55		S (status change)		
SM1767	Transfer trigger	OFF : Transmission	SM1767	Block 56			Now	
SM1768	completion flag	ON Transmission end	SM1768	Block 57	of the corresponding block is		New	QIPKH
SM1769			SM1769	Block 58	completed.			
SM1770			SM1770	Block 59				
SM1771			SM1771	Block 60				
SM1772			SM1772	Block 61				
SM1773	1		SM1773	Block 62	1			
SM1774	1		SM1774	Block 63	1			
SM1775	1		SM1775	Block 64	1			

(15) Redundant power supply module information

TableApp.3.16 Special relay

Number	Name	Meaning	Explanation	Set by (When Set)	Corres- ponding ACPU M9□□□	Corresponding CPU
SM1780	Power supply off detection flag	OFF : No redundant power supply module with input power OFF detected ON : Redundant power supply module with input power OFF detected	 Turns ON when one or more redundant power supply modules with input power OFF are detected. Turns on if any of SD1780 bits is on. Turns off if all bits of SD1780 are off. Turns OFF when the main base unit is not the redundant main base unit (Q38RB). When the multiple CPU system is configured, the flags are stored only to the CPU No.1. 	S (Each END)		
SM1781	Power supply failure detection flag	OFF : No faulty redundant power supply module detected ON : Faulty redundant power supply module detected	Turns ON when one or more faulty redundant power supply modules are detected. Turns on if any of SD1781 bits is on. Turns off if all bits of SD1781 are off. Turns OFF when the main base unit is not the redundant main base unit (Q38RB). When the multiple CPU system is configured, the flags are stored only to the CPU No.1.	S (Each END)	New	Qn(H)*2 QnPH*2 QnPRH
SM1782	Momentary power failure detection flag for power supply 1 *1		 Turns ON when a momentary power failure of the input power supply to the power supply 1 or 2 is detected one or more times. After turning ON, remains ON even if the power supply recovers from 			QnU ^{*3}
SM1783	Momentary power failure detection flag for power supply 2 *1	OFF : No momentary power failure detected ON : Momentary power failure detected	 Turns OFF the flag (SM1782, SM1783) of the power supply 1/2 when the CPU module starts. When the input power to one of the redundant power supply modules turns OFF the corresponding flag turns OFF. Turns OFF when the main base unit is not the redundant main base unit (Q38RB). When the multiple CPU system is configured, the flags are stored only to the CPU No.1. 	S (Each END)		

 *1: The "power supply 1" indicates the redundant power supply module mounted on the POWER 1 slot of the redundant base unit (Q38RB/Q68RB/Q65WRB). The "power supply 2" indicates the redundant power supply module mounted on the POWER 2 slot of the redundant base unit (Q38RB/Q68RB/Q65WRB).
 *2: The module whose first 5 digits of serial No. is "04012" or later.

However, for the multiple CPU system configuration, this applies to all CPU modules whose first 5 digits of serial No. are "07032" or later.

*3: The module whose first 5 digits of serial No. is "10042" or later.

A

The special registers, SD, are internal registers with fixed applications in the Programmable Controller.

For this reason, it is not possible to use these registers in sequence programs in the same way that normal registers are used.

However, data can be written as needed in order to control the CPU modules.

Data stored in the special registers are stored as BIN values if no special designation has been made to the contrary.

The heading descriptions in the following special register lists are shown in 4.1.

Item		Function of Item
mber	 Indicates special regis 	ster number
me	 Indicates name of specified 	icial register
aning	 Indicates contents of 	special register
planation	Discusses contents of	special register in more detail
t by hen set)	Indicates whether the <set by=""> S : Set by system U : Set by user (S/U : Set by both so <when set=""> Indicated only for regiss Each END Initial Status change Error Instruction execution Request System switching</when></set>	relay is set by the system or user, and, if it is set by the system, when setting is performed. n sequence programs or test operations from GX Developer) system and user ters set by system : Set during each END processing : Set only during initial processing (when power supply is turned ON, or when going from STOP to RUN) : Set only when there is a change in status : Set when error occurs : Set when instruction is executed : Set only when there is a user request (through SM, etc.) : Set when system switching is executed.
rresponding ACPU	 Indicates correspondi (When the contents an and QnPRH.) New indicates the specific terms of te	ng special register in ACPU re changed, the special register is represented D9 □ □ □ format change. Incompatible with the Q00J/Q00/Q01
rresponding CPU	Indicates the relevant C QCPU Q00J/Q00/Q01 Qn(H) QnPH QnPH QnU Each CPU type name	PU module. : Indicates all the Q series CPU modules. : Indicates the Basic model QCPU. : Indicates the High Performance model QCPU. : Indicates the Process CPU. : Indicates the Redundant CPU. : Indicates the Universal model QCPU : Can be applied only to the specific CPU. (e.g. Q021))

TableApp.4.1 Descriptions of the special register lists headings

For details on the following items, refer to the following manuals:

- SFC → QCPU(Q mode)/QnACPU Programming Manual (SFC)

Do not change the values of special relays set by the system with user program or device test operations.

Doing so may result in system downtime or communication fault.

Nu Na Me

Ex

Se (W

Cc MS

Со

(1) Diagnostic Information

Number	Name	Meaning	Explanation	Set by (When Set)	Corres- ponding ACPU D9 🗆 🗆	Corresponding CPU
SD0	Diagnostic errors	Diagnosis error code	 Error codes for errors found by diagnosis are stored as BIN data. Contents identical to latest fault history information. 	S (Error)	D9008 format change	
SD1			Year (last two digits) and month that SD0 data was updated is stored as BCD 2-digit code. <u>b15 to b8 b7 to b0</u> (Example) October, 1995 Year (0 to 99) Month (1 to 12) 9510 _H			
SD2	Clock time for diagnosis error occurrence	Clock time for diagnosis error occurrence	 The day and hour that SD0 was updated is stored as BCD 2-digit code. b15 to b8 b7 to b0 (Example) 10 a.m. on 25th Day (1 to 31) Hour (0 to 23) 2510н 	S (Error)	New	
SD3			 The minute and second that SD0 data was updated is stored as BCD 2-digit code. b15 to b8 b7 to b0 (Example) 35 min. 48 sec. Minutes (0 to 59) Seconds (0 to 59) 3548н 			
SD4	Error information categories	Error information category code	Category codes which help indicate what type of information is being stored in the common information areas (SD5 through SD15) and the individual information areas (SD16 through SD26) are stored here. The category code for judging the error information type is stored. b15 to b8 b7 to b0 Individual information category codes • The common information category codes store the following codes: 0 : No error 1: Unit/module No./ CPU No./Base No.* 2: File name/Drive name 3: Time (value set) 4: Program error location 5: System switching cause (for Redundant CPU only) 6: Reason(s) for tracking capacity excess error (specific to Redundant CPU) 7: Base No./Power supply No. (The first 5 digits of serial number 10072 or higer are chosen for Universal model QCPU.) 8: Tracking transmission data classification (specific to Redundant CPU) 7: For a multiple CPU system that consists of the Basic model QCPU, High Performance model QCPU, Process CPU, Universal model QCPU the module number or CPU number is stored depending on the error that occurred. (Refer to the corresponding error code for which number has been stored.) CPU No. 1: 1, CPU No. 2: 2, CPU No. 3: 3, CPU No. 4: 4 • The individual information category codes store the following codes: 0: No error 1: (Empty) 2: File name/Drive name 3: Time (value actually measured) 4: Program error location 5: Parameter number 7: CHK instruction failure No. (except for the Basic model QCPU and the Universal model QCPU) 8: Reason(s) for system switching failure (specific to Redundant CPU) 12: File diagnostic information (specific to the Universal model QCPU) 13: Parameter No./CPU No. (specific to the Universal model QCPU)	S (Error)	New	QCPU

Number	Name	Meaning	Explanation	Set by (When Set)	Corres- ponding ACPU D9 🗆 🗆	Corresponding CPU													
SD5			 Common information corresponding to the error codes (SD0) is stored here. The following ten types of information are stored here: The error common information type can be judged by the "common infor- mation category code" in SD4. (The values of the "common information 																
SD6			Number Meaning SD5 Slot No./CPU No./Base No.*1, *2, *3, *4																
SD7			SD6 I/O No. * 5 SD7 SD8 SD9 SD10																
SD8			SD11 (Empty) SD12 SD13 SD14 SD14																
SD9			*1: For a multiple CPU system that consists of the Basic model QCPU, High Performance model QCPU, Process CPU, Universal model QCPU, the slot number or CPU number is stored depending on the error that occurred																
SD10			Slot 0 in the multiple CPU system is the one on the slot on the right of the rightmost CPU module. (Refer to the corresponding error code for which number has been stored.)																
SD11		*2	**													 No. 1 CPU: 1, No. 2 CPU: 2, No. 3 CPU: 3, No. 4 CPU: 4 *2: If a fuse blown or I/O verify error occurred in the module loaded in the MELSECNET/H remote I/O station, the network number is stored into the upper 8 bits and the station number into the lower 8 bits. Use the I/O No. to check the module where the fuse blown or I/O verify 	ne io the rify		
SD12				 error occurred. *3: 255 is stored into SD5 of the Basic model QCPU when an instruction, etc. has been executed for the module later than the one on the last slot where a module can be mounted. *4: Definitions of base No. and slot No. 															
SD13	Error common information	Error common information	<base no.=""/> Value used to identify the base unit on which the CPU module has been mounted. The following shows the definition of the base No. Base No. Definition	S (Error)	New	QCPU													
SD14			Indicates the main base unit mounted with the CPU module. Indicates the extension base unit. The stage number setting made by the stage number setting compared on the outparies the base.																
			No. When stage number setting is extension 1: Base No. = 1 when stage number setting is extension 7:																
SD15			Slot No.> Value used to identify the slot of each base unit and the module mounted on that slot. •The I/O slot 0 (slot on the right side of the CPU slot) of the main base unit is defined as the slot of "Slot No. = 0". •The slot Nos. are consecutively assigned to the slots of the base units in order of the main base unit and extension base units 1 to 7. •When the number of base unit slots has been set in the I/O assignment setting of the PLC parameter dialog box, the slot Nos. are assigned for only the number of set slots. *5: When OFFFFH is stored into SD6 (I/O No., the I/O No. cannot be identified due to overlapping I/O No., etc. in the I/O assignment setting of the PLC parameter dialog box. Therefore, identify the error location using SD5. 2) File name/Drive name (Example) File name = ABCDEFGH. IJK b15 to b8 b7 to b0 <u>SD10 Extension *6 2EH(.)</u> <u>SD11 (ASCII code: 8 characters)</u> <u>SD11 (ASCII code: 3 characters)</u> <u>SD12 SD13 (Empty)</u>																

Number	Name	Meaning	Explanation	Set by (When Set)	Corres- ponding ACPU D9	Corresponding CPU
SD5						
SD6						
SD7			Number Meaning SD5 Time : 1µs units (0 to 999µs) SD6 Time : 1ms units (0 to 65535ms) SD7 SD8			
SD8			SD9 SD10 SD11 SD12 SD13 SD14			
SD9			4) Program error location Number Meaning SD5 SD6 SD6 File name			
SD10	Error common information	Error common information	SD7 (ASCII code: 8 characters) SD8 SD9 SD10 (ASCII code: 3 characters) SD11 Pattern *7 SD12 Block No.	S (Error)	New	QCPU
SD11			SD13 Step No./transition condition SD14 Sequence step No. (L) SD15 Sequence step No. (H) *7 : Contents of pattern data 15 14 14 15 14 14 15 14 14 15 14 16 15 14 16 15 14 16 14 14 16 15 14 16 15 14 16 15 14 16 15 14 16 14 14 16 15 14 16 15 14 16 15 14 16 14 14 14 15 14 14 14 15 14 15 14 16 15 14 16 15 14 16 15 14 16 14 14 16 14 16 <td< td=""><td></td><td></td><td></td></td<>			
SD12			(Not used)			
SD13			(1)/absent (0) SFC transition designation present (1)/absent (0)			
SD14						
SD15						

Number	Name	Meaning	Explanation	Set by (When Set)	Corres- ponding ACPU D9 🗆 🗆	Corresponding CPU
SD5			5) Reason(s) for system switching Number Meaning SD5 System switching condition *13 SD6 Control system switching instruction argument			
SD6			SD7 SD8 SD9 SD10 SD11 SD12 SD13			
SD7			*13: Details of reason(s) for system switching			
SD8			0 : No system switching condition (default) 1 : Power-OFF, reset, hardware failure, watchdog timer error 2 : Stop error (except watchdog timer error)	S (Error)	New	QnPRH
SD9			 3 : System switching request by network module 16 : Control system switching instruction 17 : Control system switching request from GX Developer 			
SD10	Error common information	Error common information	b) Reason(s) for tracking capacity excess error The block No. when the data amount that can be tracked (100k) is exceeded is indicated by the bit pattern of the corresponding special relay. b15 b14b13b12b11b10 b9 b8 b7 b6 b4 b3 b2 b1 b0 sp5 (SM1525) 0 0 0 0 0 1 <t< td=""><td></td><td></td><td></td></t<>			
SD11			(Block16) (Block36) (Block36) (Block17) (Block17) SD6 0 <td></td> <td></td> <td></td>			
SD12			SD9 0			
SD13			Number Meaning SD5 Base No. SD6 Power supply No. SD7 SD8			
SD14			SD9 SD10 SD11 SD12 SD13 SD14 SD15	S (Error)	New	Qn(H) ^{*1} QnPH ^{*1} QnPRH
SD15			1: Power supply 1 fault 2: Power supply 2 fault "Power Redundant power supply module supply mounted on POWER 1 slot of redundant module 1": base unit (Q38RB, Q68RB, Q65WRB) "Power Redundant power supply module supply mounted on POWER 2 slot of redundant module 2": base unit (Q38RB, Q68RB, Q65WRB)			QnU ^{*2}

*1: The module whose first 5 digits of serial No. is "07032" or later. *2: The module whose first 5 digits of serial No. is "10042" or later.

Number	Name	Meaning	Explanation	Set by (When Set)	Corres- ponding ACPU D9	Corresponding CPU
SD5						
SD6						
SD7			8) Tracking transmission data classification			
SD8			Number Meaning SD5 Data type *15 SD6 SD7 SD8 SD8			
SD9			SD9 (Empty) SD11 SD12 SD13 SD14 SD15 SD15			
SD10	Error common information	Error common information	*15: Details of data classification b15 b14 to b6 b5 b4 b3 b2 b1 b0 Each bit 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	S (Error)	New	QnPRH
SD11						
SD12			System switching request Operation mode change request System data			
SD13						
SD14						
SD15						

Number	Name	Meaning	Explanation	Set by (When Set)	Corres- ponding ACPU D9 🗆 🗆	Corresponding CPU
SD16			 Individual information corresponding to error codes (SD0) is stored here. There are the following eight different types of information are stored. The error individual information type can be judged by the "individual information category code" in SD4. (The values of the "individual information category code" stored in SD4 correspond to following 1) to 8), 12), and 13).) 			
SD17			1) (Empty) 2) File name/Drive name Number Meaning ABCDEFGH. JJK SD16 Drive ABCDEFGH. JJK			
SD18			SD17 File name 42+(B) 41+(A) SD18 File name 44+(D) 43+(C) SD19 (ASCII code: 8 characters) 48+(H) 47+(G) SD20 SD21 Extension *6 2E+(.) 49+(I) 2E+(.) SD22 (ASCII code: 3 characters) 4B+(K) 44+(J) 44+(J)			
			SD23 SD24 SD25 SD26 3) Time (value actually measured)			
SD19			Number Meaning SD16 Time : 1 µ s units (0 to 999 µ s) SD17 Time : 1ms units (0 to 65535ms) SD18			
SD20			SD19 SD20 SD21 SD22 SD23 SD24 SD25			
SD21			4) Program error location			
	Error individual information	Error individual information	Number Meaning SD16	S (Error)	New	QCPU
SD22			SD20 Extension *6 2EH(.) SD21 (ASCII code: 3 characters) SD22 Pattern *7 SD23 Block No.			
			SU24 Step No./transition No. SD25 Sequence step No. (L) SD26 Sequence step No. (H)			
SD23			15 14 to 4 3 2 1 0 0 0 to 0 1 * *			
SD24			(Not used) SFC block designation present (1)/absent (0) SFC step designation present (1)/absent (0) SFC transition designation present (1)/absent (0)			
SD25			5) Parameter No. 6) Annunciator number / 7) CHK instruction malfunction number			
SD26			Number Meaning SD16 Parameter No. *16 SD17 SD18 SD19 SD18 SD19 SD19 SD20 SD20 SD21 (Empty) SD23 SD24 SD26 SD24 SD26 SD26			
			*16: For details of the parameter No., refer to the User's Manual (Function Explanation, Program Fundamentals) of the CPU module used.			

*6 : Extensions are shown below.

SDn	SD	n+1	Extension	Eile Turne
Higher 8 bits	Lower 8 bits	Higher 8 bits	Name	File Type
51н	50н	41н	QPA	Parameters
51u	50u	47u	OPG	Sequence program
518	301	-7/11	QIU	SFC program
51н	43н	44н	QCD	Device comment
51н	44н	49н	QDI	Initial device value
51н	44н	52н	QDR	File register
514	444	44H 4CH		Local device
516	448	401	QDL	(Other than the Basic model QCPU)
51u	54	44 u	ΟΤΟ	Sampling trace data
5111	5411		di la constante di la constant	(Other than the Basic model QCPU)
				Breakdown history data
51н	4 6H	44н	QFD	(Other than the Basic model QCPU and
				the Universal model QCPU)
51 _H	53H	54H	OST	SP.DEVST/S.DEVLD instruction file
om	0011	0-111	301	(For Universal model QCPU only)

TableApp.4.3 Extension name

A

Number	Name	Meaning	Explanation	Set by (When Set)	Corres- ponding ACPU D9 🗆 🗆	Corresponding CPU
SD26	Error individual information	Error individual information 12 13	 8) Reason(s) for system switching failure Number Meaning SD16 System switching prohibition condition *14 SD17 SD18 SD20 SD21 (Empty) SD22 SD24 SD25 SD26 *14: Details of reason(s) for system switching failure *14: Details of reason(s) for system switching failure (default) 1 : Tracking cable fault (cable removal, cable fault, internal circuit fault, hardware fault) 2 : Hardware failure, power OFF, reset or watchdog timer error occurring in standby system 3 : Hardware failure, power OFF, reset or watchdog timer error 3 : Hardware failure, power OFF, reset or watchdog timer error) 7 : Operation differs between two systems (in backup mode only) 8 : During memory copy from control system 9 : Online program change 10 : Error detected by network module of standby system 11 : System switching being executed 12 : Online module change in progress 	S (Error)	New	QnPRH
			12) File diagnostic information SD16 Failuer information (H) drive No.(L) SD17 File name SD19 (ASCII: 8 characters) SD20 SD21 EXtension *6 2EH(.) SD22 (ASCII: 3 characters) SD22 (CRC value that is read) SD25 Failure information 2 SD24 (CRC value that is read) SD26 (CRC value that is calculated) SD26 (CRC value that is calculated) 13) Parameter No./CPU No. Meaning SD16 Parameter No.*16 SD17 CPU No. (1 to 4) SD18 SD19 SD20 SD20 SD21 (Empty) SD23 SD21 SD24 SD25 SD24			QnU

Number	Name	Meaning	Explanation	Set by (When Set)	Corres- ponding ACPU D9 🗆 🗖	Corresponding CPU
SD50	Error reset	Error number that performs error reset	Stores error number that performs error reset	U	New	
SD51	Battery low latch	Bit pattern indicating where battery voltage drop occurred	 All corresponding bits go 1(ON) when battery voltage drops. Subsequently, these remain 1(ON) even after battery voltage has been returned to normal. b15 to b3 b2 b1 b0 CPU error alarm + 1: This does not apply to Basic model QCPU. In the alarm, data can be held within the time specified for battery low. The error indicates the complete discharge of the battery. 	S (Error)	New	QCPU
SD52	Battery low	Bit pattern indicating where battery voltage drop occurred	 Same configuration as SD51 above After the alarm is detected (ON), the alarm turns OFF by error detection (ON). (For the Universal model QCPU only) Turns to 0 (OFF) when the battery voltage returns to normal thereafter. 	S (Error)	New	
SD53	AC/DC DOWN detection	Number of times for AC/DC DOWN detection	 Every time the input voltage falls to or below 85% (AC power)/65% (DC power) of the rating during operation of the CPU module, the value is incremented by 1 and stored in BIN code. The counter repeats increment and decrement of the value ; 0 → 32767 → -32768 → 0 	S (Error)	D9005	
SD60	Number of module with blown fuse	Number of module with blown fuse	Value stored here is the lowest station I/O number of the module with the blown fuse.	S (Error)	D9000	
SD61	I/O module verify error number	I/O module verify error module number	The lowest I/O number of the module where the I/O module verification number took place.	S (Error)	D9002	

Α

Number	Name	Meaning	Explanation	Set by (When Set)	Corres- ponding ACPU D9 🗆 🗆	Corresponding CPU
SD62	Annunciator number	Annunciator number	The first annunciator number (F number) to be detected is stored here.	S (Instruction execution)	D9009	
SD63	Number of annunciators	Number of annunciators	Stores the number of annunciators searched.	S (Instruction execution)	D9124	
SD64			When F goes ON due to OUT F or SET F instruction, the F numbers which go progressively ON from SD64 through SD79 are registered.		D9125	
SD65			The F numbers turned OFF by RST F instruction are deleted from SD64 - SD79, and the F numbers stored after the deleted F numbers are shifted to		D9126	
SD66			the preceding registers. Execution of the LEDR instruction shifts the contents of SD64 to SD79 up		D9127	
SD67			by one. After 16 annunciators have been detected, detection of the 17th will not be		D9128	
SD68			stored from SD64 through SD79. SET SET SET SET SET SET SET SET SET SET		D9129	
SD69			F50 F25 F99 F25 F15 F70 F65 F38F110F151F210 LEDR		D9130	QCPU
SD70			detected)		D9131	
SD71	Table of detected	Annunciator	SD63 0 1 2 3 2 3 4 5 6 7 8 9 8 (Number of annunciators detected)	S (Instruction execution)	D9132	
SD72	annunciator numbers	nunciator detection number imbers	SD64 0 50 50 50 50 50 50 50 50 50 99 SD65 0 0 25 25 99 99 99 99 99 99 99 99 15		New	
SD73			SD66 0 0 99 0 15 15 15 15 15 70 SD67 0 0 0 0 0 0 70 70 70 70 65		New	
SD74			SD68 0 0 0 0 0 0 65 65 65 65 85 SD69 0 0 0 0 0 0 0 38 38 38 110 SD73 0 0 0 0 0 0 38 38 38 110		New	
SD75			$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		New	
SD76			SD73 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		New	
SD77			SD75 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		New	
SD78			SD77 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		New	
SD79			SD79 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		New	
SD80	CHK number	CHK number	Error codes detected by the CHK instruction are stored as BCD code.	S (Instruction execution)	New	
SD90			Corresponds to SM90 • Set the annunciator number (F number) that will		D9108	
SD91			Corresponds to SM91 Decurs		D9109	
SD92			SM92 b15 to b8 b7 to b0		D9110	
SD93	Step transition		SM93		D9111	Qn(H)
SD94	setting value (Enabled only when SFC program exists)	F number for timer set value and time	Corresponds to (0.12.055) Timer time limit	U	D9112	QnPRH
SD95			SM95 (0 to 255) Setting Corresponds to (1 to 255s:		D9113	
SD97			Corresponds to • Turning ON any of SM90 to SM99 during an		New	
SD98			And the starts the timer, and if the transition corresponds to shade the timer time limit the set of the corresponding step is not met within the timer time limit the set of the corresponding step is not starts. The set of the correspondence of the set of the correspondence of the set of the		New	
SD99	1		Corresponds to SM99		New	

Number	Name	Meaning	Explanation	Set by (When Set)	Corres- ponding ACPU D9 🗆 🗖	Corresponding CPU
SD100	Transmission speed storage area	Stores the transmission speed specified in the serial communication setting.	96 : 9.6kbps, 192 : 19.2kbps, 384 : 38.4kbps, 576 : 57.6kbps, 1152 : 115.2kbps	S (Power-ON or reset)	New	
SD101	Communication setting storage area	Stores the communication setting specified in the serial communication setting.	b15 to b6 b5 b4 b3 to b0 * Sumcheck presence Write during RUN setting 0: Disabled 1: Present 1: Enabled * : Since the data is used by the system, it is undefined.	S (Power-ON or reset)	New	Q00/Q01 Q00U Q00U Q01U Q02U*4
SD102	Transmission wait time storage area	Stores the transmission wait time specifed in the serial communication setting.	0 : No waiting time 10 to 150: Waiting time (unit: ms) Defaults to 0.	S (Power-ON or reset)	New	
SD105	CH1 transmission speed setting (RS-232)	Stores the preset transmission speed when GX Developer is used.	96 : 9600bps, 192 : 19.2kbps, 384 : 38.4kbps, 576 : 57.6kbps, 1152 : 115.2kbps *: Other than RS-232 connection holds the data at RS-232 connection. (When disconnected, the default value is 1152.)	S	New	Qn(H) QnPH QnPRH QnU ^{*3}
SD110	Data sending result storage area	Stores the data sending result when the serial communication function is used.	Stores the error code at the timeout sending data.	S (Error)	Now	Q00/Q01 Q00UJ Q00UJ
SD111	Data receiving result storage area	Stores the data receiving result when the serial communication function is used.	Stores the error code at the time of receiving data.	S (Error)	TYCW	Q01U Q02U ^{*4}
SD118	Amount of battery consumption	Amount of battery consumption	Displays the current amount of battery consumption. The value range:1 to 2(Q00UJCPU, Q00UCPU, Q01UCPU, Q02UCPU, Q03UD(E)CPU, Q04UD(E)HCPU) 1 to 3(Q06UD(E)HCPU) 1 to 4(Q10UD(E)HCPU, Q20UD(E)HCPU, Q13UD(E)HCPU, Q26UD(E)HCPU)	S (Status change)	New	QnU ^{*4}
SD119	Battery life- prolonging factor	Battery life- prolonging factor	Stores the factor which makes the battery life-prolonging function valid. When SD119 is other than 0, the battery life-prolonging function is valid. 0:No factor b15 to b2 b1 b0 b0: CPU switch setting b1: Backup in execution by latch data backup function (to standard ROM)	S (Status change)	New	QnU

*3: This applies to Universal model QCPUs except for the Built-in Ethernet port QCPU.

*4: The module whose first 5 digits of serial No. is "10102" or later.

А

Number	Name	Meaning	Explanation	Set by (When Set)	Corres- ponding ACPU D9	Corresponding CPU
SD130 SD131			 The numbers of output modules whose fuses have blown are input as a bit pattern (in units of 16 points). (If the module numbers are set by parameter, the parameter-set numbers are stored). 			
SD132 SD133	Fuse blown	Bit pattern in units of 16 points, indicating the modules whose	b15b14b13b12b11b10b9b8b7b6b5b4b3b2b1 b2b14b13b12b11b10b9b8b7b6b5b4b3b2b1b0 sD130 0			
SD134	module	fuses have blown 0: No blown fuse	SD131 1 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0			
SD135		1: Blown fuse present	SD137 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0			
SD136			Indicates fuse blow.			
SD137			 Not cleared even if the blown fuse is replaced with a new one. This flag is cleared by error resetting operation 			
SD150			 When I/O modules, of which data are different from those entered at power-ON, have been detected, the I/O module numbers (in units of 16 	S (Error)	New	Q00J/Q00/Q01
SD151			points) are entered in bit pattern. (Preset I/O module numbers set in parmeters when parameter setting has been performed.)			
SD152		Bit pattern, in units of 16 points,	b15b14b13b12b11b10b9b8b7b6b5b4b3b2b1b0			
SD153	I/O module	indicating the modules with	SD150 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			
SD154	verify error	0: No I/O verify errors	SD151 0 0 0 0 0 0 (xy) 0 0 0 0 0 0 0 0 0 0 0			
SD155		1: I/O verify error present	SD157 0 1 (YEQ) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			
SD156			Indicates an I/O module verify error.			
SD157			 Not cleared even if the blown fuse is replaced with a new one. This flag is cleared by error resetting operation. 			

(2) System information

Number	Name	Meaning	Explanation	Set by (When Set)	Corres- ponding ACPU D9□□□	Corresponding CPU
SD200	Status of switch	Status of CPU switch	 The CPU switch status is stored in the following format: b15 to b12 b11 to b8 b7 to b4 b3 to b0 3) Empty 2) 1) 1): CPU switch status 1: STOP 2: L.CLR 2): Memory card switch 3): DIP switch status 58 through b12 correspond to SW1 through SW5 of system setting switch 1. 0: OFF, 1: ON. b13 through b15 are empty. 	S (Every END processing)	New	Qn(H) QnPH QnPRH
			The CPU switch status is stored in the following format: b15 to b8 b7 to b4 b3 to b0 Empty 2) 1) 1): CPU switch status 0: RUN 1: STOP 2): Memory card switch Always OFF	S (Every END processing)	New	Q00J/Q00/Q01
			The CPU switch status is stored in the following format: b15 to b8 b7 to b4 b3 to b0 Empty 2) 1) 1): CPU switch status 0: RUN 1: STOP 2): Memory card switch Always OFF	S (when RUN/ STOP/RESET switch changed)	New	QnU
SD201	LED status	Status of CPU-LED	 The following bit patterns store the status of the LEDs on the CPU module: 0 is off, 1 is on, and 2 is flicker. b15 to b12b11 to b8 b7 to b4 b3 to b0 b15 to b12b11 to b8 b7 to b4 b3 to b0 b15 to b12b11 to b8 b7 to b4 b3 to b1 b15 to b12b11 to b8 b7 to b4 b3 to b1 b15 to b12b11 to b8 b7 to b4 b3 to b1 b15 to b12b11 to b8 b7 to b4 b3 to b1 b15 to b12b11 to b8 b7 to b4 b3 to b1 b15 to b12b11 to b8 b7 to b4 b3 to b1 b15 to b12b11 to b8 b7 to b4 b3 to b1 b15 to b12b11 to b8 b7 to b4 b3 to b1 b15 to b12b11 to b8 b7 to b4 b3 to b1 b15 to b12b11 to b8 b7 to b4 b3 to b1 b15 to b12b11 to b8 b7 to b4 b3 to b1 b15 to b12b11 to b8 b7 to b4 b3 to b1 b15 to b12b11 to b8 b7 to b4 b3 to b1 b15 to b12b11 to b8 b7 to b4 b3 to b1 b15 to b12b11 to b8 b7 to b4 b3 to b1 b15 to b12b11 to b8 b7 to b4 b3 to b1 b15 to b12b11 to b8 b7 to b4 b3 to b1 b15 to b12b11 to b8 b7 to b4 b3 to b1 b15 to b12b11 to b8 b7 to b4 b3 to b1 b15 to b12b11 to b8 b7 to b4 b3 to b1 b15 to b12b11 to b8 b7 to b4 b3 to b1 b15 to b12b11 to b8 b7 to b4 b3 to b1 b15 to b12b11 to b8 b7 to b4 b3 to b1 b15 to b12b11 to b12b1	S (Status change)	New	Q00J/Q00/Q01 Qn(H) QnPH QnPRH
			 The following bit patterns store the status of the LEDs on the CPU module: 0 is off, 1 is on, and 2 is flicker. b15 to b12b11 to b8 b7 to b4 b3 to b0 b15 to b12b11 to b8 b7 to b4 b3 to b0 b15 to b12b11 to b8 b7 to b4 b3 to b0 b15 to b12b11 to b8 b7 to b4 b3 to b0 b15 to b12b11 to b8 b7 to b4 b3 to b0 b15 to b12b11 to b8 b7 to b4 b3 to b0 b15 to b12b11 to b8 b7 to b4 b3 to b0 b15 to b12b11 to b8 b7 to b4 b3 to b0 b15 to b12b11 to b8 b7 to b4 b3 to b0 b15 to b12b11 to b8 b7 to b4 b3 to b0 b15 to b12b11 to b8 b7 to b4 b3 to b0 b15 to b12b11 to b8 b7 to b4 b3 to b0 b15 to b12b11 to b8 b7 to b4 b3 to b0 b15 to b12b11 to b8 b7 to b4 b3 to b0 b15 to b12b11 to b8 b7 to b4 b3 to b0 b15 to b12b11 to b8 b7 to b4 b3 to b0 b15 to b12b11 to b8 b7 to b4 b3 to b0 b15 to b12b11 to b8 b7 to b4 b3 to b0 b15 to b12b11 to b8 b7 to b4 b3 to b0 b15 to b12b11 to b8 b7 to b4 b3 to b0 b15 to b12b11 to b8 b7 to b4 b3 to b0 b15 to b12b11 to b8 b7 to b4 b3 to b0 b15 to b12b11 to b8 b7 to b4 b3 to b0 b15 to b12b11 to b8 b7 to b4 b3 to b0 b15 to b12b11 to b8 b7 to b4 b3 to b0 b15 to b12b11 to b8 b7 to b4 b3 to b0 b15 to b12b11 to b8 b7 to b4 b3 to b0 b15 to b12b11 to b	S (Status change)	New	QnU

Appendix 4 SPECIAL REGISTER LIST

Number	Name	Meaning	Explanation	Set by (When Set)	Corres- ponding ACPU D9 🗆 🗆	Corresponding CPU
SD202	LED off command	Bit pattern of LED that is turned off	Specify the LEDs to be turned off using this register, and turn SM202 from OFF to ON to turn off the specified LEDs. USER and BOOT can be specified as the LEDs to be turned off. Specify the LEDs to be turned off in the following bit pattern. (Turned off at 1, not be turned off at 0.) b15 b8 b4 b0 Fixed Fixed Fixed to 0 to 0 USER LED BOOT LED (The Q00UJCPU, Q00UCPU, and Q01UCPU cannot specify the BOOT LED.)	U	New	Qn(H) QnPH QnPRH QnU
SD203	Operating status of CPU	Operating status of CPU	 The CPU operating status is stored as indicated in the following figure: b15 to b12 b11 to b8 b7 to b4 b3 to b0 2) 1) 1): Operating status 0: RUN of CPU 1: STEP-RUN (For the QnACPU only) 2: STOP 3: PAUSE 2): STOP/PAUSE 0: Instruction in remote operation program from RUN/STOP switch ("RUN/STOP/ RESET switch" for Basic model QCPU) 1: Remote contact 2: Remote operation from GX Developer/ serial communication, etc. 3: Internal program instruction Note: Priority is earliest first 4: Error 	S (Every END processing)	D9015 format change	QCPU
SD204	LED display color	CPU-LED display color	The LED display color of the LED status shown in SD201 1) to 8).	S (status change)	New	QnU

Number	Name	Meaning	Explanation	Set by (When Set)	Corres- ponding ACPU D9	Corresponding CPU
SD207		Priorities 1 to 4	 When error is generated, the LED display (flicker) is made according to the error number setting priorities. (The Basic model QCPU supports only the annunciator (error item No. 7). The Universal model QCPU sets execution/non-execution of LED display of the error corresponding to the each priority ranking when the error occurs. The setting areas for priorities are as follows: 		D9038	Q00J/ Q00/Q01 ^{*9} Qn(H) QnPH OnPPH
SD208	LED display priority ranking	Priorities 5 to 8 LED display priority ranking	b15 to b12 b11 to b8 b7 to b4 b3 to b0 SD207 Priority 4 Priority 3 Priority 2 Priority 1 SD208 Priority 8 Priority 7 Priority 6 Priority 5 SD209 Priority 11 Priority 10 Priority 9 (Priority 11 is valid when Redundant CPU is used.) Default Value SD207 = 4321#(0000# for Basic model OCPU)	U	D9039 format change	
SD209	Priorities 9 to		 SD208 = 8765+((0700)+ for Basic model QCPU) (0765+ for Redundant CPU) SD209 = 00A9+(0000+ for Basic model QCPU) (0B09+ for Redundant CPU) No display is made if "0" is set. In case of the Basic model QCPU, the ERR. LED turns ON when the annunciator turns ON, if "7" has been set to either of priorities 1 to 11. In case of the Basic model QCPU, the ERR. LED does not turn ON when the annumciator turns ON, if "7" has not been set to either of priorities 1 to 11. However, even if "0" has been set, information concerning CPU module operation stop (including parameter settings) errors will be indicated by the LEDs without conditions. 		New	QnU
SD210	Clock data	Clock data (year, month)	 The year (last two digits) and month are stored as BCD code as shown below: b15 to b12 b11 to b8 b7 to b4 b3 to b0 Example: July, 1993 Year Month 		D9025	
SD211	Clock data	Clock data (day, hour) Clock		S (Request)/U	D9026	QCPU
SD212	Clock data	Clock data (minute, second)	The minutes and seconds (after the hour) are stored as BCD code as shown below: <u>b15 to b12b11 to b8 b7 to b4 b3 to b0 Example:</u> <u>35 min, 48 s</u> <u>3548H</u> <u>Minute</u> <u>Second</u>		D9027	

*9: Function version is B or later.

Α

Number	Name	Meaning		Explanati	on	Set by (When Set)	Corres- ponding ACPU D9 🗆 🗖	Corresponding CPU
SD213	Clock data	Clock data (higher digits of year, day of week)	The year (first code as show b15 to b12b Higher digit	two digits) and the day on n below.	bit the week are stored as BCD bit to b0 Example: 1993, Friday 1905H Day of the week 0 0 Sunday 1 Monday 2 Tuesday 3 Wednesday 4 Thursday 5 Friday 6 Saturday	S (Request)/U	D9028	
SD220			LED display A (On the Basic characters of	SCII data (16 characters) model QCPU, the registe ASCII data) at error occur) stored here. ers store the message (16 rrence (including annunciator			
SD221			UN).	b15 to b8	b7 to b0			QCPU
SD222			SD220	15th character from the right	16th character from the right			
0.0000			SD221	the right	the right			
50223	LED display	LED display data	SD222	the right 9th character from	the right	S (When	New	
SD224	data		SD223	the right 7th character from	the right 8th character from	changed)		
SD225			SD225	the right 5th character from the right	6th character from the right			
SD226			SD226	3rd character from the right	4th character from the right			
00220			SD227	1st character from the right	2nd character from the right			
SD227			 The LED display device data at the time of CHK is not stored in the Basic model QCPU and the Universal model QCPU. 					
SD235	Module to which online module change is being performed	The header I/O number of the module to which online module change is being performed /10H	• 10⊦ is added f module chang	to the value of the header je is being performed.	r I/O number of which the online	S (During online module change)	New	QnPH QnPRH
SD240	Base mode	0: Automatic mode 1: Detail mode	Stores the bas	se mode.		S (Initial)	New	
SD241	Extension stage number	0: Main base only 1 to 7: Extension stage number	Stores the ma	aximum number of the ext	tension bases being installed.	S (Initial)	New	QCPU
Number	Name	Meaning	Explanation	Set by (When Set)	Corres- ponding ACPU D9 🗆 🗖	Corresponding CPU		
--------	--	--	--	----------------------	--------------------------------------	--------------------------------------		
	A/Q base differentiation	Base type differentiation 0: QA**B is installed (A mode) 1: Q**B is installed (Q mode)	b7 b2 b1 b0 Fixed to 0 to Image: box of the second se	S (Initial)	New	Qn(H) QnPH QnPRH		
SD242	Installed Q base presence/ absence	Base type differentiation 0: Base not installed 1: Q**B is installed	b4 b2 b1 b0 Fixed to 0 to Main base unit Image: State of the s	S (Initial)	New	Q00J/Q00/Q01		
	Installed Q base presence/ absence	Base type differentiation 0: Base not installed 1: Q**B is installed	 b7 b2 b1 b0 Fixed to 0 to An an base unit An an base unit An an base Fixed to 0 Fixed to 0 When the base is not installed. An an base The bits from the third extension stage to the seventh extension stage are fixed to "0" in the Q00UCPU. The bits from the fifth extension stage to the seventh extension stage are fixed to "0" in the Q00UCPU, Q01UCPU, and Q02UCPU. 	S (Initial)	New	QnU		
SD243			b15 to b12 b11 to b8 b7 to b4 b3 to b0 SD243 Extension Extension Main 3 2 1 Main	S (Initial)		Qn(H) QnPH QnPRH QnU QnU		
SD244	No. of base slots	No. of base slots	 SD244 Extension Extension Extension Extension extension As shown above, each area stores the number of slots being installed. The bits from the third extension stage to the seventh extension stage are fixed to "0" in the Q00UJCPU. The bits from the fifth extension stage to the seventh extension stage are fixed to "0" in the Q00UCPU, Q01UCPU, and Q02UCPU. 		New			
SD243	No. of base	No. of bass slats	b15 to b12 b11 to b8 b7 to b4 b3 to b0 SD243 Extension Extension Extension Main Fixed to Fixed to Extension			000 1/000/001		
SD244	status)	NO. OF DASE SIDES	As shown above, each area stores the number of slots being installed. (Number of set slots when parameter setting has been made)	S (millar)		000/00/001		
SD245	No. of base	No office data	SD245 SD245 Fixed to Fixed to	0.45***	New			
SD246	siots (Mounting status)	nting No. of base slots	 SD246 [Fixed or Fixed or F	S (Initial)	S (Initial)	Q00J/Q00/Q01 ⁻⁹		
SD250	Loaded	Loaded maximum	When SM250 goes from OFF to ON, the upper 2 digits of the final I/O number plus 1 of the modules loaded are stored as BIN values.	S (Request END)	New	Qn(H) QnPH QnPRH		
30230	maximum I/U	WU NU.	The upper 2 digits of the final I/O number plus 1 of the modules loaded are stored as BIN values.	S (Initial)	New	Q00J/Q00/Q01 QnU		

*9: Function version is B or later.

A

Number	Name	N	leaning	Explanation	Set by (When Set)	Corres- ponding ACPU D9 🗆 🗆	Corresponding CPU
SD254		Numt modu	er of les installed	 Indicates the number of mounted MELSECNET/10 modules or MELSECNET/H modules. 			
SD255		e	I/O No.	Indicates I/O number of mounted MELSECNET/10 module or MELSECNET/H module			
SD256		t modu	Network No.	Indicates network No. of mounted MELSECNET/10 module or MELSECNET/H module			QCPU
SD257		from 1s	Group number	Indicates group No. of mounted MELSECNET/10 module or MELSECNET/H module			
SD258	MELSECNET/	nation 1	Station No.	Indicates station No. of mounted MELSECNET/10 module or MELSECNET/H module			
SD259	10. MELSECNET/H information	Inforn	Standby informa- tion	 In the case of standby stations, the module number of the standby station is stored. (1 to 4) 	S (Initial)	New	Qn(H) QnPH
SD260 to SD264	Infor 2nd Infor 3rd r Infor 4th r	Inforn 2nd n	nation from nodule	Configuration is identical to that for the first module.			QnPRH QnU ^{*10}
SD265 to SD269		Inform 3rd m	nation from odule	Configuration is identical to that for the first module.			Qn(H) QnPH
SD270 to SD274		Inforn 4th m	nation from odule	Configuration is identical to that for the first module.			QnU ^{*11}
SD280	CC-Link error	Error status	detection	 1) When Xn0 of the mounted CC-Link module turns ON, the bit of the corresponding station turns to 1 (ON). 2) When either Xn1 or XnF of the mounted CC-Link module turns OFF, the bit of the corresponding station turns to 1 (ON). 3) Turns to 1 (ON) when communication between the mounted CC-Link module and CPU module cannot be made. Information Information Information of 3) of 2) of 1) b15 to b12 b11 to b8 b7 to b4 b3 to b0 Empty Information Information Information and the corresponding static turns of 4 b3 to b0 Information Information Information and the corresponding static turns of 4 b3 to b0 Information Information Information Information and the corresponding static turns of 1 b15 to b12 b11 to b8 b7 to b4 b3 to b0 Information Information Infor	S (Error)	New	Qn(H) QnPH QnPRH

*10: The Universal model QCPU except the Q00UJCPU, Q00UCPU, and Q01UCPU. *11: The Universal model QCPU except the Q00UJCPU, Q00UCPU, Q01UCPU, and Q02UCPU.

Number	Name	Meaning	Explanation	Set by (When Set)	Corres- ponding ACPU D9 🗆 🗖	Corresponding CPU
SD281	CC-Link error	Error detection status	 1) When Xn0 of the mounted CC-Link module turns ON, the bit of the corresponding station turns to 1 (ON). 2) When either Xn1 or XnF of the mounted CC-Link module turns OFF, the bit of the corresponding station turns to 1 (ON). 3) Turns to 1 (ON) when communication between the mounted CC-Link module and CPU module cannot be made. Information Information Information of 3) of 2) of 1) b15 to b12 b11 to b8 b7 to b4 b3 to b0 Empty Empty Empty Tre above module Nos. n are in order of the head I/O numbers. (However, the one where parameter setting has not been made is not counted.) 	S (Error)	New	Qn(H) ^{*14} QnPH ^{*14} QnPRH ^{*15}
SD286		Points assigned to	 The number of points assigned to M is stored with 32 bits. Even if the points assigned to M are 32k points or less, the points are 			
SD287	Device assignment	м (tor extension)	stored.	S (Initial)	New	QnU ^{*16}
SD288 SD289		Points assigned to B (for extension)	 The number of points assigned to B is stored with 32 bits. Even if the points assigned to B are 32k points or less, the points are stored. 			
SD290		Number of points assigned for X	Stores the number of points currently set for X devices			
SD291		Number of points assigned for Y	Stores the number of points currently set for Y devices	S (Initial)		
SD292	Device assignment	Number of points assigned for M	Stores the number of points currently set for M devices		New	
SD293	(Same as parameter	Number of points assigned for L	Stores the number of points currently set for L devices			
SD294	contents)	Number of points assigned for B	Stores the number of points currently set for B devices			
SD295		Number of points assigned for F	Stores the number of points currently set for F devices			
SD296		Number of points assigned for SB	Stores the number of points currently set for SB devices			
SD297		Number of points assigned for V	Stores the number of points currently set for V devices			QCPU
SD298		Number of points assigned for S	Stores the number of points currently set for S devices			
SD299	Davias	Number of points assigned for T	Stores the number of points currently set for T device			
SD300	Device assignment (Same as	Number of points assigned for ST	Stores the number of points currently set for ST devices	S (Initial)	New	
SD301	parameter contents)	Number of points assigned for C	Stores the number of points currently set for C devices	C (
SD302		Number of points assigned for D	Stores the number of points currently set for D devices			
SD303		Number of points assigned for W	Stores the number of points currently set for W devices			
SD304		Number of points assigned for SW	Stores the number of points currently set for SW devices			

*14: The module whose first 5 digits of serial No. is "08032" or later. *15: The module whose first 5 digits of serial No. is "09012" or later. *16: The module whose first 5 digits of serial No. is "10042" or later.

Appendix 4 SPECIAL REGISTER LIST

А

Number	Name	M	leaning	Explanation	Set by (When Set)	Corres- ponding ACPU D9 🗆 🗆	Corresponding CPU
SD305	Device assignment (Index register)	16 bit Numb assigi	modification per of points ned for Z	 Stores the number of points of index register (Z) to be modified in the range of 16 bits. (The assignment is set by the ZR device index modification setting parameter.) 	S (Initial)	New	QnU
SD306	Device assignment	Numb	er of points	 Stores the number of ZR device points (except the number of points of extended data register (D) and extended link register (W)). The number 			
SD307	(Same as parameter contents)	assigr (for ex	ned for ZR ktension)	of assignment points of ZR device is stored into this SD only when 1k point or more is set to the extended data register (D) and extended link register (W).			
SD308	Device assignment	Numb assigi	er of points ned for D (for	• Stores the total number of points of the extended data register (D) and	C (Initial)		0*17
SD309	(assignment including the number of	inside exten	+ for sion)	binary).	S (Initial)	INEW	Qnu ··
SD310	points set to the extended data	Numb assigi	er of points ned for W	Stores the total number of points of the extended link register (W) and			
SD311	register (D) and extended link register (W))	egister (D) and extended link egister (W))	side + for sion)	link register in internal device memory area (stores the value in 32-bit binary).			
SD315	Time reserved for communication processing	Time comm proce	reserved for nunication ssing	 Reserves the designated time for communication processing with GX Developer or other units. The greater the value is designated, the shorter the response time for communication with other devices (GX Developer, serial communication units) becomes. If the designated value is out of the range above, it is processed that no setting is made. Setting range: 1 to 100 ms Note that the scan time becomes longer by the designated time. 	U	New	Q00J/Q00/Q01 Qn(H) QnPH QnPRH
SD340		No. of modules installed	f modules ed	Indicates the number of mounted Ethernet module.			
SD341			I/O No.	Indicates I/O No. of mounted Ethernet module			
SD342		ale	Network No.	Indicates network No. of mounted Ethernet module			QCPU
SD343	1	Ipou	Group No.	Indicates group No. of mounted Ethernet module			
SD344	Ethernet information	of 1st n	Station No.	Indicates station No. of mounted Ethernet module	S (Initial)	New	
SD345 to SD346	Information o	formation	Empty	Empty (With QCPU, the Ethernet module IP address of the 1st module is stored in buffer memory.)			Qn(H)
SD347		<u>-</u>	Empty	Empty (With QCPU, the Ethernet module error code of the 1st module is read with the ERRRD instruction.)			QnPH QnPRH QnU ^{*10}
SD348 to SD354		Inform 2nd m	nation from nodule	Configuration is identical to that for the first module.			
SD355 to SD361	Ethernet information	Inform 3rd m	nation from odule	Configuration is identical to that for the first module.	S (Initial)	New	Qn(H) QnPH
SD362 to SD368		Inforn 4th m	nation from odule	Configuration is identical to that for the first module.			QnPRH QnU ^{*11}

*10: The Universal model QCPU except the Q00UJCPU, Q00UCPU, and Q01UCPU.
*11: The Universal model QCPU except the Q00UJCPU, Q00UCPU, Q01UCPU, and Q02UCPU.
*17: The Universal model QCPU except the Q00UJCPU.

Number	Name	Meaning	Explanation	Set by (When Set)	Corres- ponding ACPU D9 🗆 🗖	Corresponding CPU
SD380	Ethernet instruction reception status	Instruction reception status of 1st module	b15 to b8 b7 b6 b5 b4 b3 b2 b1 b0 0 Instruction reception status of channel 1 Instruction reception status of channel 2 Instruction reception status of channel 3 Instruction reception status of channel 4 Instruction reception status of channel 5 Instruction reception status of channel 5 Instruction reception status of channel 7 Instruction reception status of channel 8 ON: Received (Channel is being used.) OFF: Not received (Channel is not used.)	S (Instruction execution)	New	QnPRH
SD381	Ethomot	Instruction reception status of 2nd module	Configuration is identical to that for the first module.			
SD382	instruction reception	Instruction reception status of 3rd module	Configuration is identical to that for the first module.			
SD383	SIAIUS	Instruction reception status of 4th module	Configuration is identical to that for the first module.			

Α

Number	Name	Meaning	Explanation	Set by (When Set)	Corres- ponding ACPU D9 🗆 🗆	Corresponding CPU
SD393		Number of multiple CPUs	The number of CPU modules that comprise the multiple CPU system is stored. (1 to 3, Empty also included)			Q00/Q01 ^{*9} QnU
SD394		CPU mounting information	The CPU module types of No. 1 CPU to 3 and whether the CPU modules are mounted or not are stored. <u>b15 to b12 b11 to b8 b7 to b4 b3 to b0</u> SD394 Empty (0) CPU No.3 CPU No.2 CPU No.1 CPU module mounted or not mounted or not mounted 0: PLC CPU 0: Not mounted 1: Motion CPU 1: Mounted 2: PC CPU	S (Initial)	New	Q00/Q01 ^{*9}
SD395	Multiple CPU system	Multiple CPU number	 In a multiple CPU system configuration, the CPU number of the host CPU is stored. CPU No. 1: 1, CPU No. 2: 2, CPU No. 3: 3, CPU No. 4: 4 	S (Initial)	New	Q00/Q01 ^{*9} Qn(H) ^{*9} QnPH QnU
SD396	Information	No. 1 CPU operation status	The operation information of each CPU No. is stored. (The information on the number of multiple CPUs indicated in SD393 is stored.)			
SD397		No. 2 CPU operation status	b15 b14 to b8 b7 to b4 b3 to b0 Vacancy Classification Operation status mounted 0: Not mounted	S (END	New	Q00/Q01 ^{*9} QnU ^{*17}
SD398		No. 3 CPU operation status	1: Mounted 0: Normal 0: RUN 1: Minor fault 2: STOP 2: Medium fault 3: PAUSE	error)	140.00	
SD399		No. 4 CPU operation statu	3: Major fault 4: Initial Fн: Reset Fн: Reset			QnU ^{*11}

*9: Function version is B or later.

*11: The Universal model QCPU except the Q00UJCPU, Q00UCPU, Q01UCPU, and Q02UCPU. *17: The Universal model QCPU except the Q00UJCPU.

(3) System clocks/counters

TableApp.4.5 Special register

Number	Name	Meaning	Explanation	Set by (When Set)	Corres- ponding ACPU D9□□□	Corresponding CPU
SD412	1 second counter	Number of counts in 1-second units	 Following programmable controller CPU module RUN, 1 is added each second Count repeats from 0 to 32767 to -32768 to 0 	S (Status change)	D9022	QCPU
SD414	2n second clock setting	2n second clock units	Stores value n of 2n second clock (Default is 30) Setting can be made between 1 and 32767	U	New]
SD415	2nms clock setting	2nms clock units	Stores value n of 2nms clock (Default is 30) Setting can be made between 1 and 32767	U	New	Qn(H)
SD420	Scan counter	can counter Number of counts in each scan	 Incremented by 1 for each scan execution after the CPU module is set to RUN. (Not counted by the scan in an initial execution type program.) Count repeats from 0 to 32767 to -32768 to 0 	S (Every END processing)	New	QnPH QnPRH QnU
			 Incremented by 1 for each scan execution after the CPU module is set to RUN. Count repeats from 0 to 32767 to -32768 to 0 	S (Every END processing)	New	Q00J/Q00/Q01
SD430	Low speed scan counter	Number of counts in each scan	 Incremented by 1 for each scan execution after the CPU module is set to RUN. Count repeats from 0 to 32767 to -32768 to 0 Used only for low speed execution type programs 	S (Every END processing)	New	Qn(H) QnPH

(4) Scan information

TableApp.4.6 Special register

Number	Name	Meaning	Explanation	Set by (When Set)	Corres- ponding ACPU D9 🗆 🗆	Corresponding CPU
SD500	Execution program No.	Program No. in execution	 Program number of program currently being executed is stored as BIN value. 	S (Status change)	New	Qn(H) QnPH QnPRH QnU
SD510	Low speed excution type program No.	Low speed execution type program No. in execution	 Program number of low speed excution type program No. currently being executed is stored as BIN value. Enabled only when SM510 is ON. 	S (Every END processing)	New	Qn(H) QnPH
SD520		Current scan time (in 1 ms units)	• The current scan time is stored into SD520 and SD521. (Measurement is made in 100 μ s units. (For the Universal model QCPU, in 1 μ s units.))	S (Every END processing)	D9018 format change	
SD521	Current scan time	Current scan time (in 100 μ s units)	 SU520: Stores the ms place. (Storage range: 0 to 65535) SD521: Stores the μs place. (Storage range: 0 to 900 (For the Universal model QCPU, storage range is 0 to 999)) (Example) When the current scan time is 23.6ms, the following values are stored. SD520 = 23 SD521 = 600 	S (Every END processing)	New	QCPU
SD522		Initial scan time (in 1 ms units)	Stores the scan time of an initial execution type program into SD522 and SD523.			
SD523	Initial scan time	Initial scan time (in 100 μ s units)	 (Measurement is made in 100 μs units. (For the Universal model QCPU, in 1μs units.)) SD522: Stores the ms place. (Storage range: 0 to 65535) SD523: Stores the μs place. (Storage range: 0 to 900 (For the Universal model QCPU, storage range is 0 to 999)) 	S (First END processing)	New	
SD524	Minimum scan	Minimum scan time (in 1 ms units)	 Stores the minimum value of the scan time except that of an initial execution type program into SD524 and SD525. (Measurement is made in 100 µs units. (For the Universal model QCPU, in 1µs units.)) 	S (Every END processing)	D9017 format change	Qn(H) QnPH
SD525	time	Minimum scan time (in 100 μs units)	SD524: Stores the ms place. (Storage range: 0 to 65535) SD525: Stores the μ s place. (Storage range: 0 to 900 (For the Universal model QCPU, storage range is 0 to 999))	S (Every END processing)	New	QnU
SD526	Maximum scan	Maximum scan time (in 1 ms units)	• Stores the maximum value of the scan time except that of an initial execution type program into SD526 and SD527. (Measurement is made in 100 µs units. (For the Universal model QCPU, in 1µs units.))	S (Every END processing)	D9019 format change	
SD527	time	Maximum scan time (in 100 μs units)	SD526: Stores the ms place. (Storage range: 0 to 65535) SD527: Stores the μ s place. (Storage range: 0 to 900 (For the Universal model QCPU, storage range is 0 to 999))		New	
SD528	Current scan time for low	Current scan time (in 1 ms units)	 Stores the current scan time of a low speed execution type program into SD528 and SD529. (Measurement is made in 100 //s units.) 	S (Every END	New	
SD529	speed execution type programs	Current scan time (in 100 μ s units)	(measurement is made in 100 μ s diffs.) processing SD528: Stores the ms place. (Storage range: 0 to 65535) SD529: Stores the μ s place. (Storage range: 0 to 900)	processing)		
SD532	Minimum scan time for low	Minimum scan time (in 1 ms units)	 Stores the minimum value of the scan time of a low speed execution type program into SD532 and SD533. (Macoursement is mode in 100 up units) 	S (Every END	Now	
SD533	speed execution type programs	Minimum scan time (in 100 μ s units)	SD532: Stores the ms place. (Storage range: 0 to 65535) SD533: Stores the μ s place. (Storage range: 0 to 900)	processing)	new	QnPH
SD534	Maximum scan time for low	Maximum scan time (in 1 ms units)	 Stores the maximum value of the scan time except that of the first scan of a low speed execution type program into SD534 and SD535. 	S (Every END		
SD535	speed execution type programs	Maximum scan time (in 100 μ s units)	(Measurement is made in 100 μ s units.) SD534: Stores the ms place. (Storage range: 0 to 65535) SD535: Stores the μ s place. (Storage range: 0 to 900)	processing)	processing) New	
SD540	ENDprocessing	END processing time (in 1 ms units)	 Stores the time from the end of a scan execution type program to the start of the next scan into SD540 and SD541. (Measurement is made in 100 μs units.(For the Universal model QCPU, 			Qn(H)
SD541	time	END processing time (in 100 μs units)	in 1 μ s units.)) SD540: Stores the ms place. (Storage range: 0 to 65535) SD541: Stores the μ s place. (Storage range: 0 to 900) (Storage range: 0 to 900 (For the Universal model QCPU, storage range is 0 to 999))	processing)	New	QnPRH QnU

А

Appendix 4 SPECIAL REGISTER LIST

Number	Name	Meaning	Explanation	Set by (When Set)	Corres- ponding ACPU D9 🗆 🗆	Corresponding CPU
SD524 SD525	Minimum scan time	Minimum scan time (in 1 ms units) Minimum scan time (in 100 μs	• Stores the minimum value of the scan time into SD524 and SD525. (Measurement is made in 100 μ s units.) SD524: Stores the ms place. (Storage range: 0 to 65535) SD525: Stores the μ s place. (Storage range: 0 to 900)	S (Every END processing)		
SD526 SD527	Maximum scan time	Maximum scan time (in 1 ms units) Maximum scan time (in 100 µs	• Stores the maximum value of the scan time into SD526 and SD527. (Measurement is made in 100 μ s units.) SD526: Stores the ms place. (Storage range: 0 to 65535) SD527: Stores the μ s place. (Storage range: 0 to 900)	S (Every END processing)	New	Q00J/Q00/Q01
SD540 SD541	END processing time	END processing time (in 1 ms units) END processing time (in 100 µs	 Stores the time from when the scan program ends until the next scan starts into SD540 and SD541. (Measurement is made in 100 μs units.) SD540: Stores the ms place. (Storage range: 0 to 65535) SD541: Stores the μs place. (Storage range: 0 to 900) 	S (Every END processing)	New	
SD542 SD543	Constant scan wait time	units) Constant scan wait time (in 1 ms units) Constant scan wait time (in 100	• Stores the wait time for constant scan setting into SD542 and SD543. (Measurement is made in 100 μ s units. (For the Universal model QCPU, in 1 μ s units.)) SD542: Stores the ms place. (Storage range: 0 to 65535) SD543: Stores the μ s place. (Storage range: 0 to 900 (For the Universal	S (Every END processing)	New	QCPU
SD544	Cumulative execution time	μs units) Cumulative execution time for low speed execution type programs (in 1 ms units)	 model QCPU, storage range is 0 to 999)) Stores the cumulative execution time of a low speed execution type program into SD544 and SD545. (Measurement is made in 100 µs units.) 	S (Every END	Nau	
SD545	for low speed execution type programs	Cumulative execution time for low speed execution type programs (in 100 µs units)	SD544: Stores the ms place. (Storage range: 0 to 65535) processing) SD545: Stores the µs place. (Storage range: 0 to 900) • Cleared to 0 after the end of one low speed scan.	New	Qn(H) QnPH	
SD546	Execution time for low speed execution type	Execution time for low speed execution type programs (in 1 ms units) Execution time for	 Stores the execution time of a low speed execution type program during one scan into SD546 and SD547. (Measurement is made in 100 μs units.) SD546: Stores the ms place. (Storage range: 0 to 65535) 	S (Every END processing)	New	
SD547	programs	low speed execution type programs (in 100 μ s units)	SD547: Stores the μ s place. (Storage range: 0 to 900) • Stored every scan.			
SD548	Scan execution	can execution type program execution time (in 1 ms units) Scar execution • Stores the execut scar into SD548 (Measurement is	 Stores the execution time of a scan execution type program during one scan into SD548 and SD549. (Measurement is made in 100 µs units.) 	S (Every END	New	Qn(H) QnPH
SD549	execution time	Scan execution type program execution time (in 100 µs units)	 SU548: Stores the ms place. (Storage range: 0 to 65535) SD549: Stores the μs place. (Storage range: 0 to 900) Stored every scan. 	processing)		QnPRH
SD548	Scan program	Scan program execution time (in 1 ms units)	 Stores the execution time of a scan program during one scan into SD548 and SD549. (Measurement is made in 100 μs units. (For the Universal model QCPU, in 1μs units.)) 	S (Every END	Now	Q00J/Q00/Q01
SD549	execution time	Scan program execution time (in 100 μ s units)	 SD548: Stores the ms place. (Storage range: 0 to 65535) SD549: Stores the μs place. (Storage range: 0 to 900 (For the Universal model QCPU, storage range is 0 to 999)) Stored every scan. 	processing)	INCIN	QnU
SD550	Service interval measurement module	Unit/module No.	Sets I/O number for module that measures service interval.	U	New	
SD551 SD552	Service interval time	Module service interval (in 1 ms units) Module service interval	• Stores the service interval for the module specified in SD550 into SD551 and SD552 when SM551 is turned ON. (Measurement is made in 100 μ s units.) SD551: Stores the ms place. (Storage range: 0 to 65535) SD555: Stores the μ_s place.	S (Request)	New	Qn(H) QnPH QnPRH
		(in 100 µs units)				

(5) Memory card

Number	Name	Meaning	Explanation	Set by (When Set)	Corres- ponding ACPU D9□□□	Corresponding CPU
SD600	Memory card typs	Memory card typs	 Indicates the type of the memory card installed. b15 to b8 b7 to b4 b3 to b0 Drive 1 Drive 1 Drive 1 Drive 2 type (I. SRAM) 2: ATA card 3: Flash card 3: Flash card 3: Flash card 0: Does not exist (1: SRAM) 2: ATA card 3: Flash card 0: Drive 1 0: Drive 2 type 	S (Initial and card removal)	New	Qn(H) QnPH QnPRH QnU
SD602	Drive 1 (Memory card RAM) capacity	Drive 1 capacity	 Drive 1 capacity is stored in 1 k byte units. (Empty capacity after format is stored.) 	S (Initial and card removal)	New	Qn(H) QnPH
SD603	Drive 2 (Memory card ROM) capacity	Drive 2 capacity	Drive 2 capacity is stored in 1 k byte units.*1	S (Initial and card removal)	New	QnPRH QnU ^{*2}
	Memory card use conditions	Memory card use conditions	The use conditions for memory card are stored as bit patterns . (In use when ON) The significance of these bit patterns is indicated below: b0 : Boot operation (QBT) b1 : Parameters (QPA) b2 : Device comments (QCD) b3 : Device initial value (QDI) b4 : File register R (QDR) b12 : Not used b5 : Sampling trace (QTD) b13 : Not used b14 : Not used b15 : Not used b15 : Not used b15 : Not used	S (Status change)	New	Qn(H) QnPH QnPRH
SD604	Memory card use conditions	Memory card use conditions	The use conditions for memory card are stored as bit patterns . (In use when ON) The significance of these bit patterns is indicated below: b0 : Boot operation (QBT)*1 b1 : Parameters (QPA) b2 : Device comments (QCD) b3 : Device initial value (QDI)*2 b4 : File register R (QDR) b5 : Sampling trace (QTD) b5 : Sampling trace (QTD) b6 : Not used b7 : Backup data (QBP)*3 *1: Turned ON at boot start and OFF at boot completion. *2: Turned ON when reflection of device initial value is completed. *3: The module whose first 5 digits of serial No. is *10102" or later.	S (Status change)	New	QnU ^{*2}

*1: When the Q2MEM-8MBA is used, value stored in the special register SD603 differs depending on the combination of the serial number of the High Performance model QCPU and the manufacture control number of the ATA card.

For details, refer to QCPU User's Manual (Hardware Design, Maintenance and Inspection).

*2: The Universal model QCPU except the Q00UJCPU, Q00UCPU, and Q01UCPU.

A

Number	Name	Meaning	Explanation	Set by (When Set)	Corres- ponding ACPU D9□□□	Corresponding CPU
SD620	Drive 3/4 typs	Drive 3/4 typs	Indicates the drive 3/4 type.	S (Initial)	New	Qn(H) QnPH QnPRH QnU
			Indicates the drive 3/4 type. b15 to b8 b7 to b4 b3 to b0 0 O	S (Initial)	New	Q00J/Q00/Q01
SD622	Drive 3 (Standard RAM) capacity	Drive 3 capacity	Drive 3 capacity is stored in 1 k byte units. (Empty capacity after format is stored.)	S (Initial)	New	Qn(H) QnPH QnPRH QnU
SD623	Drive 4 (Standard ROM) capacity	Drive 4 capacity	Drive 4 capacity is stored in 1 k byte units. (Empty capacity after format is stored.)	S (Initial)	New	Qn(H) QnPH QnPRH QnU
	Drive 3/4 use conditions	Drive 3/4 use conditions	The conditions for usage for drive 3/4 are stored as bit patterns. (In use when ON) The significance of these bit patterns is indicated below: b0 : Boot operation (QBT) b1 : Parameters (QPA) b2 : Device comments (QCD) b3 : Device initial value (QDI) b4 : File register (QDR) b5 : Sampling trace (QTD) b6 : Not used b7 : Not used b7 : Not used b12 : Not used b13 : Not used b14 : Not used b15 : Not used b15 : Not used	S (Status change)	New	Qn(H) QnPH QnPRH
SD624	Drive 3/4 use conditions	Drive 3/4 use conditions	The conditions for usage for drive 3/4 are stored as bit patterns. (In use when ON) The significance of these bit patterns is indicated below: b0 : Not used b1 : Parameters (QPA) b2 : Device comments (QCD) b3 : Device initial value (QDI) ^{*1} b4 : File register (QDR) b5 : Sampling trace (QTD) b6 : Not used b7 : Not used b13 : Not used b14 : Not used b14 : Not used b15 : Not used b15 : Not used b14 : Not used b15 : Not used b15 : Not used b14 : Not used b15 : Not used b15 : Not used b15 : Not used b16 : Not used b17 : Not used b18 : Not used b19 : Not used b19 : Not used b10 : Not used b10 : Not used b10 : Not used b11 : Local device (QDL) b12 : Not used b13 : Not used b13 : Not used b14 : Not used b15 : Not used	S (Status change)	New	QnU
SD624	Drive 3/4 use conditions	Drive 3/4 use conditions	The conditions for usage for drive 3/4 are stored as bit patterns.	S (Status change)	New	Q00J/Q00/Q01
SD640	File register drive	Drive number:	Stores drive number being used by file register	S (Status change) *10	New	QUUJ/Q00/Q01 Qn(H) QnPH QnPRH QnU ^{*3}

*3: The Universal model QCPU except the Q00UJCPU.

*10: On the Basic model QCPU, data is set at STOP to RUN or RSET instruction execution after parameter execution.

Number	Name	Meaning		Explanati	on		Set by (When Set)	Corres- ponding ACPU D9 🗆 🗆	Corresponding CPU
SD641			Stores file reg	ister file name (with exter	nsion) selected at paramete	ers or			
00040			by use of QDI	RSET instruction as ASC	ll code.				
SD642			SD6/1	2nd character	b/ to b0				
SD643			SD641 SD642	4th character	3rd character				Qn(H)
SD644			SD643	6th character	5th character		S (Status change)	New	QnPH QnPRH
00044			SD644	8th character	7th character		ondingo)		QnU ^{*3}
SD645			SD645	1st character of extension	2EH(.)				
	File register file	File register file	SD646	3rd character of the extension	2nd character of the extension				
	name	name	 Stores file reg ASCII code. 	ister file name (MAIN.QD	R) selected at parameters	as			
				b15 to b8	b7 to b0				
			SD641	2nd character (A)	1st character (M)				
SD646			SD642	4th character (N)	3rd character (I)				
			SD643	6th character ()	5th character ()		S (Initial)	New	Q00J/Q00/Q01
			SD644	1st character of	7 In character ()				
			SD645	the extension (Q)	2Eн(.)				
			SD646	3rd character of the extension (R)	2nd character of the extension (D)				
									07(11)
							S (Status		Qn(H) QnPH
SD647	File register	File register	Stores the dat	ta capacity of the currently	y selected file register in 1 k	k word	change)	New	QnPRH
	capacity	capacity	units.						QnU ³
						S (Initial)		Q00J/Q00/Q01	
									Q00J/Q00/Q01
SD648	File register	File register File register block block number number	Stores the currently selected file register block number.			S (Status	D9035	QnPH	
	block number						change) ^10		QnPRH
		Comment drive	Stores the co	mment drive number sele	cted at the narameters or h	ov the	S (Status		QnU ³
SD650	Comment drive	number	QCDSET inst	ruction.	eted at the parameters of t	by the	change)	New	
SD651			Stores the con parameters of	mment file name (with exit	tension) selected at the				
SD652			parameters of	b15 to b8					
SD653			SD651	2nd character	1st character				Qn(H)
SD654			SD652	4th character	3rd character				QnPH
SD655	Comment file	Comment file	SD653	6th character	5th character		S (Status	New	QnPRH QnU
	name	name	SD654	8th character	7th character		change)		
			SD655	1st character of	2Eн(.)				
SD656			-	3rd character of	2nd character of				
			SD656	the extension	the extension				
SD660		Boot designation	 Stores the drives the drives to red 	ve number where the boo	t designation file (*.QBT) is	being	S (Initial)	New	
SD661		nie drive namber	Stores the file	name of the boot design	ation file (*.QBT).				
SD662				b15 to b8	b7 to b0				
00002			SD661	2nd character	1st character				Qn(H)
SD663	Boot operation		SD662	4th character	3rd character				QnPH
SD664	designation file	File name of boot	SD663	6th character	5th character		S (Initial)	New	QnPRH
SD665		designation file	SD664	8th character	7th character		- (QnU *
000000			SD665	1st character of the extension	2Ен(.)				
SD666			SD666	3rd character of the extension	2nd character of the extension				

*3: The Universal model QCPU except the Q00UJCPU.

*4: The Universal model QCPU except the Q00UJCPU, Q00UCPU, and Q01UCPU.

*10: On the Basic model QCPU, data is set at STOP to RUN or RSET instruction execution after parameter execution.

А

Number	Name	Meaning	Explanation	Set by (When Set)	Corres- ponding ACPU D9	Corresponding CPU
SD670	Parameter enable drive information	Parameter enable drive No.	 Stores information of parameter storage destination drive which is enabled. Drive 0 (Program memory) Drive 1 (SRAM card) Drive 2 (Flash card/ATA card) Drive 4 (Standard ROM) (Only drive 0 and drive 4 are valid in the Q00UJCPU, Q00UCPU, and Q01UCPU.) 	S (Initial)	New	
SD671	Status of latch data backup function	Status display	Indicates the status of the latch data backup function. Indicates the status of the latch data backup function. Status Presence/ absence of backup data Restore operation at turning power supply ON from OFF 0 No backup data Absent Restoring not executed 1 Restore ready completion Restoring power supply ON from OFF the following time 2 Restore execution completion Present Restoring not executed 3 Backup execution wait Restoring not executed Restoring not executed 4 execution ready completion Present Restoring not executed • "2 Restore ready completion" is a status immediately after restoring data. "3 Backup execution wait" is a status after turning power supply ON from OFF at "2 Restore ready completion".	S (Status change)	New	
SD672		Backup time (Year and month)	 Stores the last 2 digits of year and month when backup is performed in 2-digit BCD code. b15 to b12b11 to b8 b7 to b4 b3 to b0 Example: July, 1993 Year Month 			QnU
SD673		Backup time (Day and hour)	Stores the day and hour when backup is performed in 2-digit BCD code. b15 to b12b11 to b8 b7 to b4 b3 to b0 Example:			
SD674	Backup information	Backup time (Minute and second)	Stores the minute and second when backup is performed in 2-digit BCD code. b15 to b12b11 to b8 b7 to b4 b3 to b0 Example:	S (At write)	New	
SD675		Backup time (Year and day of week)	Stores the first 2 digits of year and day of week when backup is performed in BCD code. B15 to b12 b11 to b8 b7 to b4 b3 to b0 Example: 1993, Friday 1905H Day of the week O Sunday 1 Monday Z Tuesday 3 Wednesday 5 Friday 6 Saturday			

Number	Name	Meaning	Explanation	Set by (When Set)	Corres- ponding ACPU D9□□□	Corresponding CPU
SD676		Restore time (Year and month)	• Stores the last 2 digits of year and month when data is restored in 2-digit BCD code. b15 to b12 b11 to b8 b7 to b4 b3 to b0 Example: July, 1993 Year Month			
SD677		Restore time (Day and time)	• Stores the day and time when data is restored in 2-digit BCD code. b15 to b12 b11 to b8 b7 to b4 b3 to b0 Example: 31st, 10 a.m. Day Hour			
SD678	Backup data restration information	Restore time (Minute and second)	Stores the minute and second when data is restored in 2-digit BCD code. b15 to b12b11 to b8 b7 to b4 b3 to b0 Example: 1	S (Initial)	New	
SD679		Restore time (Year and day of week)	 Stores the first 2 digits of year and day of week when data is restored in BCD code. b15 to b12 b11 to b8 b7 to b4 b3 to b0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			QnU
SD681	Program memory write (transfer) status	Write (transfer) status display (percentage)	Displays the status of writing (transferring) the program memory (flash ROM) in percentage. (0 to 100%) "0" is set when the write direction is set.	S (At write)	New	
SD682 SD683	Program memory write count index	Write count index up to present	Stores the index value for the number of write operations to the program memory (flash ROM) up to the present in BIN 32-bit value. When the index value exceeds 100 thousand times, "FLASH ROM ERROR" (error code: 1610) occurs. (The index value is calculated even when exceeding 100 thousand times.) Note) The write count does not equal to the index value.(Since a flash ROM write life is prolonged by the system, 1 is added to the write count index when writing is performed twice or so.).	S (At write)	New	
SD686	Standard ROM write (transfer) status	Write (transfer) status display (per- centage)	Displays the status of writing (transferring) the standard ROM (flash ROM) in percentage. (0 to 100%) "0" is set when the write direction is set.	S (At write)	New	
SD687 SD688	Standard ROM write count index	Write count index up to present	Stores the index value for the number of write operations to the standard ROM (flash ROM) up to the present in BIN 32-bit value. When the index value exceeds 100 thousand times, "FLASH ROM ERROR" (error code: 1610) occurs. (The index value is calculated even when exceeding 100 thousand times.) Note) The write count does not equal to the index value. (Since a flash ROM write life is prolonged by the system, 1 is added to the write count index when the total write capacity after the previous count up reaches about 1M byte.)	S (At write)	New	
SD689	Backup error factor	Backup error factor	Stores the factor of the error that occurred in the backup. 0H : No error 100H: Memory card not inserted 200H: Size of backup target data exceeded 300H: Memory card write inhibit setting 400H: Memory card write error 500H: Backup target data read error (from program memory) 500H: Backup target data read error (from standard RAM) 504H: Backup target data read error (from standard ROM) 510H: Backup target data read error (from system data)	S (Backup error occurrence)	New	QnU*1
SD690	Backup status	Backup status	Stores the current backup status. 0 : Before backup start 1 : Backup start prepared 2 : Backup start preparation completed 3 : Backup in execution 4 : Backup completed FF: Backup error No. is "10102" or later. (Except the Q001.JCPU_Q001.CPU_and Q	S (Status change) 01UCPU)	New	

А

App-175

Number	Name	Meaning	Explanation	Set by (When Set)	Corres- ponding ACPU D9 🗆 🗆	Corresponding CPU
SD691	Backup execution status	Backup execution status display (Percentage)	 Displays the execution status of data backup to the memory card in percentage (0 to 100%). "0" is set when the backup starts. 	S (Status change)	New	
SD692	Restoration error factor	Factor of error occurred in the restoration	Stores the factor of an error that occurred in the restoration. Each error factor is as follows: 800H: The CPU module model name is not matched. 801H: The file password is set only for the restoration destination data or is not matched. 810H: The verified backup data file is not matched or the backup data read failed.	S (Error occurrence)	New	
SD693	Restoration status	Current restoration status	Stores the current restoration execution status. Each error factor is as follows: 0 : Before restoration start 1 : Restoration in execution 2 : Restoration completed FF: Restoration error Sets "0" (Before restoring), however, when the restoration is completed only during the automatic restoration.	S (Status change)	New	QnU ^{*1}
SD694	Restoration execution status	Restoration execution status display (Percentage)	 Displays the execution status of restoration to the CPU module in percentage (0 to 100%). "0" is set before the restoration. Sets "0" (Before restoring), however, when the restoration is completed only during the automatic restoration. 	S (Status change)	New	
SD695	Specification of writing to stan- dard ROM instruction count	Specification of writing to standard ROM instruction count	 Specifies the maximum number of executions of the writing to standard ROM instruction (SP.DEVST) to write to the standard ROM per day. When the number of executions of the writing to standard ROM instruction exceeds the number of times set by SD695, "OPERATION ERROR" (error code: 4113) occurs. The setting range for SD695 is 1 to 32767. If 0 or value outside the range is set, "OPERATION ERROR" (error code: 4113) occurs at execution of the writing to standard ROM instruction. 	U	New	QnU
SD696 SD697	Available memory in memory card	Available memory in memory card	Stores the available memory in memory card. (Stores the value in 32-bit binary.)	S (Pookup in		
SD698	Backup data	Backup data	Storas the backup data capacity (Storas the value in 32 bit bioan)	operation)	New	QnU ^{*1}
SD699	capacity	capacity	Stores the backup data capacity. (Stores the value in 32-bit binary.)			

*1: The module whose first 5 digits of serial No. is "10102" or later. (Except the Q00UJCPU, Q00UCPU, and Q01UCPU)

(6) Instruction-Related Registers

TableApp.4.8 Special register

Number	Name	Meaning		Explanatio	on		Set by (When Set)	Corres- ponding ACPU D9□□□	Corresponding CPU			
SD705 SD706	Mask pattern	Mask pattern	 During block o mask pattern b words are bein masked values 	perations, turning SM705 being stored at SD705 (or ng used) to operate on all s.	ON makes it at SD705 an data in the b	ne e U	New	Q00J/Q00/Q01 Qn(H) QnPH QnPRH				
SD715			Patterns mask	ed by use of the IMASK i	nstruction are	e stored in the						
			tollowing mani	her:	h1 h0							
SD/16	IMASK instruction mask	Mask pattern		SD715 115 to	11 10	7	S (During	New				
	pattern	main patient		SD716 131 to	117 116	3	execution)					
SD717				SD717 I47 to	133 132	2			QCPU			
SD718												
SD710	Accumulator	Accumulator	 For use as rep 	lacement for accumulato	rs used in A s	eries programs.	S/U	New				
30719	Drogram No.	Drogram No.										
SD720	Program No. designation for PLOADP instruction	Program No. designation for PLOADP instruction	Stores the progra instruction when Designation rang	im number of the progran designated. e: 1 to 124	n to be loaded	U	New	Qn(H) QnPH				
SD738			Stores the me	ssage designated by the	MSG instruct	on.						
SD739				b15 to b8	b7 to	b0						
SD740			SD738	2nd character	1st cha	racter						
SD741	-		SD739	4th character	3rd cha	racter						
SD742			SD740	6th character	5th cha	racter						
SD743			SD741	10th character	9th cha	racter						
SD745			SD743	12th character	11th ch	aracter						
SD746						SD744	14th character	13th ch	aracter			
SD747			SD745	16th character	15th cha	aracter						
SD748			SD746	18th character	17th cha	aracter						
SD749			SD747	20th character	19th ch	aracter						
SD750			SD740	22nd character	21st cha	aracter						
SD751			SD750	26th character	25th ch	aracter						
SD752			SD751	28th character	27th ch	aracter						
SD753	Message	Magaza ataraga	SD752	30th character	29th ch	aracter	S (During	Now	OCDU			
SD754	storage	Message storage	SD753	32nd character	31st cha	aracter	execution)	INEW	QUFU			
SD755			SD754	34th character	33rd ch	aracter						
SD756			SD755	36th character	35th ch	aracter						
SD757			SD750	40th character	39th ch	aracter						
SD758			SD758	42nd character	41st cha	aracter						
SD759			SD759	44th character	43rd ch	aracter						
SD760			SD760	46th character	45th ch	aracter						
SD761			SD761	48th character	47th ch	aracter						
SD762			SD762	50th character	49th ch	aracter						
SD763			SD763	54th character	53rd ch	aracter						
SD764			SD765	56th character	55th ch	aracter						
SD765			SD766	58th character	57th ch	aracter						
SD765			SD767	60th character	59th cha	aracter						
SD768			SD768	62nd character	61st ch	aracter						
SD769			SD/69	64th character	63rd ch	aracter						

Number	Name	Meaning	Explanation	Set by (When Set)	Corres- ponding ACPU D9 🗆 🗖	Corresponding CPU
SD774 to SD775	PID limit setting (for complete derivative)	0: With limit 1: Without limit	• Specify the limit of each PID loop as shown below. b1 b0 b15 b1 b0 SD774 Loop16 to Loop2 Loop11 SD775 Loop32 to Loop18 Loop17	U	New	Qn(H) QnPRH QnU
SD774	PID limit setting (for complete derivative)	0: With limit 1: Without limit	Specify the limit of each PID loop as shown below. <u>b15 to b8 b7 to b1 b0</u> SD774 Loop8 to Loop2 Loop1	U	New	Q00J/Q00/Q01 ^{*9}
		b0 to b14: 0: Do not refresh	 Selects whether or not the data is refreshed when the COM instruction is executed. Designation of SD778 is made valid when SM775 turns ON. b15 b14 to b5 b4 b3 b2 b1 b0 SD778 0/1 0 0/1 0/1 0/1 0/1 0/1 I/O refresh C-Link refresh MELSECNET/H refresh of intelligent function modules Automatic refresh of CPU shared memory (Fixed to "0" for Redundant CPU) Execution/non-execution/non-execution/non-execution is performed under the following occasion. Refresh between multiple CPUs by COM instruction is performed under the following occasion. Receiving operation from other device: b4 of SD778(refresh in the CPU shared memory) is turned to 1. Sending operation from host CPU : b15 of SD778(communication with peripheral device is executed/nonexecuted) is turned to 0. 	U	New	Q00J/Q00/Q01 ^{*9} Qn(H) ^{*11}
SD778	Refresh processing selection when the COM/ CCOM instruction is executed	1: Refresh b15 bit 0: Communication with CPU module is executed 1: Communication withCPU module is nonexecuted	 Selects when of Not the data is refreshed when the COM instruction is executed. Designation of SD778 is made valid when SM775 turns ON. D15 b14 to b6 b5 b4 b3 b2 b1 b0 SD778 0/1 0 0/10/10/10/10/1 CC-Link refresh CC-Link refresh CC-Link refresh CC-Link refresh of intelligent function modules Reading input/output from group outside multiple CPU system Auto refresh using the multiple CPU system Execution/non-execution of communication with CPU module Reafresh between multiple CPUs by COM instruction is performed under the following occasion. Receiving operation from other device: b4 of SD778(refresh in the CPU shared memory) is turned to 1. Sending operation from the CPU : b15 of SD778(communication with peripheral device is executed/nonexecuted) is turned to 0. When b2 (refresh of the CC-Link IE controller network and MELSECNET/H) of SD778 is 1, the CC-Link IE controller network and MELSECNET/H perform refresh. Therefore, if there are many refresh points, processing time for the COM instruction will be extended. 	U	New	Qn(H) ^{*13} QnPH ^{*12} QnPRH

*9: Function version is B or later. *11: The module whose first 5 digits of serial No. is "04012" or later. *12: The module whose first 5 digits of serial No. is "07032" or later. *13: The module whose first 5 digits of serial No. is "09012" or later.

Number	Name	Meaning		Explanatio	n		Set by (When Set)	Corres- ponding ACPU D9 🗆 🗆 🗖	Corresponding CPU
SD778	Refresh processing selection when the COM/ CCOM instruction is executed	b0 to b14: 0: Do not refresh 1: Refresh b15 bit 0: communication with peripheral device is executed 1: communication with peripheral device is nonexecuted	Selects whether or nor instruction is execute Designation of SD776 b15b14 to SD778 0/1 0	bt the data is refresh d. B is made valid when b6 b5 b4 b3 b; 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1	Auto Auto Auto Auto CC-L CC-L CC-L CC-L Netwo Auto CC-L Netwo Auto CC-L Netwo Auto CC-L Netwo CC-L CC-L Netwo CC-L CC-L Netwo CC-L	COM, CCOM ON. fresh ink refresh sh of SECNET/H and ink IE controller ork matic refresh of gent function les refresh using J standard area of ble CPU Lystem and o outside. refresh using the ble CPU Lystem and outside. refresh using the ble CPU lysperm ution/non- tion of munication with module	U	New	QnU
SD781 to SD793	Mask pattern of IMASK instruction	Mask pattern	Stores the mask patter SD78 SD78 SD79 (The Q00UJCPU, Q00U registers SD786 to SD78	erns masked by the b15 1 163 to 2 179 to 1 1255 to 1 1255 to 1 1255 to 1 1255 sto 1 1255 sto	IMASK instruction b1 b0 149 148 165 164 1241 1240 U cannot use for the second sec	tion as follows:	S (During execution)	New	Qn(H) QnPH QnPRH QnU
SD781 to SD785 SD794	Mask pattern of IMASK instruction PID limit setting	Mask pattern	Stores the mask patter SD78 SD78 to SD78 SD78 Specify the limit of ea b15	errs masked by the b15 1 163 to 2 179 to 1 127 to 5 1127 to ch PID loop as show	IMASK instruct b1 b0 149 148 165 164 1113 1112 wn below. b1	tion as follows:	S (During execution)	New	Q00J/Q00/Q01
to SD795	(for incomplete derivative)	0: With limit 1: Without limit	SD794 Loop16 SD795 Loop32	to to	Loop2 Loop18	Loop1 Loop17	U New		Qn(H) ' ³ QnPRH QnU
SD794	PID limit setting (for incomplete derivative)	0: With limit 1: Without limit	Specify the limit of ea b15 to SD794	b8 b7	wn below. b1 3 to Loop	b0 b2 Loop1	U	New	Q00J/Q00/Q01 ^{*9}

*9: Function version is B or later.

*13: The module whose first 5 digits of serial No. is "09012" or later.

Number	Name	Meaning	Explanation	Set by (When Set)	Corres- ponding ACPU D9 🗆 🗆	Corresponding CPU
SD796	Maximum number of blocks used for the multiple CPU high- speed transmission dedicated instruction setting (for CPU No.1)		 Specifies the maximum number of blocks used for the multiple CPU high-speed transmission dedicated instruction (target CPU=CPU No.1). When the dedicated instruction of Multiple CPU transmission is executed to the CPU No.1, and the number of empty blocks of the dedicated instruction transmission area is less than the setting value of this register, SM796 is turned ON, which is used as the interlock signal for consecutive execution of the dedicated instruction of Multiple CPU transmission. 	U (At 1 scan after RUN)	New	
SD797	Maximum number of blocks used for the multiple CPU high- speed transmission dedicated instruction setting (for CPU No.2)	Maximum number of blocks range for dedicated instructions Range: 1 to 7	 Specifies the maximum number of blocks used for the multiple CPU high-speed transmission dedicated instruction (target CPU=CPU No.2). When the dedicated instruction of Multiple CPU transmission is executed to the CPU No.2, and the number of empty blocks of the dedicated instruction transmission area is less than the setting value of this register, SM797 is turned ON, which is used as the interlock signal for consecutive execution of the dedicated instruction of Multiple CPU transmission. 	U (At 1 scan after RUN)	New	0****15
SD798	Maximum number of blocks used for the multiple CPU high- speed transmission dedicated instruction setting (for CPU No.3)	(Default: 2 Or when setting other than 1 to 7, the register operates as 7).	 Specifies the maximum number of blocks used for the multiple CPU high-speed transmission dedicated instruction (target CPU=CPU No.3). When the dedicated instruction of Multiple CPU transmission is executed to the CPU No.3, and the number of empty blocks of the dedicated instruction transmission area is less than the setting value of this register, SMT98 is turned ON, which is used as the interlock signal for consecutive execution of the dedicated instruction of Multiple CPU transmission. 	U (At 1 scan after RUN)	New	
SD799	Maximum number of blocks used for the multiple CPU high- speed transmission dedicated instruction setting (for CPU No A)		 Specifies the maximum number of blocks used for the multiple CPU high-speed transmission dedicated instruction (target CPU=CPU No.4). When the dedicated instruction of Multiple CPU transmission is executed to the CPU No.4, and the number of empty blocks of the dedicated instruction transmission area is less than the setting value of this register, SM799 is turned ON, which is used as the interlock signal for consecutive execution of the dedicated instruction of Multiple CPU transmission. 	U (At 1 scan after RUN)	New	

*14: The Universal model QCPU except the Q00UJCPU, Q00UCPU, Q01UCPU, and Q02UCPU.

*15: The range is from 1 to 9 for the Q03UDCPU, Q04UDCPU, and Q06UDHCP whose first 5 digits of serial number is "10012" or earlier. (Default: 2 Or when setting other than 1 to 9, the register operates as 9).

(7) Debug

TableApp.4.9 Special register

Number	Name	Meaning	Explanation	Set by (When Set)	Corres- ponding ACPU D9□□□	Corresponding CPU
SD840	Debug function usage	Debug function usage	Stores the status of the debug function usage as shown below. 0: Forced ON/OFF for external I/O 1: Executional conditioned device test 2 to 15:Absent (0 fix) b15 to b2 b1 b0 0 Forced ON/OFF for external I/O Executional conditioned device test (0: Not used, 1: Used)	S (Status change)	New	QnU*1

*1: The module whose first 5 digits of serial No. is "10042" or later.

(8) Redundant CPU information (host system CPU information^{*1})

TableApp.4.10 Special register

Number	Name	Meaning	Explanation	Set by (When Set)	Corres- ponding ACPU D9	Corresponding CPU
SD952	History of memory copy from control system to standby system	Latest status of memory copy from control system to standby system	 Stores the completion status of the memory copy from control system to standby system executed last. Stores the same value as stored into SD1596 at normal completion/ abnormal completion of the memory copy from control system to standby system. Backed up for a power failure, this special register holds the status of memory copy from control system to standby system executed last. Cleared to 0 by latch clear operation. 	S (Status change)	New	QnPRH

*1: The host system CPU information is stored.

(9) Remote password count

TableApp.4.11 Special register

Number	Name	Meaning	Explanation	Set by (When Set)	Corres- ponding ACPU D9□□□	Corresponding CPU
SD979	Direct MELSOFT connection					
SD980 to SD995	Connection 1 to 16	Count of unlock	Stores the count of unlock processing failures. Range: 0 to FFFEH (FFFFH when the limit is exceeded)	S(Status change)	New	QnU*1
SD998	MELSOFT connection using TCP port	processing failures				
SD999	FTP communi cation port					

*1: This applies to the Built-in Ethernet port QCPU.

A

(10) A to Q conversion

ACPU special registers D9000 to D9255 correspond to Q special registers SD1000 to SD1255 after A to Q/QnA conversion.

(However, the Basic model QCPU and Redundant CPU do not support the A to Q conversion.)

These special registers are all set by the system, and cannot be set by the user program. To set data by the user program, correct the program for use of the QCPU special registers. However, some of SD1200 to SD1255 (corresponding to D9200 to 9255 before conversion) can be set by the user program if they could be set by the user program before conversion. For details on the ACPU special registers, refer to the user's manual for the corresponding CPU, and MELSECNET or MELSECNET/B Data Link System Reference Manuals.

⊠POINT -

Check "Use special relay/special register from SM/SD1000" for "A-PLC" on the PLC system tab of PLC parameter in GX Developer when the converted special registers are used with the High Performance model QCPU, Process CPU, and Universal model QCPU.

When not using the converted special registers, uncheck "Use special relay/ special registers from SM/SD1000" to save the time taken for processing special registers.

Supplemental explanation on "Special Register for Modification" column

- For the device numbers for which a special register for modification is specified, modify it to the special register for QCPU.
- ② For the device numbers for which _ is specified, special register after conversion can be used.
- ③ Device numbers for which \boxtimes is specified do not function for QCPU.

ACPU Special Register	Special Register after Conversion	Special Register for Modification	Name	Meaning			Corresponding CPU			
D9000	SD1000	_	Fuse blown	Number of module with blown fuse	When fuse blov lowest number (Example: Whe "50" is stored in To monitor the operation giver (Cleared when Fuse blow cher I/O stations.	 When tuse both microles are detected, the first i/o humber of the lowest number of the detected modules is stored in hexadecimal. (Example: When fuses of Y50 to 6F output modules have blown, "50" is stored in hexadecimal) To monitor the number by peripheral devices, perform monitor operation given in hexadecimal. (Cleared when all contents of SD1100 to SD1107 are reset to 0.) Fuse blow check is executed also to the output modules of remote I/O stations. 				
					Stores the model numbers or base AJ02 I/O Setting	dule numbers cor se slot numbers) module	responding to set when fuse blow or Extension	ting switch ccurred. base unit		
D9001	SD1001	_	Fuse blown	Number of module with blown fuse	octaing switch 0 1 2 3	data 0 1 2 3	Base unit slot No. 0 1 2 3	data 4 5 6 7	Qn(H) QnPH	
					3 4 5 6 7	3 4 5 6 7				
					 For the remote stored. 					
D9002	SD1002	_	I/O module verify error	I/O module verify error module number	 If I/O modules detected when lowest number hexadecimal. (; To monitor the operation giver (Cleared when I/O module ver I/O terminals. 	 If I/O modules, of which data are different from data entered, are detected when the power is turned on, the first I/O number of the lowest number unit among the detected units is stored in hexadecimal. (Storing method is the same as that of SD1000.) To monitor the number by peripheral devices, perform monitor operation given in hexadecimal. (Cleared when all contents of SD1116 to SD1123 are reset to 0.) I/O module verify check is executed also to the modules of remote I/O terminale 				
D9005	SD1005 – AC	AC DOWN Nur	Number of times for	 When the AC p occurrence of a (The value is st is switched fror 	oower supply mo an instantaneous tored in BIN code m OFF to ON.	dule is used, 1 is a power failure of v .) It is reset when	added at vithin 20ms. the power supply	Qn(H) QnPH QnU ^{*1}		
D9005		AC DOWN N counter A	AC DOWN	 When the DC power supply module is used, 1 is added at occurrence of an instantaneous power failure of within 10ms. (The value is stored in BIN code.) It is reset when the power suppl is switched from OFF to ON. 				Qn(H) QnPH QnU ^{*1}		
D9008	SD1008	SD0	Self-diagnostic error	Self-diagnostic error number	 When error is for stored in BIN c 	ound as a result	of self-diagnosis,	error number is	Qn(H) QnPH QnU ^{*1}	

*1: The relevant modules are as follows:
The Universal model QCPU whose serial number (first five digits) is "10102" or later.
Q00UJCPU, Q00UCPU, Q01UCPU

Α

ACPU Special Register	Special Register after Conversion	Special Register for Modification	Name	Meaning	Details	Corresponding CPU				
D9009	SD1009	SD62	Annunciator detection	F number at which external failure has occurred	F number at which external failure has occurred SET F instruction, the F number, which have turned on, is stored in BIN code. • SD1009 can be cleared by RST F or LEDR instruction. If another F number has been detected, the clearing of SD1009 causes the next number to be stored in SD1009.					
D9010	SD1010	×	Error step	Step number at which operation error has occurred.	When operation error has occurred during execution of application instruction, the step number, at which the error has occurred, is stored in BIN code. Thereafter, each time operation error occurs, the contents of SD1010 are renewed.					
D9011	SD1011	×	Error step	Step number at which operation error has occurred.	 When operation error has occurred during execution of application instruction, the step number, at which the error has occurred, is stored in BIN code. Since the step number is stored into SD1011 when SM1011 turns from OFF to ON, the data of SD1011 is not updated unless SM1011 is cleared by a user program. 	Qn(H) QnPH				
D9014	SD1014	×	I/O control mode	I/O control mode number	 The I/O control mode set is returned in any of the following numbers: 0: Both input and output in direct mode 1: Input in refresh mode, output in direct mode 3: Both input and output in refresh mode 					
D9015	SD1015	SD203	Operating status of CPU	Operating status of CPU	The operation status of CPU as shown below are stored in SD1015. b15 to b12 b11 to b8 b7 to b4 b3 to b0 b15 to b12 b11 to b8 b7 to b4 b3 to b0 b15 to b12 b11 to b8 b7 to b4 b3 to b0 b15 to b12 b11 to b8 b7 to b4 b3 to b0 b15 to b12 b11 to b8 b7 to b4 b3 to b0 b15 to b12 b11 to b8 b7 to b4 b3 to b0 cPU key switch 0 RUN 1 STOP 2 PAUSE*1 cPU key switch 1 STOP 2 PAUSE*1 cPU key switch 0 RUN TOP b15 to b12 below 1 STOP 2 PAUSE*1 *1: When the CPU mdoule is in RUN mode and SM1040 is off, the CPU mdoule remains in RUN mode if changed to PAUSE mode.	Qn(H) QnPH QnU ^{*1}				

*1: The relevant modules are as follows:
The Universal model QCPU whose serial number (first five digits) is "10102" or later.
Q00UJCPU, Q00UCPU, Q01UCPU

ACPU Special Register	Special Register after Conversion	Special Register for Modification	Name	Meaning	Details	Corresponding CPU
D9016	SD1016	×	Program number	0: Main program (ROM) 1: Main program (RAM) 2: Subprogram 1 (RAM) 3: Subprogram 2 (RAM) 4: Subprogram 3 (RAM) 5: Subprogram 1 (ROM) 6: Subprogram 2 (ROM) 8: Main program (E ² PROM) 9: Subprogram 2 (E ² PROM) 8: Subprogram 3 (E ² PROM) 8: Subprogram 3 (E ² PROM)	 Indicates which sequence program is run presently. One value of 0 to B is stored in BIN code. 	Qn(H) QnPH
D9017	SD1017	SD524	Scan time	Minimum scan time (10 ms units)	 If scan time is smaller than the content of SD1017, the value is newly stored at each END. Namely, the minimum value of scan time is stored into SD1017 in BIN code. 	On(H)
D9018	SD1018	SD520	Scan time	Scan time (10 ms units)	At every END, the scan time is stored in BIN code and always rewritten.	QnPH OnLI ^{*1}
D9019	SD1019	SD526	Scan time	Maximum scan time (10 ms units)	 If scan time is larger than the content of SD1019, the value is newly stored at each END. Namely, the maximum value of scan time is stored into SD1019 in BIN code. 	
D9020	SD1020	×	Constant scan	Constant scan time (User sets in 10 ms units)	 Sets the interval between consecutive program starts in multiples of 10 ms. No setting to 200 : Set. Program is executed at intervals of (set value)× 10 ms. 	Qn(H) QnPH
D9021	SD1021	-	Scan time	Scan time (1 ms units)	At every END, the scan time is stored in BIN code and always rewritten.	
D9022	SD1022	SD412	1 second counter	Count in units of 1s.	 When the PC CPU starts running, it starts counting 1 every second. It starts counting up from 0 to 32767, then down to -32768 and then again up to 0. Counting repeats this routine. 	
D9025	SD1025	-	Clock data	Clock data (year, month)	The year (last two digits) and month are stored as BCD code as shown below. b15 to b12 b11 to b8 b7 to b4 b3 to b0 Example: 1987, July Year Month	Qn(H) QnPH
D9026	SD1026 - Clock data Clock data (day, hour) • The day and hour are stored as BCD code as b15 to b12b11 to b8b7 to b4b3 to b0 Day Hour		The day and hour are stored as BCD code as shown below. b15 to b12b11 to b8b7 to b4b3 to b0 Example: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	QnU ^{*1}		
D9027	SD1027 - Clock data (minute, second) Clock data (minute, second) • The minute and second are stored as BCD code as shown below. • The minute and second are stored as BCD code as shown below. • The minute and second are stored as BCD code as shown below. • The minute and second are stored as BCD code as shown below. • The minute and second are stored as BCD code as shown below. • The minute and second are stored as BCD code as shown below. • The minute and second are stored as BCD code as shown below. • If the minute and second are stored as BCD code as shown below. • The minute and second are stored as BCD code as shown below. • If the minute and second are stored as BCD code as shown below. • If the minute and second are stored as BCD code as shown below. • If the minute and second are stored as BCD code as shown below. • If the minute and second are stored as BCD code as shown below. • If the minute and second are stored as BCD code as shown below. • If the minute and second are stored as BCD code as shown below. • If the minute and second are stored as BCD code as shown below. • If the minute and second are stored as BCD code as shown below. • If the minute and second are stored as BCD code as shown below. • If the minute and second are stored as BCD code as shown below. • If the minute and second are stored as BCD code as shown below. • If the minute and second are stored as BCD code as shown below. • If					

*1: The relevant modules are as follows:

The Universal model QCPU whose serial number (first five digits) is "10102" or later.
 Q00UJCPU, Q00UCPU, Q01UCPU

Appendix 4 SPECIAL REGISTER LIST

А

ACPU Special Register	Special Register after Conversion	Special Register for Modification	Name	Meaning	Details	Corresponding CPU
D9028	SD1028	_	Clock data	Clock data (day of week)	The day of the week is stored as BCD code as shown below.	Qn(H) QnPH QnU ^{*1}
D9035	SD1035	SD648	Extension file register	Use block No.	Stores the block No. of the extension file register being used in BCD code.	
D9036	SD1036	×	Extension file	Device number when	Designate the device number for the extension file register for direct read and write in 2 words at SD1036 and SD1037 in BIN data. Use consecutive numbers beginning with R0 of block No. 1 to designate device numbers. Extension file register	
D9037	SD1037	×	registerfor designation of device number	from extension file register are directly accessed	to Block No.1 16383 area 16384 Block No.2 16384 to Device No. (BIN data) to	
D9038	SD1038	SD207	LED display	Priorities 1 to 4	 Sets priority of ERROR LEDs which illuminate (or flicker) to indicate errors with error code numbers. Configuration of the priority setting areas is as shown below. b15 to b12 b11 to b8 b7 to b4 b3 to b0 SD307 Priority 4 Priority 3 Priority 2 Priority 1 	
D9039	SD1039	SD208	priority ranking	Priorities 5 to 7	For details, refer to the applicable CPUs User's Manual and the ACPU Programming manual (Fundamentals).	Qn(H)
D9044	SD1044	×	For sampling trace	Step or time during sampling trace	Turned on/off with a peripheral device. When STRA or STRAR instruction is executed, the value stored in SD1044 is used as the sampling trace condition. At scanning At timeTime (10 msec unit) The value is stored into SD1044 in BIN code.	Girti
D9049	SD1049	×	Work area for SFC	Block number of extension file register	 Stores the block number of the expansion file register which is used as the work area for the execution of a SFC program in a binary value. Stores "0" if an empty area of 16K bytes or smaller, which cannot be expansion file register No. 1, is used or if SM320 is OFF. 	
D9050	SD1050	×	SFC program error number	Error code generated by SFC program	Stores error code of errors occurred in the SFC program in BIN code. Solution in the SFC program in BIN code. Solution is SFC program parameter error Si SFC code error Si SFC code error Si Block start error S4: SFC program operation error	
D9051	SD1051	×	Error block	Block number where error occurred	Stores the block number in which an error occurred in the SFC program in BIN code. In the case of error 83 the starting block number is stored.	
D9052	SD1052	×	Error step	Step number where error occurred	 Stores the step number, where error code 84 occurred in an SFC program, in BIN value. Stores "0" when error code 80, 81 or 82 occurred. Stores the block stating step number when error code 83 occurs. 	

*1: The relevant modules are as follows:

The Universal model QCPU whose serial number (first five digits) is "10102" or later.
Q00UJCPU, Q00UCPU, Q01UCPU

ACPU Special Register	Special Register after Conversion	Special Register for Modification	Name	Meaning	Meaning Details Co						
D9053	SD1053	×	Error transition	Transition condition number where error occurred	Stores the transition condition number, where error code 84 occurred in an SFC program, in BIN value. Stores "0" when error code 80, 81, 82 or 83 occurred.						
D9054	SD1054	×	Error sequence step	Sequence step number where error occurred	 Stores the sequence step number of transfer condition and operation output in which error 84 occurred in the SFC program in BIN code. 						
D9055	SD1055	SD812	Status latch execution step number	Status latch step	 Stores the step number when status latch is executed. Stores the step number in a binary value if status latch is executed in a main sequence program. Stores the block number and the step number if status latch is executed in a SFC program. 	Qn(H) QnPH					
D9072	SD1072	×	PLC communication check	Data check of serial communication module	 In the self-loopback test of the serial communication module, the serial communication module writes/reads data automatically to make communication checks. 	Qn(H) QnPH					
D9085	SD1085	×	Register for setting time check value	for ne 1 s to 65535 s lue · Sets the time check time of the data link instructions (ZNRD, ZNWR) for the MELSECNET/10. · Setting range : 1 s to 65535 s (1 to 65535) · Setting unit : 1 s · Default value : 10 s (If 0 has been set default 10 s is applied)							
D9090	SD1090	×	Number of special functions modules over	Number of special functions modules over	 For details, refer to the manual of each microcomputer program package. 	QIIPH					
D9091	SD1091	×	Detailed error code	Self-diagnosis detailed error code	Stores the detail code of cause of an instruction error.	Qn(H) QnPH QnU ^{*1}					
D9094	SD1094	SD251	Head I/O number of I/O module to be replaced	Head I/O number of I/ O module to be replaced	 Stores the first two digits of the head I/O number of the I/O module, which will be dismounted/mounted online (with power on), in BIN value. Example) Input module X2F0 → H2F 	Qn(H) QnPH					
D9095	SD1095	SD200	DIP switch information	DIP switch information	The DIP switch information of the CPU module is stored in the following format. O: OFF 1: ON b15 to b5 b4 b3 b2 b1 b0 D9095 0 SW2 SW2 SW3 SW4 SW5	Qn(H) QnPH					

*1: The relevant modules are as follows:
The Universal model QCPU whose serial number (first five digits) is "10102" or later.
Q00UJCPU, Q00UCPU, Q01UCPU

Α

ACPU Special Register	Special Register after Conversion	Special Register for Modification	Name	Meaning	Details	Corresponding CPU								
D9100	SD1100				Output module numbers (in units of 16 points), of which fuses have blown, are entered in bit pattern. (Preset output module numbers									
D9101	SD1101			h15b14b13b12b11b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0										
D9102	SD1102							SD1100 0 0 0 1 (YCO) 0 0 0 1 (YOO) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0						
D9103	SD1103		Fuse blown 16	Fuse blown	Fuse blown	Fuse blown	Fuse blown 16 p	Bit pattern in units of 16 points, indicating	Bit pattern in units of 16 points, indicating	Bit pattern in units of 16 points, indicating	Bit pattern in units of 16 points, indicating	Bit pattern in units of 16 points, indicating	SD1101 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Qn(H) OnPH
D9104	SD1104	_	module	the modules whose fuses have blown	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	QnU ^{*1}								
D9105	SD1105				Indicates fuse blow.									
D9106	SD1106				Fuse blow check is executed also to the output module of remote I/ O station.									
D9107	SD1107				(If normal status is restored, clear is not performed. Therefore, it is required to perform clear by user program.)									
D9108	SD1108				Set the value of the step transition monitoring timer and the									
D9109	SD1109			Timer setting valve and the F number at time out	annunciator number (F number) that will be turned ON when the monitoring timer times out.									
D9110	SD1110	•			b15 to b8 b7 to b0	l								
D9111	SD1111	-	Step transfer monitoring timer		Time out F number at F number setting Time out F number setting Time time limit setting									
D9112	SD1112	•	setting											
D9113	SD1113				 By turning ON any of SM1108 to SM1114, the monitoring timer starts. If the transition condition following a step which corresponds to the timer is not established within set time, set annunciator (F) is 									
D9114	SD1114				turned on.)									
D9116	SD1116				When I/O modules, of which data are different from those entered at power-ON, have been detected, the I/O module numbers (in									
D9117	SD1117				units of 16 points) are entered in bit pattern. (Preset I/O module numbers set in parmeters when parameter setting has been performed.)									
D9118	SD1118				b15b14b13b12b11b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0									
D9119	SD1119	•		Bit pattern, in units of	Bit pattern, in units of	SD1116 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0								
D9120	SD1120	-	verification error	the modules with verification errors.	SD1117 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Op/H)								
D9121	SD1121				Indicates an I/O module verify error.	Qn(H) QnPH								
D9122	SD1122	•			I/O module verify check is executed also to remote I/O station									
D9123	SD1123	•			modules. (If normal status is restored, clear is not performed. Therefore, it is required to perform clear by user program.)									
D9124	SD1124	SD63	Number of annuciator detections	Number of annuciator detections	 When one of F0 to 255 (F0 to 2047 for AuA and AnU) is turned on by SET F instruction 1 is added to the contents of SD63. When RST F or LEDR instruction is executed, 1 is subtracted from the contents of SD63. Quantity, which has been turned on by SET F instruction is stored into SD63 in BIN code. The value of SD63 is maximum 16. 									

*1: The relevant modules are as follows:
The Universal model QCPU whose serial number (first five digits) is "10102" or later.
Q00UJCPU, Q00UCPU, Q01UCPU

ACPU Special Register	Special Register after Conversion	Special Register for Modification	Name	Meaning						D	etai	ls								Correspo CP	onding U
D9125	SD1125	SD64			When a annunc register The F r	any c iator red in	of F0 r nun nto S	to 2 nber D11	047 i s (F i 25 to	is tur numl o SD	ned bers) 1132	on by that	y SE are t	TFi turne	instr ed o	uctio n in (on, th orde	ne r are	of		
D9126	SD1126	SD65		SD1125 to SD1132, and the F numbers stored after the erased F number are shifted to the preceding registerers. By executing LEDR instruction, the contents of SD1125 to SD1132 are shifted unward by one																	
D9127	SD1127	SD66			When t into SD	here 112	are 5 to 3	8 an SD1 ⁻ SET	nuno 132 e RST	even	if de	ectior tecte	ns, th d. SET	SET	SET	ne is	not	store	d		
D9128	SD1128	SD67	Annunciator	Annunciator	SD1009	0	50	50	50	50	50	50	50	50	50	50	50	99		Qn(l	H)
D9129	SD1129	SD68	detection number	detection number	SD1124 SD1125 SD1126	0	50 0	2 50 25	50 25	2 50 99	50 99	4 50 99	50 99	50 99	, 50 99	o 50 99	0 50 99	99 15		QnU	п *1
					SD1127	0	0	0	99	0	15	15	15	15	15	15	15	70			
D9130	SD1130	SD69			SD1128	0	0	0	0	0	0	70	70	70	70	70	70	65			
Datat	054404	0.0.70			SD1129	0	0	0	0	0	0	0	65	65	65	65	65	38			
D9131	SD1131	SD70			SD1130	0	0	0	0	0	0	0	0	38	38	38	38	110			
D 0100	0.5.4.00	0.0.74			SD1131	0	0	0	0	0	0	0	0	0	110	110	110	151			
D9132	SD1132	SU71			SD1132	0	0	0	0	0	0	0	0	0	0	151	151	210			

*1: The relevant modules are as follows:
The Universal model QCPU whose serial number (first five digits) is "10102" or later.
Q00UJCPU, Q00UCPU, Q01UCPU

А

(11) QCPU with built-in Ethernet port

TableApp.4.14 S	Special	register
-----------------	---------	----------

Number		Name	Meaning	Explanation	Set by (When Set)	Corres- ponding ACPU D9 🗆 🗆	Corresponding CPU
SD1270		Operation result	Stores operationresult.	Stores the operation result of the time setting function. 0: Not executed 1: Success FFFFH: Failure			
SD1271				Stores years (last two digits of the Christian Era) and monthes by two digits of BCD code. b15 to b12b11 to b8 b7 to b4 b3 to b0 Example: July, 1993 9307H Year Month			
SD1272				Stores dates and hours acquired with time setting function by two digits of BCD code. b15 to b12 b11 to b8 b7 to b4 b3 to b0 Example: Day Hour			
SD1273	ime setting function	Execution time	Stores time acquired with time setting function.	Stores minutes and seconds acquired with time setting function by two digits of BCD code. b15 to b12b11 to b8 b7 to b4 b3 to b0 Example: 35 min., 48 sec. 3548H	S (status change)		
SD1274				Stores years (first two digits of the Christian Era) and days acquierd with time setting function. b15 to b12 b11 to b8 b7 to b4 b3 to b0 1993, Friday 1905H Day of the week 0 Sunday 1 Monday 2 Tuesday 3 Wednesday 4 Thursday 5 Friday 6 Saturday		New	QnU ^{*1}
SD1275		Required response time	Stores time required for clock time aquisition.	Stores time taken from transmission to SNTP server to clook time setup at CPU. Range: 0 to FFFEн (Unit: ms) FFFFн when the above limit is exceeded.			
SD1276	Forc	eed nection lidation	Specifies forced connection invalidation.	Specify this when a connection is to be invalidated forcibly on the user program. If invalidation is specified for a connection, it stops communication and does not respond. (When a remote password is used and frequent unlock processing errors have occurred on a connection, this is useful for temporarily inhibiting access to the connection.) SD1276 b15b14 to b15b17 Connection 1 Connection 16 Connection 10 Connection 10 Connection 10 Connection 10 Connection 10 Connection 10 Connection 10 Connection 10 Connection 10 MELSOFT communication port Connection 10 MELSOFT Connection 10 MELSOFT Connection 10 Connection 10 Connect	U		

*1: This applies to the Built-in Ethernet port QCPU.

Number	Name	Meaning	Explanation	Set by (When Set)	Corres- ponding ACPU D9 🗆 🗆	Corresponding CPU
SD1282	Open completion signal	Stores open completion status	Open completion status of connections (whose open system is socket communication) using socket communication functions is stored. All bits corresponding to connections using any communications other than the socket communication are fixed to "0". D15b14 to D15b14 Connection 1 Connection 2 to Connection 15 Connection 16 0 : Open processing is not completed. 1 : Open processing is completed.	S (Status change)	New	QnU ^{*2}
SD1284	Open request signal	Stores open request status	Open request status of connections using socket communication functions is stored. All bits corresponding to connections using any communications other than the socket communication are fixed to "0". SD1284 to b1 b0 Connection 1 Connection 2 to Connection 15 Connection 15 0 : No open requests 1 : In open request	S (Status change)	New	QnU ^{*2}
SD1286	Reception status signal	Stores reception status	Reception status of connections using socket communication functions is stored. All bits corresponding to connections using any communications other than the socket communication are fixed to "0". SD1286 D1286 Connection 1 Connection 2 to Connection 15 Connection 15 Connection 16 For TCP (Normal reception mode) 0 : Data have not been received. 1 : Data have not been received. For TCP (Fixed length reception mode) 0 : Data have not been received ,or received data size has not been reached to valid buffer size. 1 : Received data size has not been reached to valid buffer size. For UDP 0 : Data have not been received. 1 : Data have not been received ,or received data size has not been reached to valid buffer size. For UDP 0 : Data have not been received. 1 : Data have not been received.	S (Status change)	New	QnU*2
SD1288	Built-in Ethernet port connection status	Stores connection status of built-in Ethernet port	Connection status of built-in Ethernet port is stored. SD1288 D1288 Connection status O: Not connected with or disconnected from hubs or devices. 1: Connected to hubs or devices It may take several seconds for the QCPU to determine whether to connect or disconnect a built-in Ethernet port.	S (Status change)	New	QnU ^{*2}

*2: The built-in Ethernet port QCPU whose serial number (first five digits) is "11012" or later is targeted.

А

(12) Fuse blown module

Number	Name	Meaning	Explanation Set by (When Set)	Corres- ponding ACPU D9□□□	Corresponding CPU
SD1300			The numbers of output modules whose fuses have blown are input as a	D9100	
SD1301			bit pattern (in units of 16 points).	D9101	
SD1302		Bit pattern in units of 16 points, indicating the	D9102		
SD1303			Also detects blown fuse condition at remote station output modules	D9103	
SD1304			of 16 points, b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0	D9104	
SD1305	l		SD1300 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0	D9105	Qn(H)
SD1306	Fuse blown	modules whose	S (Error)	D9106	
SD1307	module	0 : No blown fuse	SD1301 Y1F0 0 0 0 0 Y1A0 0 0 0 0 0 0 0 0 0 0 0 0 0	D9107	QnU
SD1308		1 : Blown fuse		New	
SD1309	1	present			
to			Indicates fuse blow.	New	
SD1330			Not cleared even if the blown fuse is replaced with a new one		
SD1331			This flag is cleared by error resetting operation.	New	

TableApp.4.16 Special register

(13) I/O module verification

TableApp.4.17 Special register

Number	Name	Meaning							Ex	pl	ana	tio	n								Set by (When Set)	Corres- ponding ACPU D9 🗆 🗆 🗖	Corresponding CPU							
SD1400			• Whe	en the	e I/O	mo	dules	s wł	nose	1/0	mo	dule	e inf	orma	atior	n diff	ers	fron	n tha	t		D9116								
SD1401			regis	stere	d at p red in	OW bit	er-Ol	Na	re de	tec	ted,	the	nur	nber	's of	tho	se I/	Om	odul	es		D9117								
SD1402		are entered in bit pattern. (If the I/O numbers are set by parameter, the parameter-set											set r	านm	bers			D9118												
SD1403		Bit pattern, in units of 16 points, indicating the modules with	are stored.)													D9119														
SD1404			 Also 	Also detects I/O module information.												D9120														
SD1405			modules with	modules with	modules with	modules with	modules with	modules with	modules with	modules with		b15	b14 b	13	b12 b	011	b10 b	9	b8	b7	b6	b5	b4	b3	b2	b1	b0	1		D9121
SD1406	I/O module	verification errors.	SD1400	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	(X_0Y)		S (Error)	D9122	QnPH							
SD1407	verity erfor	verification	SD1401	0	0	0	0	0	0 (*	1 (X)	0	0	0	0	0	0	0	0	0			D9123	QnU							
SD1408		errors		<u>}</u>	h	~	~~~~	~	***	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		h~~	*~~	*~~	<u></u>	*~~	₩~~	*~	*~~	1		New								
SD1409	1	1 : I/O verification	SD1431	0	(XY) (IFE0)	0	0	0	0	0	0	0	0	0	0	0	0	0	0											
to		error present						Ind	licato		anl			dula		rifu	orr	or		-		New								
SD1430									licale	:5	an i	"U		uule	; ve	silly	en	Ur.												
SD1431			 Not This 	flag	red ev is cle	/en eare	ed by	err	own f or res	us set	e is i ting	repl ope	lace eratio	d wit on.	ha	new	one	Э.				New								

(14) Process control instructions

TableApp.4.18 Special register

Number	Name	Meaning	Explanation	Set by (When Set)	Corres- ponding ACPU D9 🗆 🗆	Corresponding CPU
SD1500 SD1501	Basic period	Basic period tome	Set the basic period (1 second units) use for the process control instruction using floating point data. Floating point data = SD1501 SD1500	U	New	
SD1502	Process control instruction detail error code	Process control instruction detail error code	Shows the detailed error contents for the error that occurred in the process control instruction.	S (Error)	New	QnPH
SD1503	Process control instruction generated error location	Process control instruction generated error location	Shows the error process block that occurred in the process control instruction.	S (Error)	New	
SD1506 SD1507	Dummy device	Dummy device	Used to specify dummy devices by a process control instruction.	U	New	QnPH QnPRH
SD1508	Function availability selection for process control instruction	b0 Bumpless function availability setting for the S.PIDP instrunction 0: Enabled 1: Disabled (Default: 0)	Selects the availability (enabled/disabled) of the function for process control instructions. <u>b15 b14 to b2 b1 b0</u> SD1508 0 0 1/0 Bumpless function availability for the S.PIDP instruction	U	New	QnPH QnPRH

(15) For redundant systems (Host system CPU information ^{*1}) SD1510 to SD1599 are only valid for redundant systems. They are all set to 0 for stand-alone systems.

Number	Name	Meaning	Explanation	Set by (When Set)	Corres- ponding ACPU D9 🗆 🗆	Corresponding CPU
SD1585	Redundant system LED status	4 LED states • BACKUP • CONTROL • SYSTEM A • SYSTEM B	The LED status for BACKUP, CONTROL, SYSTEM A, SYSTEM B is stored in the following format: b15 to b10b9 b8 b7 b6 b5 b4 b3 b2 to b0 0 0	S (status change)	New	QnPRH
SD1588	Reason(s) for system switch- ing	Reason(s) for system switching that occurred in host station	Stores the reason(s) for system switching on the host system. The following values are stored corresponding to the methods for system switching: Initialized to 0 when the power supply is switched off and then on or the RESET switch is set to the RESET position and then to the neutral position. 0: Initial value (control system has not been switched) 1: Power off, Reset, H/W failure, WDT error, 2: CPU stop error (except WDT) 3: System switching request from network module 16: System switching dedicated instruction 17: System switching request from GX Developer	S (when condition occurs)	0	
SD1589	Reason(s) for system switching failure conditions	Reason(s) for system switching failure No.	 Stores the reason(s) for system switching failure. 0: System switching normal (default) 1: Tracking cable is not connected , tracking cable error, FPGA circuit failure. 2: H/W failure, power-OFF, Reset, WDT error on the standby system 3: H/W failure, power-OFF, Reset, WDT error on the Control system 4: Tracking data transfer initialization 5: Communication timeout 6: Serious error(except WDT error) on the Standby system 7: There is difference between both systems (detected as Backup mode only) 8: During memory copy from control system to standby system 9: During online program change 10: During detection of intelligent function module failure on the standby system 11: System switching being executed Resets to "0" when host system is powered on. Resets to "0" once system has been switched successfully. 	S(when system is switched)	Ο	QnPRH
SD1590	Network module head address, which requested system switching	Network module head address, which requested system switching	 Stores head address of network module which a system switch request was initiated. Turns off automatically by system, after network error is reset by user. <u>b15 to b11 to b1 b0</u> 0/1 ··· 0/1 0 1:0N <u>b15 to b11 to b1 b0</u> 0/1 ··· 0/1 0 1:0N <u>b15 to b11 to b1 b0</u> 0/1 ··· 0/1 0 1:0N Module 0: CPU module is invalid as it is 2-slot model. Module of the CPU module side of the CPU module 1: Module at the rightmost end of the 12-slot base (Q312B) Please refer to SD1690 which stores the corresponding head address of network module on other system. 	S (Error/Status change)	New	QnPRH
SD1595	target I/O number	Memory copy target I/O number	Stores the memory copy target I/O No.(Standby system CPU module: 3D1H) of before SM1595 is turned from OFF to ON. Stores the execution result of Memory copy function. ú : Memory copy successfully completed	U	New	
SD1596	Memory copy status	Memory copy status	4241н : Standby system power supply off 4242н : Tracking cable is disconnected or is damaged 4247н : Memory copy function is being executed 4248н : Unsupported memory copy destination I/O Number	S (Status change)	New	

TableApp.4.19 Special register

*1: The information of the host CPU module is stored.

A

(16) For redundant systems (Other system CPU information ^{*1})

SD1600 to SD1659 is only valid during the back up mode for redundant systems, and refresh cannot be done when in the separate mode. SD1651 to SD1699 are valid in either the backup mode or separate mode. When a stand-alone system SD1600 to SD1699 are all 0.

Number	Name	Meaning	Explanation	Set by (When Set)	Corres- ponding ACPU SD 🗆 🗆*2	Corresponding CPU
SD1600	System error information	System error information	 If an error is detected by the error check for redundant system, the corresponding bit shown below turns ON. That bit turns OFF when the error is cleared after that. b15 b2 b1 b1 b1 b2 b1 /b>	S(Every END)	_	
SD1601	System switching results	System switching results	 In the debug mode, b0, b1, b2 and b15 are all OFF. Stores the reasons for system switching. Stores the reasons for system switching into SD1601 of both systems when system switching occarred. Initialized to 0 at power OFF to ON/reset to unreset. The following shows values stored into this register. 0: Initial value (System switching has not occurred) 1: Power-OFF, Reset, H/W failure, WDT error,(*) 2: CPU stop error (except WDT) 3: System switching request by network module 16: System switching request from GX Developer *: When the system is switched by the power OFF/reset of the control system, "1" is not stored into SD1601 of the new standby system. 	S(when system is switched)		QnPRH
SD1602	System switching dedicated instruction parameter	System switching dedicated instruction parameter	 Stores the parameters for system switching dedicated instruction SP.CONTSW. (The parameters (SD1602) for SP.CONTSW are stored in both systems A&B) SD1602 is only valid when "16" is stored in SD1601. This SD1602 is updated once system switch instruction SP.CONTSW is activated. 	S(when system is switched)		
SD1610	Other system diagnostic error	Diagnostic error code	The error value sorted in BIN code. Stores SD0 of the other system CPU module	S(Every END)	SD0	
SD1611 SD1612 SD1613	Other system diagnostic error occurrence time	Diagnostic error occurrence time	 Stores the date and time when diagnostics error occurred corresponding to error code stored in SD1610. Data format is the same as SD1 to SD3. Also, stores the value to SD1 to SD3. 	S(Every END)	SD1 to SD3	
SD1614	Other system error information category	Error information category code	 Stores the category code corresponding to the error comment information/individual information code. Data format is the same as SD4. Also, stores the value to SD4. 	S(Every END)	SD4	
SD1615 to SD1625	Other system error common information	Error common information	 Stores the common information corresponding to the error code stored in this system CPU. Data composition is the same as SD5 to SD15. Also, stores the value to SD5 to SD15. 	S(Every END)	SD5 to SD15	
SD1626 to SD1636	Other system error individual information	Error individual information	 Stores the individual information corresponding to the error code stored in this system CPU. Data composition is the same as SD16 to SD26. Also, stores the value to SD16 to SD26. 	S(Every END)	SD16 to SD26	

TableApp.4.20 Special register

*2: Shows the special register (SD \Box \Box) for the host system CPU module.

Number	Name	Meaning	Explanation	Set by (When Set)	Corres- ponding ACPU SD 🗆 🗆 *2	Corresponding CPU
SD1649	Standby system error cancel command	Error code of error to be cleared	 Stores the error code of the error to be cleared by clearing a standby system error. Stores the error code of the error to be cleared into this register and turn SM1649 from OFF to ON to clear the standby system error. The value in the lowest digit (1 place) of the error code is ignored when stored into this register. (By storing 4100 in this register and resetting the error, errors 4100 to 4109 can be cleared.) 	S(Every END)		
SD1650	Other system operating information	Other system operating information	Stores the operation information of the other system CPU module in the following format. "00FFH" I stored when a communication error occurs, or when in debug mode. b15 to b8 b7tob4 b3to b0 SD1650 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	S(Every END)	_	QnPRH
SD1690	Network module head address, which requested system switching on host (control) system	Network module head address, which requested system switching on host (control) system	 Stores head address of network module which a system switch request was initiated, using the following format. Turns off automatically by system, after network error is reset by user. <u>b15 to b11 to b1 b0</u> 0 0/1 0/1	S(Every END)		

*2 : Shows the special register (SD \Box) for the host system CPU.

A

(17) For redundant systems (Trucking)

SD1700 to SD1779 is valid only for redundant systems. These are all 0 for stand-alone systems.

TableApp.4.21 Special register

Number	Name	Meaning	Explanation	Set by (When Set)	Corres- ponding ACPU D9 🗆	Corresponding CPU
SD1700	Tracking error detection count	Tracking error detection count	• When the tracking error is detected, count is added by one. • The counter repeats an increment and decrement of the value; 0 \rightarrow 32767 \rightarrow - 32768 \rightarrow 0	S(Error)		QnPRH
SD1710	Waiting time for online program change (standby system)	Waiting time for online program change (standby system)	 Set in seconds the waiting time of the standby system CPU module from when online program change to the control system CPU module is completed by the online program change for redundancy function until the online program change request is issued to the standby system CPU module starts. If no online program change request is issued to the standby system CPU module within the preset time after completion of the online program change to the control system CPU module, both system CPU modules is sude to the standby system CPU module, both system CPU modules is at the failure of the online program change for redundancy. In this case, both system CPU module is set to accept a new request of online program change for redundancy. In this case, both system CPU module is set to accept a new request of online program change for redundancy. When both systems are powered on, 90 seconds are set to SD1710 as the default value. Set the value within the range 90 to 3600 seconds. When the setting is 0 to 89 seconds, it is regarded as 90 seconds for operation. The waiting time for a start of online program change to the standby system CPU module is checked according to the SD1710 setting during online change of multiple blocks and online change of batch of files for redundancy. 	U/ S (Initial)	New	QnPRH

(18) Redundant power supply module information

SD1780 to SD1789 are valid only for a redundant power supply system. The bits are all 0 for a singular power supply system.

TableApp.4.22 Special register

Number	Name	Meaning	Explanation	Set by (When Set)	Corres- ponding ACPU D9 🗆 🗆 🗆	Corresponding CPU
SD1780	Power supply off detection status	Power supply off detection status	 Stores the status of the redundant power supply module with input power OFF in the following bit pattern. Stores 0 when the main base unit is not the redundant power main base unit (Q38RB). Input power OFF detection status of power supply 2¹ b15 to b9 b8 b7 to b1 b0 stored to b15 to b9 b8 b7 to b1 b0 Input power OFF status Input power OFF status Main base unit 1st stage Extension base unit 1st stage Extension base unit 1st stage When configuring multiple CPU, the status is stored to 1st CPU module. 	S(Every END)	New	
SD1781	Power supply failure detection status	Power supply failure detection status	 Stores the failure detection status of the redundant power supply module in the following bit pattern. (The corresponding bit is cleared to 0 when the input power to the faulty redundant power supply module is switched OFF after detection of the redundant power supply module failure.) Stores 0 when the main base unit is not the redundant power main base unit (Q38RB). Failure detection status of power supply 1*1 Failure detection status of power supply 1*1 Each bit 0: Redundant power supply module failure not detected/No redundant power supply module failure not detected/No redundant power supply module failure not detected (Detectable for redundant power supply module failure not detected (Detectable for redundant power supply module only) Main base unit 1st stage Extension base unit 1st stage Extension base unit 1st stage When configuring multiple CPU, the status is stored to 1st CPU module. 	S(Every END)	New	Qn(H) ^{*2} QnPH ^{*2} QnPRH QnU ^{*3}
SD1782	Momentary power failure detection counter for power supply 1 ¹	Momentary power failure detection count for power supply 1	 Counts the number of times of momentary power failure of the power supply 1/2. Monitors the status of the power supply 1/ 2 mounted on the redundant power main base unit (Q38RB) and counts the number of times of momentary power failure. Status of power supply 1/power supply 2 mounted on the redundant extension base unit is not monitored. When the CPU module starts, the counter of the power supply 1/ 2 is 	S(Every END)	New	
SD1783	Momentary power failure detection counter for power supply 2 ⁺¹	Momentary power failure detection count for power supply 2	 cleared to 0. If the input power to one of the redundant power supply modules is turned OFF, the corresponding counter is cleared to 0. The counter is incremented by 1 every time the momentary power failure of the power supply 1/2 is detected. (The counter repeats increment and decrement of the value; 0 → 32767 → -32768 → 0 (The system monitor of GX Developer shows the counter within the range between 0 and 65535. Stores 0 when the main base unit is not the redundant power main base unit (Q38RB). When configuring multiple CPU, the status is stored to 1st CPU module. The counter repeats increment and decrement of the value, 0 → 32767 → -32768 → 0 (The system monitor of GX Developer shows the counter within the range between 0 and 65535. 	S(Every END)	New	

*1: The "power supply 1" in dicates the redundant power supply module mounted on the POWER 1 slot of the redundant base unit (Q38RB/68RB/Q65WRB). The "power supply 2" indicates the redundant power supply module mounted on the POWER 2 slot of the redundant base unit (Q38RB/68RB/Q65WRB). *2: The module whose first 5 digits of serial No. is "07032" or later.

However, for the multiple CPU system configuration, this applies to all CPU modules whose first 5 digits of serial No. are "07032" or later.

*3: The module whose first 5 digits of serial No. is "10042" or later.

A

Appendix 5 APPLICATION PROGRAM EXAMPLES

Appendix 5.1 Concept of Programs which Perform Operations of X^n , $\sqrt[n]{X}$

Concept of programs which perform operations of Xⁿ
 Xⁿ can be operated using e^(nlogeX).

For example, the operation of $10^{1.2}$ is $e^{(1.2 \times \log e^{10})}$, which is represented in the form of a sequence program as shown below.

Converts 10 into a real number format data and stores the result in D0 and D1.

Executes Loge10 operation and stores the result in D2 and D3.

Converts 12 into a real number format data and stores the result into D4 and D5.

Divides D4 and D5 (12) by D0 and D1 (10), and stores the result (1, 2) in D6 and D7 (1, 2).

Multiplies D2 and D3 (Loge10) by D6 and D7 (1, 2) and stores the result in D8 and D9. Executes Loge(D8, D9) operation and stores the result in D10 and D11.

(2) Concept of program which performs operation of $\sqrt[\eta]{X}$

 $\sqrt[n]{X}$ can be operated using $e^{(\frac{1}{n} \log X)}$.

For example, the operation of $\sqrt[3]{10}$ is $e^{(\frac{1}{3} \times \log e^{10})}$, which is represented in the form of a sequence program as shown below.

[Symbols]

- (BIN 16-bit subtraction operations) \$+ (Linking character strings)	
\$=, \$<>, \$>, \$<=, \$<, \$>= (Character	string data
comparisons)	6-11
\$MOV (Character string transfers)	6-112
* (BIN 16-bit multiplication operations)	6-30
+ (BIN 16-bit addition operations)	6-22
/ (BIN 16-bit division operations)	6-30
<(BIN 16-bit data comparisons)	6-2
<=(BIN 16-bit data comparisons)	6-2
<>(BIN 16-bit data comparisons)	6-2
=(BIN 16-bit data comparisons)	6-2
>(BIN 16-bit data comparisons)	6-2
>=(BIN 16-bit data comparisons)	6-2

[Numerics]

16-bit data block transfers (FMOV)	6-120,6-122
16-bit data checks (SUM)	7-69
16-bit data exchange (XCH)	6-124
16-bit data exclusive NOR operation (WX	(NR) 7-27
16-bit data searches (SER)	
16-bit dead band controls (BAND)	
16-bit exclusive OR operations (WXOR).	7-19
16-bit negation transfers (CML)	6-114
16-bit transfers (MOV)	6-106
1-bit shift to left of n-bit data (BSFL)	7-49,7-51
1-bit shift to right of n-bit data (BSFR)	7-49,7-51
1-word shift to left of n-word data (DSFL)	7-54,7-56
1-word shift to right of n-word data (DSFF	र)
	7-54,7-56
32-bit data checks (DSUM)	7-69
32-bit data exchanges (DXCH)	6-124
32-bit data exclusive NOR operation (DX	NR) 7-27
32-bit data searches (DSER)	7-66
32-bit dead band controls (DBAND)	
32-bit exclusive OR operations (DXOR)	7-19
32-bit negation transfers (DCML)	6-114
32-bit transfers (DMOV)	6-106
4-bit dissociation of 16-bit data (DIS)	7-77
4-bit linking of 16-bit data (UNI)	7-79
7 segment decode (SEC)	
	7-75

[A]

A contact operation start (LD) 5-2
A contact parallel connection (OR)
A contact series connection (AND)
ACOS (COS ⁻¹ operation on floating-point data (Single
precision))
ACOSD (COS ⁻¹ operation on floating-point data
(Double precision))
Addition
Addition of floating decimal point (Double precision)
(ED+)
Addition of floating decimal point (Single precision)
(E+)
BCD 4-digit addition (B+) 6-34
BCD 8-digit addition (DB+)6-38
·

BIN 16-bit addition operations (+)	6-22
BIN 32-bit addition operations (D+)	6-26
Block addition (BK+)6-59	,6-62
Addition and subtraction of floating decimal point	data
(Double precision) (ED+, ED-)	,6-52
Addition and subtraction of floating decimal point	data
(Single precision) (E+, E-)6-46	,6-48
ADRSET (Indirect address read)7	-395
ANB (Ladder block series connections)	5-10
AND (=, <>, >, <=, <, >=) (BIN 16-bit	data
comparisons)	6-2
AND (A contact series connection)	5-2
AND (D=, D<>, D>, D<=, D<, D>=) (BIN 32-bit	data
comparisons)	6-4
AND (E=, E<>, E>, E<=, E<, E>=) (Floationg ded	cimal
point data comparisons(Single precision))	6-6
AND (ED=, ED<>, ED>, ED<=, ED<, ED>=) (Floa	tiong
decimal point data comparisons(Double precision	((ר
	6-8
And inverse (ANI)	5-3
AND(\$=, \$<>, \$>, \$<=, \$<, \$>=) (Character string	data
comparisons)	6-11
ANDF (Pulse series connections / trailing	edge
leading edg)5-	5,5-7
ANDP (Pulse series connections / leading	edge
leading edg)5-	5,5-7
ANDPI, ANDFI	5-8
ANI (B contact series connection)	5-2
Annunciator output (OUT F)	5-28
Application instructions	2-29
Arithmetic operation instructions	2-16
ASC (Conversion from hexadecimal BIN to ASCI	I)
	-228
ASIN (SIN ⁻¹ operation on floating-point data (S	ingle
precision))	-262
ASIND (SIN ⁻¹ operation on floating-point data (Do	ouble
precision))	-265
ATAN (TAN ⁻¹ operation on floating-point data (S	ingle
precision))7	-271
ATAND (TAN ⁻¹ operation on floating-point data	
	'-273

[B]

B- (BCD 4-digit subtraction)	6-34
B contact operation start (LDI)	5-2
B* (BCD 4-digit multiplication)	6-42
B+ (BCD 4-digit addition)	6-34
B/ (BCD 4-digit division)	6-42
BACOS (BCD type COS ⁻¹ operation)	7-317
BAND (16-bit dead band controls)	7-324
Basic instructions	2-10
BASIN (BCD type SIN ⁻¹ operation)	7-315
BATAN (BCD type TAN ⁻¹ operation)	7-313
Batch recovery of index register (ZPOP)	7-400
Batch reset of bit devices (BKRST)	7-64
Batch save of index register (ZPUSH)	7-400
BCD (BIN data to 4-digit)	6-73
BCD 4-digit addition and subtraction operati	ons (B+,
B-)	6-34

BCD 4-digit multiplication and division operations	(B*,
B/)	6-42
BCD 4-digit square roots (BSQR)7-	-306
BCD 8-digit addition and subtraction operations (E)B+,
DB-)	6-38
BCD 8-digit multiplication and division operat	ions
(DB*. DB/)	6-44
BCD 8-digit square roots (BDSQR) 7-	-306
BCD conversion	000
Conversion from BIN data to 4-digit BCD (BCD)	`
	/ 6 72
Conversion from DIN data to 0 disit DCD (DDC)	0-73
Conversion from BIN data to 8-digit BCD (DBC	D)
	0-13
BCD type COS operations (BCOS)	-311
BCD type COS ⁻⁺ operations (BACOS)	-317
BCD type SIN operation (BSIN)	-309
BCD type SIN ⁻¹ operation (BASIN)	-315
BCD type TAN operation (BTAN) 7-	-313
BCD type TAN ⁻¹ operations (BATAN)	-319
BCDDA (Conversion from BCD 4-digit to dec	imal
ASCII)	-189
BCOS (BCD type COS operations) 7	-311
BDSOR (BCD 8-digit square roots) 7	-306
BIN (BCD 4 digit data to BIN data)	8 75
PIN 16 bit addition and subtraction operations (+	0-75 ۱
Bin To-bit addition and subtraction operations (+,	-) c
	0-22
BIN 16-bit data comparisons $(=, <>, >, <=, <, >=)$	
	. 6-2
BIN 16-bit data sort operations (SORT)	7-95
BIN 16-bit multiplication and division operations (*	`, /)
	6-30
BIN 16-bit to BIN 32-bit (DBL)	6-88
BIN 16-bit to Gray code (GRY)	6-90
BIN 32-bit addition and subtraction operations (D+	, D-)
· · · · · · · · · · · · · · · · · · ·	6-26
BIN 32-bit block data comparisons (DBKCMP	□.
$DBKCMP \square P$	6-18 [′]
BIN 32-bit data block addition and subtrac	ction
operations (DBK+(P) DBK-(P))	6-62
BIN 32-bit data comparisons (D= D<> D> D<=	D<
D = 1	6_1
PIN 22 bit data part operations (DSOPT)	. 0- - 7 05
DIN 32-bit data to DIN 16 bit data (MODD)	1-90
BIN 32-DIL GALA LO BIN TO-DIL GALA (WORD)	0-89
BIN 32-bit data to Gray code (DGRY)	6-90
BIN 32-bit multiplication and division operations	(D^,
D/)	6-32
BIN block data comparisons (BKCMP) 6-15,0	6-18
BINDA (Conversion from BIN 16-bit data to dec	imal
ASCII)	-183
BINHA (Conversion from BIN 16-bit data	to
hexadecimal ASCII)7	-186
Bit data	. 3-3
Bit device output reverse (FF)	5-40
Bit device shifts (SET)	5-44
Bit processing instructions	2_21
Bit reset for word devices (RDST)	2-04 7_50
Dit reset for word dovices (DRST)	7 50
	1-09 7 61
Dil lesis ($IE3I/UIE3I$)	1-01
DN- (BIOCK SUDIJACTION)	0-02

BK+ (Block addition)
BKAND (Block logical products)
BKBCD (Conversion from block BIN 16-bit data to
BCD 4-digit data) 6-98
BKBIN (Conversion from block BCD 4-digit data to
block BIN 16-bit data)6-100
BKCMP (BIN block data comparisons)6-15,6-18
BKOR (Block logical sum operations)7-17
BKRST (Batch reset of bit devices)
BKXNR (Block exclusive NOR operations)
BKXOR (Block exclusive OR operations)7-25
Block 16-bit exchanges (BXCH) 6-126
Block 16-bit transfers (BMOV)6-117
Block addition (BK+)6-59,6-62
Block exclusive NOR operations (BKXNR)
Block exclusive OR operations (BKXOR)7-25
Block logical products (BKAND)
Block logical sum operations (BKOR)7-17
Block subtraction (BK-)6-59,6-62
BMOV (Block 16-bit data transfers) 6-117
BREAK (Forced end of FOR to NEXT instruction loop)
BRST (Bit reset for word devices)
BSET (Bit set for word devices)7-59
BSFL (1-bit shift to left of n-bit data)7-49,7-51
BSFR (1-bit shift to right of n-bit data)
BSIN (BCD type SIN operation)7-309
BSQR (BCD 4-digit square roots)7-306
BIAN (BCD type IAN operation)
BIOW (Data linking in byte units)
Buffer memory access instructions
BXCH (Block 16-bit data exchanges) 6-126
C]
Calculation of averages for 16-bit or 32-bit data
(MEAN(P),DMEAN(P))
Calculation of totals for 16-bit data (WSUM) 7-99
Calculation of totals for 32-bit data (DWSUM)
CALL (Subroutine program calls)7-110
Cautions on programming 3-27

[C]

Calculation of averages for 16-bit or 32-bit data (MEAN(P),DMEAN(P))
CALL (Subroutine program calls)
CHKEND)
Character string processing instructions
CHKCIR (Changing check format of CHK Instruction)
CHKST, CHK (Special format failure checks) 7-175 CJ (Pointer branch instruction)

CML (16-bit negation transfers)	6-114
Common logarithm operation on floating noi	nt data
(Double precision) (LOG10D(P))	ni uala
Common logarithm operation on floating-poi	nt data
(Single precision) (LOG10(P))	7-300
Comparison operation instruction table	2-10
Comparison operation instructions	6-2
Comparisons (BIN 16-bit data)	6_2
Comparisons (DIN 10-bit data)	0-2 6 1
Comparisons (Character string data)	6 11
Comparisons (Character sting data)	0-11
Complement of 2 of BIN 16-bit data (NEG)	6-94
Complement of 2 of BIN 32-bit data (DNEG)	6-94
COMRD (Reading device comment data)	7-201
Conditions for execution of instructions	3-33
Connection instructions	
Association instruction table	2-7
Ladder block parallel connection (ORB)	5-10
Ladder block series connection (ANB)	5-10
Linking character strings (\$+)	6-65
Contact instruction	2-6
Contact instructions	
Operation start (LD, LDI)	5-2
Parallel connection (OR, ORI)	5-2
Pulse operation start (LDF, LDP)	5-5,5-7
Pulse parallel connection (ORF.ORP)	5-5.5-7
Pulse serial connection (ANF, ANP)	5-5.5-7
Series connection (AND, ANI)	5-2
Conversion	
BCD 4-digit to BIN (BIN)	6-75
BCD 8-digit to BIN (DBIN)	6-75
BIN 16-bit to BIN 32-bit (DBL)	6-88
BIN 16-bit to floating decimal point (
precision) (FLTD)	6 81
BIN 16 bit to floating decimal point	0-01 (Sinala)
procision) (ELT)	(Single
DIN 16 bit to Croy code (CDV)	0-70
DIN 10-DIL to Glay Code (GRT)	0-90
DIN 32-DIL IO DIN 10-DIL (WORD)	0-09 Develo
BIN 32-bit to libating decimal point (
precision) (DFLTD)	6-81
BIN 32-bit to floating decimal point	(Single
precision) (DFLI)	6-78
BIN 32-bit to Gray code (DGRY)	6-90
BIN to BCD 4-digit (BCD)	6-73
BIN to BCD 8-digit (DBCD)	6-73
Double precision to Single precision (EDCO	N)
	6-104
Floating decimal point data to BIN 16-bit (Double
precision) (INTD)	6-86
Floating decimal point data to BIN 16-bit	(Single
precision) (INT)	6-83
Floating decimal point data to BIN 32-bit	(Single
precision) (DINT)	6-83
Floating decimal point data to BIN32-bit (Double
precision) (DINTD)	6-86
Gray code to BIN 16-bit (GBIN)	6-92
Gray code to BIN 32-bit (DGBIN)	6-92
Single precision to Double precision (ECON)
· · · · ·	6-102

Conversion from ASCII to hexadecimal BIN (HEX) Conversion from BCD 4-digit to decimal ASCII Conversion from BCD 8-digit to decimal ASCII Conversion from BIN 16-bit to character string (STR) Conversion from BIN 16-bit to decimal ASCII (BINDA) Conversion from BIN 16-bit to floating decimal point Conversion from BIN 16-bit to floating decimal point Conversion from BIN 16-bit to hexadecimal ASCII Conversion from BIN 32-bit to character string (DSTR) Conversion from BIN 32-bit to decimal ASCII Conversion from BIN 32-bit to floating decimal point Conversion from BIN 32-bit to floating decimal point Conversion from BIN 32-bit to hexadecimal ASCII Conversion from block BCD 4-digit data to block BIN Conversion from block BIN 16-bit data to BCD 4-digit data (BKBCD) 6-98 Conversion from character string to BIN 16-bit (VAL) Conversion from character string to BIN 32-bit (DVAL) Conversion from character string to floating decimal Conversion from decimal ASCII to BCD 4-digit Conversion from decimal ASCII to BCD 8-digit Conversion from decimal ASCII to BIN 16-bit (DABIN) Conversion from decimal ASCII to BIN 32-bit Conversion from floating decimal point to character Conversion from floating-point angle to radian (Double precision) (RADD)......7-277 Conversion from floating-point angle to radian (Single Conversion from floating-point radian to angle (Double precision) (DEGD)7-281,7-283,7-285 Conversion from floating-point radian to angle (Single Conversion from hexadecimal ASCII to BIN 16-bit Conversion from hexadecimal ASCII to BIN 32-bit (DHABIN)......7-195

Conversion from hexadecimal BIN to ASCII (ASC)	
Conversion of Gray code to BIN 16-bit (GBIN) 6-92 Conversion of Gray code to BIN 32-bit (DGBIN)	
	0
Conversion to BIN	0
BCD 4-digit to BIN 16-bit (BIN) 6-75	[
BCD 8-digit to BIN 32-bit (DBIN) 6-75	[
Floating decimal point data to BIN 16-bit (Double	0
precision) (INTD)	0
Floating decimal point data to BIN 16-bit (Single	1
precision) (INT) 6-83	l r
Floating decimal point data to BIN 32-bit (Double	
precision) (DINTD) 6-86	
Floating decimal point data to BIN 32-bit (Single	ſ
precision) (DINT) 6-83	
Conversion to floating decimal point (Double	
provision (ELTD DELTD) 6 91	
precision) (FLTD, DFLTD)	
(FLI, DFLI)	
COS (COS operation on floating-point data (Single	
precision))	
COS operation on floating-point data (Double	L
precision) (COSD) 7-256	ון
COS operation on floating-point data (Single	8
precision) (COS)	E
COS ⁻¹ operation on floating-point data (Double	3
precision) (ACOSD)7-269	[
COS ⁻¹ operation on floating-point data (Single	[
precision) (ACOS)	0
COSD (COS operation on floating-point data (Double	[
precision))	
Count 1-phase input or down (UDCNT1) 6-143	0
Count 2-phase input or down (UDCNT2)	
Counters (OUT C)	
	Г
וחו	l r
נטן	
D- (BIN 32-bit subtraction operations	
D(P).DDRD(Reading Devices to Another CPU)	
D(P).DDWR(Writing Devices to Another CPU)	
D* (BIN 32-bit multiplication operations)	
D+ (BIN 32-bit addition operations) 6-26	
D/ (BIN 32-bit division operations)	
D=, D<>, D>, D<=, D<, D>= (BIN 32-bit data	L
comparisons)	r
DABCD (Conversion from decimal ASCII to BCD	L
4-digit) 7-198	
DARIN (Conversion from decimal ASCII to RIN 16-bit)	F
7_102	[
DAND (I order a products with 32-bit data) 7.3	0
עודי (בטעוטו דיטעעטוט אוווי ג-טו udia)	[
Data conversion instruction table	r
Data conversion instruction table	[
Data conversion instructions	
Data dissociation in byte units (VVIOB)	r
Data link instructions	r
Data linking in byte units (BIOW)	
Data processing instructions	

Data table operation instructions
DATE- (Clock data subtraction operation)
Date comparison (DT=,DT,DT>,DT=)
DATE+ (Clock data addition operation) 7-348
DATERD (Reading clock data)7-344
DATEWR (Writing clock data) 7-346
DB- (BCD 8-digit subtraction) 6-38
DB* (BCD 8-digit multiplication)6-44
DB+ (BCD 8-digit addition)6-38
DB/ (BCD 8-digit division)
DBAND (32-bit dead band controls)
DBCD (Conversion from BIN to BCD 8-digit) 6-73
JBCDDA (Conversion from BCD 8-digit to decimal
NOCII)
BINDA (Conversion from BIN 32-bit to decimal
BINHA (Conversion from BIN 32-bit to beyadecimal
ASCII) 7-186
DBK- 6-63
DBK+
DBL (BIN 16-bit to BIN 32-bit)
DCML (32-bit negation transfers) 6-114
DDABCD (Conversion from decimal ASCII to BCD
B-digit)
DDABIN (Conversion from decimal ASCII to BIN
32-bit)
DDEC (Decrementing 32-bit BIN)6-71
Debugging and failure diagnosis instructions 2-42
JEC (Decrementing 16-bit BIN)
$\nabla CO'$ (Decoding from 9 to 256 bits) 7.71
DECO (Decoding from 8 to 256 bits)
DECO (Decoding from 8 to 256 bits)
DECO (Decoding from 8 to 256 bits)
DECO (Decoding from 8 to 256 bits)
DECO (Decoding from 8 to 256 bits) 7-71 Decoding from 8 to 256 bits (DECO) 7-71 Decrement BIN 16-bit (DEC) 6-69 BIN 32-bit (DDEC) 6-71 Decrementing 16-bit BIN (DEC) 6-69
DECO (Decoding from 8 to 256 bits)
DECO (Decoding from 8 to 256 bits)
DECO (Decoding from 8 to 256 bits)
DECO (Decoding from 8 to 256 bits)
DECO (Decoding from 8 to 256 bits)
DECO (Decoding from 8 to 256 bits)
DECO (Decoding from 8 to 256 bits)
DECO (Decoding from 8 to 256 bits)
DECO (Decoding from 8 to 256 bits)
DECO (Decoding from 8 to 256 bits)
DECO (Decoding from 8 to 256 bits)
DECO (Decoding from 8 to 256 bits)
DECO (Decoding from 8 to 256 bits)
DECO (Decoding from 8 to 256 bits)
DECO (Decoding from 8 to 256 bits)
DECO (Decoding from 8 to 256 bits)
DECO (Decoding from 8 to 256 bits)
DECO (Decoding from 8 to 256 bits)
DECO (Decoding from 8 to 256 bits)
DECO (Decoding from 8 to 256 bits) 7-71 Decoding from 8 to 256 bits (DECO) 7-71 Decrement BIN 16-bit (DEC) 6-69 BIN 32-bit (DDEC) 6-71 Decrementing 16-bit BIN (DEC) 6-69 Decrementing 32-bit BIN (DDEC) 6-71 Decrementing 32-bit BIN (DDEC) 6-71 DEG (Conversion from floating-point radian to angle 6-71 Decrementing 32-bit BIN (DDEC) 7-279 DEG (Conversion from floating-point radian to angle 7-279 Decod (Conversion from floating-point radian to angle 7-281,7-283,7-285 Deleting data from data tables (FDEL) 7-157 Deletion of character string (STRDEL(P)) 7-243 DELTA (Pulse conversion of direct output) 5-42 Designating data 3-3 Designation of modification values in index 10dex nodification (IXDEV, IXSET) 7-148 Device range check 3-27 DFLT (Conversion from BIN 32-bit to floating decimal Doint (Single precision)) 6-78 DFLTD (Conversion from BIN 32-bit to floating Decimal point (Double precision)) 6-81 DFRO (Reading 2-word data from intelligent functio
DECO (Decoding from 8 to 256 bits) 7-71 Decoding from 8 to 256 bits (DECO) 7-71 Decrement BIN 16-bit (DEC) 6-69 BIN 32-bit (DDEC) 6-71 Decrementing 16-bit BIN (DEC) 6-69 Decrementing 32-bit BIN (DDEC) 6-71 Decrementing 32-bit BIN (DDEC) 6-71 DEG (Conversion from floating-point radian to angle 6-71 DEGD (Conversion from floating-point radian to angle 7-279 DEGD (Conversion from floating-point radian to angle 7-281,7-283,7-285 Deleting data from data tables (FDEL) 7-157 Deletion of character string (STRDEL(P)) 7-243 DELTA (Pulse conversion of direct output) 5-42 Designating data 3-3 Designation of modification values in index 10 nodification (IXDEV, IXSET) 7-148 Device range check 3-27 DFLT (Conversion from BIN 32-bit to floating decimal boint (Single precision)) 6-78 DFLTD (Conversion from BIN 32-bit to floating decimal boint (Single precision)) 6-81 DFRO (Reading 2-word data from intelligent function nodules) 7-160 DGBIN (Conversion of Gray code to BIN 16-bit) 6-90

DI (Interrupt disable)	6-133
Digit designation	3-4
Digit designation of bit devices	3-4
DINC (Incrementing 32-bit BIN)	6-71
DIN I (Floating decimal point data to BIN 32-bit (Single
precision))	6-83
DINTD (Floating decimal point data to Bin	SZ-DIL
Direct 1 byte read from file register (ZPDD)	. 0-00
Direct 1-byte read norm life register (ZRRDB)	7 77
Display instructions	2_11
Display Instructions	7_81
Division	
BCD 4-digit (B/)	6-42
BCD 8-digit division (DB/)	6-44
BIN 16-bit (/)	6-30
Division of floating decimal point(Double pred	cision)
(ED/)	6-56
Division of floating decimal point(Single pred	cision)
(E/)	6-54
DLIMIT (Upper and lower limit controls for BIN 3	32-bit)
	7-321
DMAX (Maximum value search for 32-bit data).	7-89
DMEAN(P)	7-103
DMIN (Minimum value search for 32-bit data)	7-92
DMOV (32-bit transfers)	6-106
DNEG (Complement of 2 of BIN 32-bit data)	6-94
DOR (Logical sums of 32-bit data)	7-11
Double precision to Single precision conv	ersion
(EDCON)	6-104
Double word data	3-0
DRCL (Left folditor of 32-bit data)	. 7-44
DROR (Right Totation of 32 bit data)	7 41
DROR (Right rotation of 32-bit data)	7_41
DSCI (P)	7-331
DSCI 2(P)	7-335
DSER (32-bit data searches)	
DSFL (1-word shift to left of n-word data)7-54	4.7-56
DSFR (1-word shift to right of n-word data)	,
	4,7-56
DSORT (BIN 32-bit data sort)	. 7-95
DSTR (Conversion from BIN 32-bit to character	string)
	7-206
DSUM (32-bit data checks)	7-69
DTEST (Bit tests)	7-61
DTO (Writing 2-word data to intelligent fu	nction
modules)	7-163
DUTY (Timing pulse generation)	7-388
DVAL (Conversion from character string to BIN 3	32-bit)
DWOLIN (Oslaulation a filatale fam 00 bit data)	7-212
DWSUM (Calculation of totals for 32-bit data)	7 400
	,7-103
DXNP (32 bit data exclusive NOP expertise)	0-124 7 07
DANK (32-bit avaluative NOR operations) \dots	. 1-21
DZON (02-bit exclusive OR operations)	
	7-334
	. 004

[E]

E- (Subtraction of floating decimal point data (Single precision))......6-46,6-48 E* (Multiplication of floating decimal point data (Single E+ (Addition of floating decimal point data (Single precision)).....6-46,6-48 E/ (Dividion of floating decimal point data (Single E=, E<>, E>, E<=, E<, E>= (Floationg decimal point data comparisons(Single precision))6-6 ECALL (Sub-routine calls between program files) ECON (Single precision to Double precision conversion) 6-102 ED- (Subtraction of floating decimal point data ED* (Multiplication of floating decimal point data ED+ (Addition of floating decimal point data (Double ED/ (Dividion of floating decimal point data (Double ED=,ED<>,ED>,ED<=,ED<,ED>= (Floationg decimal point data comparisons (Double precision)) 6-8 EDCON (Double precision to Single precision conversion) 6-104 EDMOV (Floating-point data transfer (Double EDNEG (Floating-point sign invertion (Double EFCALL (Output OFF calls between program files) EGF (Pulse operation results / leading edge)...... 5-18 EGP (Pulse operation results / trailing edge)...... 5-18 EMOV (Floating-point data transfer (Single precision)) ENCO (Encoding from 256 to 8 bits)7-73 Encoding from 256 to 8 bits (ENCO)7-73 END (End sequence program)5-53 End main routine program (FEND) 5-51 End sequence program (END) 5-53 ENEG (Floating-point sign invertion(Single precision)) EREXP (From BCD format data to floating decimal point)......7-248 Error display and annunciator reset instruction (LEDR) ESTR (Conversion from floating decimal point to character string)......7-217 EVAL (Conversion from character string to floating decimal point)7-217 EXP (Exponent operation on floating-point data (Single precision))......7-291 Expansion clock data addition operation (S.DATE+)

Expansion clock data subtraction operation (S.DATE-) 7-366
EXPD (Exponent operation on floating-point data (Double precision))
precision) (EXP)
Exponentiation operation on floating-point data (Single precision) (POW(P))
Exponentiation operation on floating-point data (Single precision) (POWD(P))
Extracting character string data from the left (LEFT)
Extracting character string data from the right (RIGHT)

[F]

FCALL (Subroutine program output OFF calls)
FDEL (Deleting data from data tables) 7-157
FEND (End main routine program) 5-51
FF (Bit device output reverse) 5-40
FIFR (Reading oldest data from data tables) 7-153
FIFW (Writing data to the data tables) 7-151
File register direct 1-byte write (ZRWRB) 7-393
File setting for comments (QCDSET) 7-342
FINS (Inserting data in data tables) 7-157
Fixed cycle pulse output (PLSY) 6-162
Floating decimal point data comparisons (Double
precision) (ED=, ED<>, ED>, ED<=, ED<, ED>=)
Floating decimal point data comparisons (Single
precision) (E=, E<>, E>, E<=, E<, E>=)
Floating decimal point to BCD (EMOD)
Floating-point data transfer (Double precision)
(EDMOV)
Floating-point data transfer (Single precision) (EMOV)
Floating-point sign invertion (Double precision)
(EDNEG)
Floating-point sign invertion (Single precision) (ENEG)
6-96
FLI (Conversion from BIN 16-bit to floating decimal
point (Single precision))
FLID (Conversion from BIN 16-bit to floating decimal
point (Double precision))
FMOV (16-bit data block transfers) 6-120,6-122
FOR (FOR TO NEXT)
FOR TO NEXT (FOR, NEXT)
Forced end of FOR to NEXT Instruction loop (BREAK)
FPOP (Reading newest data from data tables)
EPOM (Paading from other CDL shared memory)
rkow (Reading nom other CFO shared memory)
EROM (Reding 1-word data from intelligent function
modules) 7 160
1-100 <i>I</i>

From	BCD	format	data	to	floating	decimal	point
(ERE)	XP)						7-248

[G]

GBIN (Conversion of Gray code to BIN 16-bi	it) 6-92
GOEND (Jump to END)	6-132
GRY (BIN 16-bit to Gray code)	6-90

[H]

HABIN (Conversion from hexadecimal ASCII to BIN	٧
16-bit)	5
HEX (Conversion from ASCII to hexadecimal BIN)	
	0
High speed retentive timer (OUTH ST) 5-22	2
High speed timer (OUTH T)5-22	2
High-speed block transfer of file register (RBMOV)	
	8
HOUR (Time data conversion) 7-354	4
How to read instruction tables2-4	4
How to read instructions 4-2	2

[I]

I/O refrech (RFS) I/O refresh instruction table Identical 32-bit data block transfers (DFMOV(P	6-141 2-27)) 6 122
IMASK (Interrupt program mask) INC (Incrementing 16-bit BIN) Increment	6-133 6-69
BIN 16-bit (INC)	6-69
BIN 32-bit (DINC)	
Incrementing 16-bit BIN (INC)	6-69
Index modification	0-71
Indirect address read (ADRSET)	7_395
Indirect specification	3-23
Inserting data in data tables (FINS)	7-157
Insertion of character string (STRINS(P))	7-241
INSTR (Character string search) 7-239,7-241	,7-243
Instructions for data link	2-59
INT (Floating decimal point data to BIN 16-bit (Single
precision))	6-83
INID (Floating decimal point data to BIN	16-bit
(Double precision))	6-86
Interrupt disable (DI)	6 1 2 2
Interrupt enable (EI)	6 1 2 2
INV (Operation results inversion)	5-15
Inversion	
Bit device output reverse (FF)	5-40
Operation results inversion (INV)	5-15
IRET (Recovery from interrupt programs)	6-139
IX, IXEND (Index modification of entire ladder)	
	7-144
IXDEV (Designation of modification values in	index
modification)	7-148
IASEI (Designation of modification values in modification)	
	1-140

Г	1	11
L	J	1

JMP (Pointer branch)	6-129
Jump to END (GOEND)	6-132

[K]

KEY (Numerical key input from keyboard)....... 7-396

[L]

Ladder block parallel connections (ORB)
LD (A contact operation start)
LDF (Pulse operation start / trailing edge)5-5,5-7 LDI (B contact operation start)
LEFT (Extracting character string data from the left) 7-232
Left rotation of 16-bit data (ROL, RCL)
Link refresh instructions

Master control instructions 5-47 Matrix input (MTR) 6-166 MAX (Maximum value search for 16-bit data) 7-89 Maximum value search for 16-bit data (MAX) 7-89 Maximum value search for 32-bit data (DMAX) 7-89 MC (Setting the master control) 5-47 MCR (Resetting the master control) 5-47 MEAN(P) 7-103 MEF (Pulse operation results / trailing edge) 5-17 MEP (Pulse operation results / leading edge) 5-17 MIDR (Random selection from character strings) 7-235
MIDW/ (Dender replacement in character strings)
MINI (Minimum value search for 16 hit data) 7.02
Minimum value search for 16 bit data (MIN) 7.92
Minimum value search for 32 bit data (MIN)
MOV (16 bit transfers) 6 106
MPP (Operation results pop) 5.12
MPP (Operation results push) 5.12
MRD (Operation results read) 5-12
MTR (Matrix input) 6-16
Multiplication
BCD 4-digit (B*) 6-42
BCD 8-digit (DB*) 6-44
BIN 16-bit (*) 6-30
BIN 32-bit (D*) 6-32
Multiplication of floating decimal point (Double
precision) (ED*)
Multiplication of floating decimal point (Single
precision) (E*)
Multiplication and division of floating decimal point
(Double precision)(ED*, ED/)6-56
Multiplication and division of floating decimal point
(Single precision)(E*, E/)

[N]

Natural logarithm operation on floating-point da (Double precision) (LOGD)	ta 38 ta 22 46 2), 51 20
SFTWL(P))), 56
NEG (complement of 2 of BIN 16-bit data)	94
Network refresh instruction (ZCOM) 8	-2
NEXT (FOR to NEXT)7-10)5
No operation (NOP, NOPLF, PAGE) 5-5	57
NOP	57
NOP (No operation)	57
NOPLF (No operation page change) 5-8	57
Number of steps	34
Numerical key input (KEY)7-39	96
Numerical key input from keyboard (KEY) 7-39	96
NUNI (Linking of random data)7-8	31

Operation errors	3-27
Operation results non (MPD)	5 10
Operation results pup (MPP)	J-12 こ 1つ
Operation results read (MDD)	5-12 5-10
Operation results read (MRD)	2-12 ה-2
Operation start (LD, LDI)	
OR(5=, 5<), 5<=, 5<, 5>=) (Character string (
comparisons)	2-11
OR(=, <>, >, <=, <, >=) (BIN 16-bit data comparise	ons)
	6-2
OR (A contact parallel connection)	. 5-2
OR (D=, D<>, D>, D<=, D<, D>=) (BIN 32-bit (data
comparisons)	. 6-4
OR (E=, E<>, E>, E<=, E<, E>=) (Floationg dec	imal
point data comparisons (Single precision))	6-6
OR (ED=, ED<>, ED>, ED<=, ED<, ED>=) (Floati	iong
decimal point data comparisons (Double precision	1))
	6-8
Or inverse (ORI)	5-2
ORB (Ladder block parallel connections)	5-10
ORF (Pulse parallel connection / trailing edge)	
	,5-7
ORI (B contact parallel connection)	5-2
ORP (Pulse parallel connection / leading edge)	
	,5-7
	. 5-8
Other convenient instructions	2-6
Other Instructions	2-55
Application instructions	2-29
Sequence Instructions	2-6
	- 00
	0-20
Lish as ad establish times (OUTLECT)	0-20
High speed retentive timer (OUTHST)	-22 - 00
High speed timer (OUTH T)	-22 - 00
Low speed retentive timer (OUT ST)	-22 - 00
Low speed timer (OUT T)	-22 - 00
	-20
Out instructions (OUT)	o-20
	. Z-ð
Output Instructions (OUT)	5-20
Output of sub-routine program OFF calls (FCALL))
	-116 \
Culput OFF calls between program files (EFCALL	-) 105
	ว-4ป

[P]

PAGE (No operation page change)	5-57
Page change (NOPLF)	5-57
Page change (PAGE n)	5-57
Parallel connection (OR, ORI)	5-2
Parallel connections (ORB)	5-10
PCHK (Program low speed execution	registeration
instruction)	7-384
PLF (Trailing edge output)	5-37
PLOADP (Load program from Memory C	ard) 7-440

PLOW (Program low speed execution registrat	ion)
	7-382
PLS (Leading edge output)	5-37
PLSY (Fixed cycle pulse output)	. 6-162
POFF (Program output OFF standby instructio	n)
	. 7-378
Pointer branching instruction (CJ, SCJ, JMP)	. 6-129
Pop (MPP)	5-12
PR (Print ASCII code instruction)	. 7-166
PRC (Print comment instruction)	. 7-169
Print ASCII code instruction (PR)	. 7-166
Print comment instruction (PRC)	. 7-169
Program branch instruction table	2-27
Program control instructions	2-56
Program execution control instruction table	2-27
Program low speed exection registration inst	truction
(PCHK)	7-384
Program low speed execution registration (PI (
	7_382
Program output OFF standby instruction (POF	E)
	' <i>)</i> 7_378
Program scan execution registration inst	truction
(FSCAN)	7 277
Program standby instruction (PSTOP)	trotion
PSCAN (Program scan execution regis	
Instruction)	. 7-380
PSTOP (Program standby instruction)	. 1-3//
PSWAPP (Load + Unioad)	. 7-445
	F 40
	5-42
	5-18
	5-17
Pulse conversion of direct output (DELTA)	5-42
Pulse density measurement (SPD)	. 6-160
Pulse NOT operation start, pulse NOT	series
connection, pulse NOT parallel connection LDP	'I,LDFI,
ANDPI,ANDFI,ORPI,ORFI)	5-7
Pulse operation results	
Operation result conversions (MEF, MEP)	5-17
Pulse conversions of edge relay operation	results
(EGF, EGP)	5-18
Pulse operation start (LDF, LDP)	5-5,5-7
Pulse parallel connection (ORF, ORP)	5-5,5-7
Pulse series connection (ANDF, ANDP)	5-5
Pulse width modulation (PWM)	6-164
PUNLOADP (Unload program from program m	emory)
	7-443
Push (MPS)	5-12
PWM (Pulse width modulation)	. 6-164
[Q]	
OCDSET (File setting for comments)	7-310
OCPU dedicated instructions	2 60
ODDSET(Setting files for file register use)	7 220
	. 1-008

[R]

RAD (Conversion	from	floating-point	angle	to	radian
(Single precision))					. 7-275

RADD (Conversion from floating-point angle to radian Random number generation (RND/SRND).......7-304 Random selection from and replacement in character Random selection replacement in character strings RBMOV (High-speed block transfer of file register) RCR (Right rotation of 16-bit data) 7-35 Read data from standard ROM (S.DEVLD)...... 7-438 Reading 1-word data from intelligent function modules Reading 2-word data from intelligent function modules (DFRO)......7-160 Reading clock data (DATERD)......7-344 Reading data from designated file (SP.FREAD) 7-424 Reading device comment data (COMRD) 7-201 Reading expansion clock data (S.DATERD) 7-366 Reading from other CPU shared memory (FROM) Reading module information (UNIRD)......7-402 Reading newest data from data tables (FPOP) Reading oldest data from data tables (FIFR) 7-153 Reading routing information (RTREAD) 8-6 Real number data 3-8 Recovery from interrupt programs (IRET) 6-139 Related programming manuals 1-2 Resetting devices (RST)...... 5-32,5-35 Resetting the annunciators (RST F) 5-35 Resetting the master control (MCR) 5-47 Resetting watchdog timer (WDT) 7-386 Revercing Bit device output reverse (FF).....5-40 Floating-point sign invertion (Double precision) Floating-point sign invertion (Single precision) Operation results inversion (INV)...... 5-15 RFS (I/O refresh) 6-141 RIGHT (Extracting character string data from the right) Right rotation of 16-bit data (ROR, RCR) 7-35 Right rotation of 32-bit data (DROR, DRCL)...... 7-41 RND (Random number generation and series update) ROL (Left rotation of 16-bit data)......7-38 ROR (Right rotation of 16-bit data)......7-35 Rotary table shortest direction control (ROTC)

ROTC (Rotary table shortest direction control)

Resetting devices (RST)	5-32
Resetting the annunciators (RST F)	5-35
RTREAD (Reading routing information)	8-6
RTWRITE (Writing routing information)	8-8

[S]

S.DATE- (Expansion clock data subtraction or	peration)
S.DATE+ (Expansion clock data addition ope	7-300 ration)
S DATERD (Reading expansion clock data)	7-300
S.DATERD (Reading expansion clock data)	7-300
S.DEVLD (Redu udia IIOIII Statiuaru ROW)	/ -430
S. IO (while to host CPU shared memory)	
Scaling (Point-by-point coordinate data) (SCL(P),
DSCL(P))	7-330
Scaling (Point-by-point coordinate data) (S	SCL2(P),
DSCL2(P))	7-334
SCJ (Pointer branching instruction)	6-129
SCL(P)	7-330
SCL2	7-334
SECOND (Time data conversion)	7-352
SEG (7-segment decode)	7-75
Sequence instructions	2-6
Sequence program stop (STOP)	5-55
SER (16-bit data searches)	7-66
Series connection (AND ANI)	5-2
Series connections (ANB)	5-10
SET	
Setting devices (SET)	5 30
Setting the annunciators (SET E)	5-30 5 35
Setting devices (SET)	20 5 25
Setting files for file register use (ODDSET)	-30,0-30
Setting the ensurasisters (SET E)	1-339
Setting the month of the control (MO)	5-35
Setting the master control (MC)	5-47
SFL (n-bit shift to left of 16-bit data)	/-46
SFR (n-bit shift to right of 16-bit data)	7-46
SFT (Bit device shifts)	5-44
SFTBL(P)	7-52
SFTBR(P)	7-51
SFTWL(P)	7-57
SFTWR(P)	7-56
Shift instruction5	-44,7-46
(Application instructions)	2-29
Shift instruction table	
(Sequence instructions)	2-6
SIN (SIN operation on floating-point data	(Single
precision))	7-250
SIN operation on floating-point data	(Double
precision) (SIND)	
SIN operation on floating-point data (Single p	recision)
(SIN)	7-250
SIN ⁻¹ operation on floating-point data	(Double
precision) (ASIND)	7-265
SIN ⁻¹ operation on floating-point data	(Sinale
nrecision) (ASIN)	7,262
	1-202

SIND (SIN operation on floating-point data (Double Single precision to Double precision conversion SORT (BIN 16-bit data sort) 7-95 SP.CONTSW (System switching instruction) 11-2 SP.DEVST (Writing data to standard ROM)...... 7-436 SP.FREAD (Reading data from designated file) SP.FWRITE (Writing data to designated file) 7-413 SPD (Pulse density measurement) 6-160 Special format failure checks (CHKST, CHK) ... 7-175 Special function instructions 2-46 Special timer (STMR) 6-151 SQR (Square root operation for floating-point data SQRD (Square root operation for floating-point data Square root operation for floating-point data (Double Square root operation for floating-point data (Single SRND (Random number generation and series STMR (Special function timer)...... 6-151 STOP (Sequence program stop) 5-55 STR (Conversion from BIN 16-bit to character string) Structure creation instructions 2-38 Subrotine program calls (CALL) 7-110 Subroutine calls (XCALL) 7-129 Subroutine calls between program files (ECALL) Subroutine program output OFF calls (FCALL) Subset processing 3-25 Subtraction BCD 4-digit subtraction (B-)..... 6-34 BCD 8-digit subtraction (DB-) 6-38 BIN 16-bit subtraction operations (-) 6-22 BIN 32-bit subtraction operations (D-) 6-26 Block subtraction (BK-) 6-59,6-62 Subtraction of floating decimal point data (Double Subtraction of floating decimal point data (Single precision) (E-) 6-46,6-48 SUM (16-bit data checks)......7-69 SWAP (Upper and lower byte exchanges) 6-128 Switching file register numbers (RSET)...... 7-337 System Switching (SP.CONTSW) 11-2

[T]

TAN ⁻¹ operation on floating-point data	(Double
precision)(ATAND)	7-273
TAN ⁻¹ operation on floating-point data	(Single
precision)(ATAN)	7-271
TAND (TAN operation on floating-point data	(Double
precision))	7-260
Teaching timer (TTMR)	6-149
Termination instruction table	2-9
TEST (Bit tests)	7-61
TIMCHK (Time check instruction)	7-390
Time check instruction (TIMCHK)	7-390
Time data conversion (HOUR)7-354,7-3	56,7-361
Time data conversion (SECOND)	7-352
Timer (OUT T)	5-22
Timing pulse generation (DUTY)	7-388
TO (Writing 1-word data to intelligent	function
modules)	7-163
TRACE (Trace set)	7-411
TRACER (Trace reset)	7-411
TTMR (Teaching timer)	6-149
Types of Instructions	2-2

[U]

UDCNT1 (Counter 1-phase input up or down) 6-143
UDCNT2 (Counter 2-phase input up or down) 6-146
UNI (4-bit linking of 16-bit data)7-79
UNIRD (Reading module information)
Unload program from program memory (PUNLOADP)
Up / Down counter
Count 1-phase input or dawn (UDCNT1) 6-143
Count 2-phase input or down (UDCNT2) 6-146
Upper and lower byte exchanges (SWAP) 6-128
Upper and lower limit controls for BIN 32-bit (DLIMIT)

[V]

VAL	(Conversion	from	character	string to	BIN	16-bit)
						7-212

[W]

S.TO	. 9-4
то	. 9-7
WSUM (Calculation of totals for 16-bit data)	7-99
WTOB (Data dissociation in byte units)	7-85
WXNR (16-bit data exclusive NOR operation)	7-27
WXNR (16-bit data non-exclusive logical	sum
operations)	7-30
WXOR (16-bit exclusive OR operations) 7-19,	7-22

[X]

XCALL (Subroutine program call)	7-129
XCH (32-bit data exchange)	6-124

[Z]

ZCOM (Network refresh instruction) 8-2	2
ZONE (Zone control for BIN 16-bit)	
	1
Zone control for BIN 16-bit (ZONE)	
	1
Zone control for BIN 32-bit data (DZONE)	
	1
ZPOP (Batch recovery of index register))
ZPUSH (Batch save of index register) 7-400)
ZRRDB (Direct 1-byte read from file register) 7-391	I
ZRWRB (File register direct 1-byte write)	3

Warrantv

Please confirm the following product warranty details before using this product.

1. Gratis Warranty Term and Gratis Warranty Range

If any faults or defects (hereinafter "Failure") found to be the responsibility of Mitsubishi occurs during use of the product within the gratis warranty term, the product shall be repaired at no cost via the sales representative or Mitsubishi Service Company.

However, if repairs are required onsite at domestic or overseas location, expenses to send an engineer will be solely at the customer's discretion. Mitsubishi shall not be held responsible for any re-commissioning, maintenance, or testing on-site that involves replacement of the failed module. [Gratis Warranty Term]

The gratis warranty term of the product shall be for one year after the date of purchase or delivery to a designated place.

Note that after manufacture and shipment from Mitsubishi, the maximum distribution period shall be six (6) months, and the longest gratis warranty term after manufacturing shall be eighteen (18) months. The gratis warranty term of repair parts shall not exceed the gratis warranty term before repairs.

- [Gratis Warranty Range]
- (1) The range shall be limited to normal use within the usage state, usage methods and usage environment, etc., which follow the conditions and precautions, etc., given in the instruction manual, user's manual and caution labels on the product.
- (2) Even within the gratis warranty term, repairs shall be charged for in the following cases.
 - 1. Failure occurring from inappropriate storage or handling, carelessness or negligence by the user. Failure caused by the user's hardware or software design.
 - 2. Failure caused by unapproved modifications, etc., to the product by the user.
 - 3. When the Mitsubishi product is assembled into a user's device, Failure that could have been avoided if functions or structures, judged as necessary in the legal safety measures the user's device is subject to or as necessary by industry standards, had been provided.
 - 4. Failure that could have been avoided if consumable parts (battery, backlight, fuse, etc.) designated in the instruction manual had been correctly serviced or replaced.
 - 5. Failure caused by external irresistible forces such as fires or abnormal voltages, and Failure caused by force majeure such as earthquakes, lightning, wind and water damage.
 - 6. Failure caused by reasons unpredictable by scientific technology standards at time of shipment from Mitsubishi.
- 7. Any other failure found not to be the responsibility of Mitsubishi or that admitted not to be so by the user.

2. Onerous repair term after discontinuation of production

- (1) Mitsubishi shall accept onerous product repairs for seven (7) years after production of the product is discontinued.
 - Discontinuation of production shall be notified with Mitsubishi Technical Bulletins, etc.

(2) Product supply (including repair parts) is not available after production is discontinued.

3. Overseas service

Overseas, repairs shall be accepted by Mitsubishi's local overseas FA Center. Note that the repair conditions at each FA Center may differ.

4. Exclusion of loss in opportunity and secondary loss from warranty liability

Regardless of the gratis warranty term, Mitsubishi shall not be liable for compensation of damages caused by any cause found not to be the responsibility of Mitsubishi, loss in opportunity, lost profits incurred to the user by Failures of Mitsubishi products, special damages and secondary damages whether foreseeable or not, compensation for accidents, and compensation for damages to products other than Mitsubishi products, replacement by the user, maintenance of on-site equipment, start-up test run and other tasks.

5. Changes in product specifications

The specifications given in the catalogs, manuals or technical documents are subject to change without prior notice. 6. Product application

- (1) In using the Mitsubishi MELSEC programmable controller, the usage conditions shall be that the application will not lead to a major accident even if any problem or fault should occur in the programmable controller device, and that backup and fail-safe functions are systematically provided outside of the device for any problem or fault.
- (2) The Mitsubishi programmable controller has been designed and manufactured for applications in general industries, etc. Thus, applications in which the public could be affected such as in nuclear power plants and other power plants operated by respective power companies, and applications in which a special quality assurance system is required, such as for Railway companies or Public service purposes shall be excluded from the programmable controller applications.

In addition, applications in which human life or property that could be greatly affected, such as in aircraft, medical applications, incineration and fuel devices, manned transportation, equipment for recreation and amusement, and safety devices, shall also be excluded from the programmable controller range of applications.

However, in certain cases, some applications may be possible, providing the user consults their local Mitsubishi representative outlining the special requirements of the project, and providing that all parties concerned agree to the special circumstances, solely at the users discretion.

Microsoft, Windows, Windows NT are registered trademarks of Microsoft Corporation in the United States and other countries.

Pentium and Celeron are trademarks of Intel Corporation in the United States and other countries.

Ethernet is a trademark of Xerox Co., Ltd. in the United States.

CompactFlash is a trademark of SanDisk Corporation.

VxWorks, Tornado, WindPower, WindSh and WindView are registered trademarks of Wind River Systems, Inc.

Other company names and product names used in this document are trademarks or registered trademarks of respective owners.

QCPU Programming Manual

Common Instruction 2/2

QCPU-P-KY-E

MODEL

MODEL CODE

13JW10

SH(NA)-080809ENG(2/2)-C(0907)KWIX

MITSUBISHI ELECTRIC CORPORATION

HEAD OFFICE : TOKYO BUILDING, 2-7-3 MARUNOUCHI, CHIYODA-KU, TOKYO 100-8310, JAPAN NAGOYA WORKS : 1-14 , YADA-MINAMI 5-CHOME , HIGASHI-KU, NAGOYA , JAPAN

When exported from Japan, this manual does not require application to the Ministry of Economy, Trade and Industry for service transaction permission.